
1Hasso-Plattner-Institute for IT-Systems, Germany
2Institute of Architecture of Application Systems, Germany

3SAP Research Centre Brisbane, Australia

An Introduction to Service Choreographies

Gero Decker1, Oliver Kopp2, Alistair Barros3

© 2008 Oldenbourg Verlag
See also IT-Homepage: http://www.it-information-technology.de/

@article{ChorIntro,
author = {Gero Decker and Oliver Kopp and Alistair Barros},
title = {An Introduction to Service Choreographies},
journal = {Information Technology},
volume = {50},
number = {2},
year = {2008},
pages = {122--127},
doi = {10.1524/itit.2008.0473},
publisher = {Oldenbourg Verlag}

}

:

Information Technology

Servicechoreographien – eine Einführung

An Introduction to Service Choreographies

M.Sc. Gero Decker: Hasso-Plattner-Institute for IT-Systems Engineering, Prof.-Dr.-Helmert-
Str., 2-3, 14482 Potsdam, Germany
Tel: +49-331-5509-162, Fax: +49-331-5509-189, E-Mail: gero.decker@hpi.uni-potsdam.de
Gero Decker is a Research Assistant and PhD student at Hasso-Plattner-Institute (HPI)
in Potsdam, Germany. His areas of research include inter-organizational business process
management and service choreographies in particular. He is involved in SAP’s activities in that
field as affiliate researcher. He holds a MSc in software engineering from HPI.

Dipl-Inf. Oliver Kopp: Institute of Architecture of Application Systems, Universitätsstrasse,
38, 70569 Stuttgart, Germany
Tel: +49-711-7816-483, Fax: +49-711-7816-472, E-Mail: oliver.kopp@iaas.uni-stuttgart.de
Oliver Kopp is a Research Assistant and PhD student at the University of Stuttgart and focuses
on distributed transactions and global fault handling in service choreographies. He holds a
diploma in software engineering from the University of Stuttgart.

Dr. Alistair Barros: SAP Research Centre Brisbane, Mary St, 133, 4001 Brisbane, Australia
Tel: +61-7-32599554, Fax: +61-7-32599599, E-Mail: alistair.barros@sap.com
Alistair Barros is a research leader at SAP Research with more than 20 years of industry and
applied research experience in service-oriented systems and business process management. He
holds a PhD in computer science from the University of Queensland, Australia.

Keywords: Choreography Modeling; BPEL; WS-CDL; Let’s Dance; H.4.1 [Office

Automation]; K.1 [THE COMPUTER INDUSTRY]

Schlagworte: Choreographiemodellierung; BPEL; WS-CDL; Let’s Dance; H.4.1 [Office
Automation]; K.1 [THE COMPUTER INDUSTRY]

MS-ID: oliver.kopp@iaas.uni-stuttgart.de March 15, 2010

Heft: 50/2 (2008)

Abstract
Service oriented architecture (SOA) is an architectural style for building software systems based on
services. Especially in those scenarios where services implement business processes, complex conversations
between the services occur. Service choreographies are a means to capture all interaction obligations and
constraints from a global perspective. This article introduces choreographies as an important artifact for
SOA, compares them to service orchestrations and surveys existing languages for modeling them.

Zusammenfassung
Die Service-orientierte Architektur (SOA) bezeichnet einen Architekturstil für die Entwicklung von Soft-
waresystemen, die auf Diensten basieren. Besonders in Szenarien, in denen Geschäftsprozesse als Dienste
implementiert werden, entstehen komplexe Konversationen zwischen den verschiedenen Diensten. Service-
choreographien bieten eine globale Sichtweise auf diese Dienste, in der alle Interaktionseinschränkungen
und -verpflichtungen abgebildet sind. Dieser Artikel stellt Choreographien als wichtiges Artefakt im
SOA-Umfeld ein, grenzt sie ab gegenüber Orchestrierungen und gibt einen Überblick über existierende
Modellierungssprachen.

2

1 Introduction

Building complex systems using
services has been a significant
trend in recent years. Services
are loosely coupled components
described in a uniform way that
can be discovered and composed.
Within this context a service-
oriented architecture (SOA) is an
architectural style including ser-
vice providers, brokers and con-
sumers. Seen from a business per-
spective it is a set of services that
the business wants to expose to
their customers and partners or
other portions of the organization.

Several standards have
emerged for implementing a SOA
using web services: SOAP is avail-
able as message exchange format
and WSDL as description lan-
guage. However, these standards
only focus on simple conversations
between services, mainly one-way
and request-response settings. Or-
chestration languages are used
for implementing more complex
services as a flow of service in-
vocations. If all activities of a
business process are implemented
as services, an orchestration can
implement the process by express-
ing the order of and the data flow
between the individual service
invocations.

The main benefit of using an
orchestration layer and therefore
making processes explicit is the
possibility to rapidly adapt the
overall system to new business
requirements. Instead of hard-
coding business processes, the
most important decisions, i.e., the
selection of services and the con-
trol flow between them, are made
only in the orchestration layer
while leaving the underlying ser-
vices unchanged.

Services also play a major role
in business-to-business (B2B) col-
laboration scenarios. In these set-
tings each partner has full con-
trol over and responsibility for the
execution of their own business

processes. Provided that every
partner implements their processes
as orchestrations, complex conver-
sations between these orchestra-
tions occur. Service choreogra-
phies capture these conversations
from a global perspective, i.e., in-
ternal service invocations within
one partner are hidden. Chore-
ographies act as specification and
are often the starting point for im-
plementing new orchestrations or
for adapting existing ones.

This article surveys on service
choreographies and is structured
as follows: The next section will
further elaborate on the lifecycle of
choreographies and orchestrations.
Section 3 compares different lan-
guages for choreography modeling,
before section 4 concludes.

2 Choreographies
and Orchestra-
tions

A certain lifecycle can be observed
for business processes and their
implementation as orchestrations.
We distinguish between design /
verification, deployment, execu-
tion / monitoring and evaluation.
During the design phase, the pro-
cess model is created including con-
trol flow and data flow between
the different activities. Simulation
techniques can be applied for vali-
dating whether the process model
reflects the desired behavior. Ver-
ification ensures that the model
does not contain anomalies like
deadlocks or unreachable activities.
Also the detailed technical configu-
ration, such as the selection of con-
crete message formats and services
to be invoked, needs to be carried
out. The finalized orchestration is
deployed into an execution engine
and concrete service endpoints and
security configurations are defined.
At runtime of the processes, the ac-
tual invocations of services takes
place and monitoring functional-

ity is used for observing and mea-
suring it. During the evaluation
phase the process execution his-
tory is examined and requirements
for process changes are gathered
which again feed into a new design
phase.

As shown in Figure 1 a similar
lifecycle applies to service chore-
ographies. Different business part-
ners or service providers come up
with the choreography model re-
flecting the interaction obligations
and constraints for their future
collaboration. In other settings,
choreographies are used as means
for standardization. Efforts like
RosettaNet yield at first creating
a common vocabulary for a certain
domain, in the case of RosettaNet
the supply chain domain, and the
identification of typical business
document exchanges. Then the
behavioral dependencies between
these exchanges are captured, con-
crete message formats are chosen
and other technical configurations
are integrated. Like it is the case
for orchestrations, choreographies
also need to be simulated and thor-
oughly validated and verified.

During the distribution phase,
the specifications for the individ-
ual services are derived from the
choreography. This is where the
choreography lifecycle produces
an important artifact influencing
the individual orchestrations: the
participant behavior descriptions.
These descriptions need to be ad-
hered to by the different service
providers. They summarize all
interaction obligations and con-
straints from the perspective of
the individual providers. In case
the provider does not yet have a
service in place, the behavior de-
scription can be used as skeleton
for further implementation. In
case the provider already has a
service in place it might need to
be adapted to satisfy the new re-
quirements. An important tech-
nique for this phase is conformance
checking: Is a process implementa-

3

Choreo-
graphy

Design /
Verification

Distribution /
CertificationEvaluation

Monitoring

Orches-
tration n

Design /
Verification

DeploymentEvaluation

Execution /
Monitoring

Orches-
tration 1

Design /
Verification

DeploymentEvaluation

Execution /
Monitoring

Participant
Behavior
Desc. n

Participant
Behavior
Desc. 1

Interconnection

Figure 1: Lifecycle of choreographies and orchestrations

tion valid for a given specification?
Typical theoretical foundations for
this are weak and branching bisim-
ulation. An interesting question is
who actually carries out the con-
formance checks. The implement-
ing provider could use this as self-
check but also a trusted third party
could be involved for certification.

Choreographies are not exe-
cuted by themselves. The actual
collaboration at runtime is carried
out by the interconnected services,
typically implemented in turn as
orchestrations. However, chore-
ographies can be used for moni-
toring purposes. Such an obser-
vation might serve legal purposes:
In case one of the participants
does not behave as specified, penal-
ties might apply and the others
might exclude him from the col-
laboration and chose an alterna-
tive service. Finally, an evaluation
of the choreography takes place
based on running or past collabo-
ration. It might turn out that cer-
tain options in the choreography
are never chosen or that certain
time constraints are frequently not
met. The evaluation phase can be
used to optimize the overall collab-
oration, open it to a wider set of
providers or a more general collab-

oration context.

3 Choreography
Languages

Interaction
Model

Interconnected
Interface Model

WSFL
BPEL4Chor

BPSS
Let’s Dance

WS-CDL

MSC
BPMN

Im
pl

em
en

ta
tio

n-
sp

ec
ifi

c
Im

pl
em

en
ta

tio
n-

in
de

pe
nd

en
t

Figure 2: Categorizations of chore-
ography languages

An important criterion for
distinguishing choreography lan-
guages is the target user group.
In the Business Process Manage-
ment area we can generally see
a difference between those see-
ing process models primarily as a
means to describe and communi-
cate about their business and to

optimize it from a business per-
spective, e.g., in terms of process
performance, distribution of re-
sponsibility for decisions, increase
of the service quality, etc. On
the other hand we find those con-
cerned with the actual execution
of business processes in IT. Both
communities need to be provided
with languages that best suits their
needs. For example, we find e.g.
the Business Process Modeling No-
tation (BPMN) for describing or-
chestrations on an implementation-
independent and BPEL on a web-
service-execution level.

On an implementation-
independent level fundamental
decisions about interactions are
made. E.g., it is agreed upon
whether the amount of goods de-
livered during the replenishment
of a warehouse needs is to be
ordered by the buying company
or is determined by the supplier.
On an implementation-specific
level the concrete message formats
and communication protocols as
well as security issues need to
be tackled. Here, it is decided
whether synchronous message ex-
changes or asynchronous ones
are to be used for certain inter-
actions. A special challenge is

4

exception handling, while on an
implementation-independent level
rather best-case modeling applies.
Most choreography languages on
an implementation-specific level
are linked to web services.

Orthogonal to the distinc-
tion between implementation-
independent and -specific levels,
there are two different modeling
approaches for choreographies:
interaction models and intercon-
nected interface behavior models.
In case of interaction models ele-
mentary interactions, i.e., one-way
and request-response message ex-
changes, are the basic building
blocks. Behavioral dependencies
are specified between these in-
teractions and combinations of
interactions are grouped into com-
plex interactions. Due to the fact
that these models capture the
dependencies from a truly global
perspective, the modeler is able to
define dependencies that cannot
be enforced. E.g., she might spec-
ify that a shipper can only send
the delivery details to a buyer after
the supplier has notified the insur-
ance about the delivery. In this
case it is left unexplained how the
shipper can learn about whether
the notification has been sent. Ad-
ditional synchronization messages
would be necessary to turn such
a locally unenforceable interaction
model into an enforceable one.
In the case of interconnected in-
terface behavior models control
flow is defined per participant, i.e.,
the individual interface behavior
models are stitched together using
message links. Thus, such un-
enforceability issues cannot arise
since control flow is defined per
participant. However, on the other
hand, interface behavior models
might be incompatible, i.e., the
different participant cannot inter-
act successfully with each other.
Deadlocks are typical outcomes
of such incompatibility. A partic-
ipant expecting a notification of
another participant before being

able to proceed and the other
participant never sends such a
notification.

Customer Reseller

Payment Org. Manufacturer

Send
Order

Receive
Invoice

Receive
Product

Place
Invoice Req.

Place Pro-
duct Req.

Send
Invoice

Send
Product

Figure 3: BPMN choreography

The Business Process Mod-
eling Notation (BPMN [7]) is
the de-facto standard for process
modeling on the implementation-
independent level. Since its first
releases in 2004 there was a ma-
jor uptake of this language and it
now enjoys wide adoption by both
industry and academia. The lan-
guage incorporates the notion of
swimlanes (called pools in BPMN),
therefore allowing to assign differ-
ent activities of the same process
to different organizational units.
An important feature for model-
ing choreographies is the explicit
distinction between control flow
and message flow. While all activi-
ties connected through control flow
belong to the same process, mes-
sage flow is used to interconnect
different processes. BPMN comes
with a rich set of constructs for
expressing advanced control flow
scenarios. Data flow can also be
expressed through data objects as-
sociated to activities and message
flow. A weak side of BPMN regard-
ing choreographies is that every
participant has to be represented
by a pool. This is problematic as it
is a recurrent scenario in choreogra-

phies that there are several partic-
ipants of the same type involved.
E.g., imagine a bidding scenario
where different bidders take part
in one auction. Figure 3 shows a
simple choreography expressed in
BPMN.

Message Sequence Charts
(MSCs [4]) can also be used for de-
scribing choreographies. However,
they are rather suited for describ-
ing mere sequences of interactions
in contrast to full choreographies:
conditional branching, parallel
branching and iterations are not
supported.

Order

Customer Reseller

Product Request

Reseller Manu-
facturer

Invoice Request

Reseller Payment
Org.

Product

Manu-
facturer

Cus-
tomer

Invoice

Payment
Org.

Cus-
tomer

Figure 4: Let’s Dance choreogra-
phy

Let’s Dance [8] is a language
specifically designed for choreog-
raphy modeling. In contrast to
BPMN, Let’s Dance is an in-
teraction modeling language, i.e.,
atomic message exchanges are the
basic building blocks of the mod-
els. Like BPMN, it targets busi-
ness analysts and mainly serves
to capture requirements instead
of going down to implementation
details. For interaction models it
is not as straight forward to de-
rive the individual interface be-
havior models like in the case
of e.g. BPMN. Graph reduction
techniques need to be applied for
this purpose. Let’s Dance sup-
ports more choreography scenar-
ios than BPMN, making it a pow-
erful yet mainly academic alter-
native for choreography modeling

5

at an implementation-independent
level. Figure 4 shows a Let’s Dance
choreography.

The ebXML initiative has
come up with the Business Process
Schema Specification (BPSS [2]),
an implementation-independent
XML-based choreography lan-
guage. As a main drawback, BPSS
is limited to bi-lateral choreogra-
phies only.

The Web Services Flow Lan-
guage (WSFL [6]) can be used
for describing choreographies of
web services. Message receipt and
invocation actions are defined in
the different local views and then
wired together in a global model.
Concrete definitions of port types
and operations are possible, there-
fore providing information on a
web-services-specific level. How-
ever, the global model links opera-
tions instead of activities and thus
provides a more coarse-grained
view than directly linking activ-
ities.

A more recent proposal for
web service choreographies is
BPEL4Chor [3]. In this ap-
proach abstract BPEL processes
are used for the individual partici-
pant behavior descriptions which
are wired together using message
links in a so called participant
topology. Another special feature
of BPEL4Chor is the separate def-
inition of participant groundings.
That means, the behavior descrip-
tions and the topology do not con-
tain technical configuration infor-
mation. Therefore, it is easy to
reuse a choreography for differ-
ent technical setups, e.g., with
different port types used. Like
Let’s Dance, BPEL4Chor supports
all common choreography patterns
from [1].

The Web Services Choreogra-
phy Description Language (WS-
CDL [5]) is an interaction mod-

eling languages for web services
choreographies. Being a candidate
recommendation by the W3C since
2005, WS-CDL has been heavily
criticized for being too different
from the popular orchestration lan-
guage BPEL. WS-CDL’s control
flow constructs differ significantly
from those of BPEL, making it
hard to properly generate abstract
BPEL processes for the individual
services out of WS-CDL choreogra-
phies. Furthermore, it turned out
that WS-CDL only partially sup-
ports those choreography scenarios
where a number of services of the
same type are involved.

Reasoning on choreographies is
an important aspect in the veri-
fication and certification phases.
The most typical formalisms for
this purpose are Petri nets and
pi-calculus. There is a variety of
techniques available for these two
formalisms regarding compatibil-
ity and conformance checking. In
order to use these capabilities dif-
ferent mappings from the choreog-
raphy languages presented above
to their formal representation are
in place.

4 Conclusion

This article has provided an
overview of service choreographies
and introduced the main con-
cepts of that field. The lifecy-
cle of choreographies and its re-
lationship to the lifecycle of or-
chestrations was discussed. As
main part, different choreogra-
phy languages covering both the
implementation-independent level
and the implementation-specific
level were shortly presented and
categorized.

The authors are actively in-
volved in the advancement of
choreography languages and inves-
tigate their applicability as well as

formal properties.

References

[1] A. Barros, M. Dumas, and
A. ter Hofstede. Service In-
teraction Patterns. In BPM,
Vienna, Austria, Sept 2005.

[2] J. Clark, C. Casanave,
K. Kanaskie, B. Harvey,
N. Smith, J. Yunker, and
K. Riemer. ebXML Business
Process Specification Schema
Version 1.01. Technical report,
UN/CEFACT and OASIS,
May 2001.

[3] G. Decker, O. Kopp, F. Ley-
mann, and M. Weske.
BPEL4Chor: Extending
BPEL for Modeling Chore-
ographies. In ICWS, Salt Lake
City, USA, July 2007.

[4] ITU-T. Message sequence
chart. Recommendation Z.120,
ITU-T, 2000.

[5] N. Kavantzas, D. Burdett,
G. Ritzinger, and Y. Lafon.
Web Services Choreography
Description Language Version
1.0, W3C Candidate Recom-
mendation. Technical report,
November 2005. http://www.

w3.org/TR/ws-cdl-10.

[6] F. Leymann. Web Services
Flow Language (WSFL 1.0),
May 2001.

[7] Business Process Modeling No-
tation (BPMN) Specification,
Final Adopted Specification.
Technical report, OMG, Feb
2006. www.bpmn.org/.

[8] J. M. Zaha, A. Barros, M. Du-
mas, and A. ter Hofstede. A
Language for Service Behavior
Modeling. In CoopIS, Montpel-
lier, France, Nov 2006.

6

	coverpage.pdf
	Foliennummer 1

