
Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,martin,wutke,leymann}@iaas.uni-stuttgart.de

The Difference Between Graph-Based
and Block-Structured Business Process

Modelling Languages

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann

© Gesellschaft für Informatik, Bonn 2009
See also MoBIS-Homepage: http://www.wi-inf.uni-duisburg-essen.de/MobisPortal

@article{ART‐2009‐10,
author = {Oliver Kopp and Daniel Martin and Daniel Wutke and Frank

Leymann},
title = {The Difference Between Graph‐Based and Block‐Structured

Business Process Modelling Languages},
journal = {Enterprise Modelling and Information Systems},
editor = {Ulrich Frank},
year = {2009},
pages = {3‐‐13},
volume = {4},
number = {1},
publisher = {Gesellschaft f\"{u}r Informatik e.V. (GI)}

}

:

Institute of Architecture of Application Systems

http://www.wi-inf.uni-duisburg-essen.de/MobisPortal

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 3

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann

The Difference Between Graph-Based
and Block-Structured Business Process
Modelling Languages

The most prominent business process notations in use today are BPMN, EPC and BPEL. While all those languages
show similarities on the conceptual level and share similar constructs, the semantics of these constructs and even
the intended use of the language itself are often quite different. As a result, users are uncertain when to use which
language or construct in a particular language, especially when they have used another business process notation
before. In this paper, we discuss the core characteristics of graph-based and block-structured modelling languages
and compare them with respect to their join and loop semantics.

1 Introduction

Workflow technology is a central aspect of Business
Process Management (BPM) and an important tech-
nology in both industry and academia. Workflows are
instances of workflow models, which are representa-
tions of real-world business processes [LeRo00],
[Wesk07]. Basically, a workflow model consists of ac-
tivities and the ordering amongst them. Workflow
models can serve different purposes: on the one
hand, they can be employed for documentation of
business processes itself, e.g. for facilitating business
process modelling by business analysts; on the other
hand, workflow models defined by IT experts can
serve as input for Workflow Management Systems
(WfMS) that allow their machine-aided execution. The
problem of facilitating the creation of executable busi-
ness process models based on abstract business proc-
ess descriptions, e.g. through enhancing them with
enough information to facilitate their automated exe-
cution, is known as the Business-IT gap [DuAa05].
A number of workflow languages exists for the spec-
ification and the graphical representation of process-
es. One important aspect is the control flow, which
specifies the execution order of the activities. Concep-
tually, workflow languages can be classified according
to whether their control flow modelling style is cen-
tered around the notion of blocks or the notion of
graphs. In block-structured languages, control flow is
defined similar to existing programming languages by
using block-structures such as if or while. In contrast,
process control flow in graph-oriented workflow

languages is defined through explicit control links be-
tween activities.

The intended use of a workflow language places a
number of requirements and restrictions on the kind
of language employed; whether used primarily for
documentation purposes (abstract processes) or
whether it is used to provide a detailed process model
that can be deployed on a WfMS for automatic execu-
tion (executable processes) highly depends on the
process to be modelled and the intended use of the
resulting model. Moreover, certain languages even al-
low for modelling abstract processes as well as exe-
cutable processes. As a result, guidelines have to be
provided to process modellers to allow them choosing
the “right” language for their purpose.

In this paper, a number of workflow languages are
compared with respect to their intended use, their no-
tation and serialisation, their basic modelling ap-
proach (block-structured vs. graph-oriented vs.
hybrid), their supported structure of loops (structured
loops vs. arbitrary cycles) and their support for ex-
pressing explicit data flow. Block-structured and
graph-oriented workflow languages differ in their rep-
resentation of loops, splits and joins. We see these as-
pects as the main distinction between these
languages. Therefore, this paper focuses on the com-
parison of loops, splits and joins.

The compared workflow languages comprise Event-
driven Process Chains (EPC, [ScTh05], [KeNü+92])
and the Business Process Modelling Notation (BPMN,
[OMG09]) on the side of languages targeted primarily
on modelling processes for documentation purposes

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann4

and the Web Service Business Process Execution Lan-
guage (BPEL, [OASIS07]) and the Windows Workflow
Foundation (WF, [Micr09]) as languages for modelling
(also) executable processes.

1.1 Related Work

In this paper, we compare modelling languages with
respect to their support of block-structured and
graph-based modelling constructs. Other approaches
to compare modelling languages are based on pat-
terns. Currently, there exist control flow patterns
[AaHo+03], [Kiep03], process instantiation patterns
[DeMe08], correlation patterns [BaDe+07], data han-
dling patterns [RuHo+05], exception handling pat-
terns [RuAa06] and service interaction patterns
[BaDu05]. Workflow patterns focus on the expres-
siveness of the control flow constructs and do not ex-
plicitly distinguish between graph-based and block-
structured modelling. The other patterns do not focus
on the control flow, but on the capability of the lan-
guage to specify process instantiation, process in-
stance correlation and the handling of data,
exceptions and interactions with other services, which
are not captured in this work.

Different intentions of different process languages
have been addressed in the context of BPMN and BPEL
in [ReMe06] and [Palm06]. They address mainly the
intention of these modelling languages and do not fo-
cus on the constructs to model control flow. The suit-
ability of BPMN for business process modelling is
investigated in [WoAa+06]. However, BPMN is not
compared to other languages in this work.

Besides the presented languages, there are several
other graph-based and block-structured languages
and formalisms. A prominent formal graph-based lan-
guage is the Petri-net based workflow nets [Aals98].
Pi-calculus is block-based, since it offers a parallel and
a split construct. However, due to its capabilities to
generate channels, it can also be used to capture the
semantics of graph-based languages [PuWe05]. An
overview of all formalisms used on the workflow area
is presented in [BrKo06].

There is research whether visual programming or tex-
tual programming is more suited to model and under-
stand programs. The experiments presented in
[CuTa87], [ChKu01] show that “visual representa-
tions [outperform] the textual program”. In the case
of flow-charts the same result is presented in
[Scan89] and the experience report presented in
[BaHa95] shows that the productivity of visual pro-
gramming outperforms textual programming.
[KiAu97] shows that “graphics may be better for tech-
nical, non-programmers than they are for program-
mers because of the great amount of experience that
programmers have with textual notations in

programming languages”. Finally, the studies pre-
sented in [GrPe91, GrPe92, MoMa+93] show that
“graphics [is] significantly slower than text” [Petr95].
All in all, it is not finally proofed that visual program-
ming is (in all cases) more suitable than textual pro-
gramming. There are no studies specific to the
languages compared in this paper and no research,
whether modellers are more effective in modelling
and in understanding models expressed in graphs or
in block-structures.

1.2 Structure of the Paper

The paper is organised as follows: in Section 3 we
present a business process example, which is mod-
elled using both, graph-based and block-structured
languages. In graph-based languages, there are dif-
ferent rules of how to join control flows during execu-
tion. In Section 4 we present an overview of the
problem and the current solutions. An overview of
techniques to model loops is given in Section 5. Sub-
sequently, we present a comparison of the workflow
languages in Section 6. Finally, we provide a conclu-
sion in Section 8.

2 Exemplary Process

In this section, we present a process that shows dis-
tinct features which we will discuss in the sections to
follow. The process itself serves as a running exam-
ple, being re-modelled in BPEL, EPC and BPMN to ex-
emplify the use of graph-based and block-structured
modelling approaches.

2.1 Graph-based Modelling using
BPEL <flow>

The process we use is a modified version of the “Loan
approval” example process from [OASIS07], mod-
elled using the graph-based constructs provided by
BPEL. This graph-based part of BPEL originates from
BPEL’s predecessor WSFL [Leym01]. WSFL is based
on the Flow Definition Language (FDL), formalized in
[LeRo00] as PM-Graphs.

BPEL allows to define a workflow model using nodes
and edges inside a <flow> element. Nodes are activ-
ities and edges are called “links”. The logic of deci-
sions and branching is solely expressed through
transition conditions and join conditions. Transition
conditions and join conditions are both Boolean ex-
pressions. As soon as an activity is completed, the
transition conditions on their outgoing links are eval-
uated. The result is set as the “status of the link”,
which is true or false. Afterwards, the target of each
link is visited. If the status of all incoming links is

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 5

defined, the join condition of the activity is evaluated.
If the join condition evaluates to false, the activity is
called “dead” and the status of all its outgoing links is
set to false. If the join condition evaluates to true, the
activity is executed and the status of each outgoing
link is evaluated. Regardless of the activity being ex-
ecuted, the target of each link is visited. The propa-
gation of the dead status via false as link status is
called dead-path elimination (DPE). DPE is conceptu-
ally detailed in [LeRo00], specified for BPEL in
[OASIS07] and explained in detail in [CuKh+03].

The process is presented in Figure 1: Figure 1(a)
presents extracts of the BPEL code and 1(b) the
graphical representation of the process. The process
is initiated by the reception of a loan request at activ-
ity receive request. This loan request is checked in
parallel by two external credit rating services (activi-
ties S1 and S2) and a company internal rating service
IS. If the company internal rating service reports “low
risk”, the subsequent activity is a risk assessment by
a human assessor that manually checks the request,
otherwise this step is skipped. In our case, we want
to take conservative decisions, i.e. the loan request
must only be accepted if either both external rating
services report low risk or both the internal rating
service and the subsequent human assessor report
low risk. Of course we also accept the loan if all serv-
ices report low risk—both external services and the
internal rating service and assessor. The loan is to be
rejected in any other case.

We implement these requirements using transition
conditions on the links following each of the rating
services which evaluate to false if anything else than

“low risk” is reported. In case “high risk” occurs, the
state of the link evaluates to false. The AND-Join fol-
lowing the two external rating services means that
the join condition is a conjunction over the state of the
links leaving from S1 and S2, thus the link going from
the AND-Join to the OR-Join evaluates to true only if
both external rating services returned “low risk” and
therefore implements the first part of our require-
ments. Similarly, the result of the OR-Join is only true
if one or both of its incoming links are true. Again, this
is only the case if either both external or the internal
assessment have returned “low risk”. The only part
left from the requirements is to reject the loan re-
quest if it cannot be accepted. This is modelled by link
l9, which is annotated with the default transition con-
dition true. The join condition on activity “reject” is a
negation of the link status of link l9 (not l9). In that
way, “Reject Loan” is only executed iff “Accept Loan”
is not executed: l9 is set to true if “Accept Loan” is ex-
ecuted. Thus, not l9 evaluates to false and “Reject
Loan” is not executed. If “Accept Loan” is not execut-
ed, the status of l9 is set to false and not l9 evaluates
to true, leading to the execution of “Reject Loan”.

2.2 Graph-Based Modelling using BPMN
and EPC

In this section, we present the “Loan approval” proc-
ess introduced above, modelled using BPMN and EPC
as examples of a graph-oriented modelling language.
The resulting BPMN graph (Figure 2) looks considera-
bly different compared to the BPEL model presented
in Section 3.1. This is mainly due to the different way

<process>
 <flow>
 <links>
 <link name="receive-to-S1">
 <link name="S1-to-AND" />
 ...
 </links>
 <receive name="ReceiveRequest">...</receive>
 <invoke ...>...</invoke>
 <empty name="AND">
 <targets>
 <joinCondition>
 $S1-to-AND AND $S2-to-AND
 </joinCondition>
 <target name="S1-to-AND" />
 <target name="S2-to-AND" />
 </targets>
 <sources>
 <source name="AND-to-OR" />
 </sources>
 </empty>
 ...
 </flow>
</process>

Human
Assessor

Receive
Request

AND

r1 ==
"low risk"

S1 S2 IS

Accept
Loan

r2 ==
"low risk"

r3 ==
"low risk"

OR Reject
Loanl9

not l9

s ==
"accept"

(a) BPEL code (b) Graphical representation

Figure 1: Loan approval process in BPEL

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann6

of modelling joins: through arbitrary Boolean expres-
sions in the BPEL case, or through additional explicit
join constructs such as AND, OR, XOR in BPMN. A
complex join was chosen instead of a literal transla-
tion of the process using BPMN AND-Joins and OR-
Joins: the “Reject Loan” activity that has to be execut-
ed only if “Accept Loan” was not executed. This be-
haviour cannot be modelled without being able to
refer to the state of a control flow link in the join con-
dition. In BPMN, the solution for that is to use a com-
plex gateway that refers to variables containing the
state of each of the assessment services, updated by
each of the services after their completion. These var-
iables are then used to decide which outgoing se-
quence flow is to follow, e.g. either reject or accept
the loan request.

Since EPCs do not provide support for arbitrary join
conditions, the paths of all decisions have to be
merged using an OR-Join. Afterwards, the decision
whether to accept or reject is taken at the subsequent
function “Take Final Decision” (Figure 3). The con-
crete semantics has to be specified using additional
text, which may be included in the diagram.

For the same reason, decisions in BPMN have to be
modelled explicitly: i.e. in the BPEL graph model, we
relied on dead-path elimination to skip the “human
assessor” activity if the internal assessment returned
“high risk”. In BPMN, this has to be modelled explicitly
using a dedicated sequence flow.

To summarise, the main difference between the BPEL
graph-model and the BPMN model is the way how

conditions are modelled: as a combination of expres-
sions on control flow links and join conditions in the
case of BPEL; or as a complex gateway in the case of
BPMN. In the BPEL case, decision logic is distributed
among links and activities, whereas it is represented
in compact form as a complex gateway in BPMN.

2.3 Block-Structured Modelling using
BPEL

Besides BPEL, the Windows Workflow Foundation
(WF, [Micr09]) and “normal” programming languages
support block-structured modelling. For better reada-
bility, we use a simplified version of the BPEL syntax
in Figure 4. We use the names of the activities as
function names and abstract from their XML syntax by
representing their XML attributes by function param-
eters. Note that our way of representing the block-
structured part of BPEL emphasises on the similarity
of block structured modelling languages with regular,
procedural programming languages such as C. At the
expense of a different representation using program-
ming concepts such as variables, function calls and
nested block structures, this kind of modelling howev-
er provides clear semantics to every modeller familiar
with basic computer programming languages. Fur-
thermore, since the representation already is in a

Check Risk
Using S1

Check Risk
Using S2

Check Risk
Internally (IS)

Approval by
Human

Assessor

Accept Loan Reject Loan

low risk

Figure 2: Loan approval modelled using BPMN

Figure 3: Loan approval modelled using EPC

Check Risk
Using S1

V

Check Risk
Internally

Approval
by Human
Assessor

V

Check Risk
Using S2

Loan
Request
Received

Risk
Checked

Risk
Checked

Approval
Finished

High Risk Low Risk

XOR

Loan
Request
Handled

Take Final
Decision

Reject

Reject
Loan

Accept

Accept
Loan XOR

XOR

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 7

form similar to a “real” program, transformation into
executable code typically is easier to achieve [Ecli09].

Since WS-BPEL is essentially a hybrid language that
was derived from a block-structured ancestor XLANG
[That01] and a graph-oriented ancestor WSFL
[Leym01], it allows users to freely choose between
both approaches. It is even possible to mix both con-
cepts, by allowing graphs to be freely drawn within
the <flow> element. This element may in turn may be
used as a block element nested within other blocks.
However, the BPEL <flow> can also used as a block
structure only to allow for parallelism; each element
it contains is executed in parallel. Using the BPEL
<flow> as a block structure simply means not using
control flow links within the block, so that each deci-
sion is represented using explicit branch or loop con-
structs such as <if> or <while>.

On the other hand, the way a business process typi-
cally is drawn comes very close to graph form, with
nodes as activities and directed edges as control flow
dependencies between them. As shown in scientific
literature, it is hard to assign clear and distinct se-
mantics to these languages (e.g. [WyEd+05],
[Mend07], [Wehl07]) mainly due to the ambiguous
way to interpret loops as well as the joins and splits
they are constructed of. Sometimes a specific lan-
guage even explicitly refrains from defining clear se-
mantics (e.g. BPMN). Thus, transformation of graph-
based workflow descriptions into executable form
generally can be considered harder to achieve.

3 Join Condition

As mentioned before, the way how control flow joins
are implemented in a workflow modelling language
heavily influences how the semantics of a certain
process are expressed in the model. This section

therefore revisits the examples from Section 3 and
highlights different join semantics of each approach.

3.1 Kind of Join Conditions

Generally, two main types of control flow joins can be
distinguished in todays workflow languages:

Restricted Choice Languages such as EPC [ScTh05],
[KeNü+92] and YAWL [AaHo05] only allow to join dif-
ferent threads of control flow using a restricted set of
operators, typically in the form of AND, OR and XOR
elements as part of their modelling language. An im-
portant property of these languages is that it is not
possible to refer to negative link state, i.e. modelling
a situation as depicted in Figure 1 is not possible; a
modeller has to work around this issue, possibly cre-
ating a much more complex model. If the set of join
types in a language allowing only restricted choice
joins is functionally complete, a Boolean expression
representing a complex join condition can be con-
structed using combinations of multiple join opera-
tors.

Arbitrary Expression Languages allowing to define ar-
bitrary Boolean expressions over the state of incom-
ing links belong to this category. BPEL however is the
only candidate that allows expressions over link state
only, while BPMN allows to refer to process state (in
form of process variables) in its join expressions. This
has a noteworthy consequence: since it is very com-
mon to refer to process state as part of a join condi-
tion, complex join logic in BPEL has to be split among
transition conditions of incoming links where process
variable access is allowed, and the join condition as a
Boolean expression over the state of all incoming links
(and therefore the result of each of the transition con-
ditions). In contrast to “join condition fragmentation”
as in BPEL, other languages allow to model complex
join conditions as one single, “compact” statement
since process variable access is allowed.

BPMN is a hybrid in this case: While it offers a restrict-
ed choice (AND, OR, XOR and complex gateway), the
“complex gateway” allows for defining arbitrary ex-
pressions. Naturally, restricted choice join operators
are mostly used in languages whose primary intend is
human-human communication of a certain process.
In this case, a join refers to the availability of control
flow only, in contrast to human-machine (i.e. execut-
able) languages where joins need to be expressed in
a very specific manner referring to process state and
control flow and thus must be modelled in the form of
a Boolean expression.

Figure 4: Loan approval modelled in block-
structured BPEL

sequence {
 receive(C, loan_request);
 flow {
 flow {
 extRes1 = invoke(S1, loan_request);
 extRes2 = invoke(S2, loan_request);
 }
 sequence {
 intRes = invoke(IS, loan_request);
 if (intRes=='OK') {
 intRes = invoke(assesor, loan_request);
 }
 }
 }
 if ((extRes1=='OK' && extRes2=='OK') ||
 (intRes=='OK')) {
 invoke(CS, accept_loan);
 } else {
 invoke(CS, reject_loan);
 }
}

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann8

3.2 Complexity of Join Evaluation

The complexity of join evaluation has already been
discussed extensively in literature. Especially, the se-
mantics of the OR-Join in EPCs have raised many dis-
cussions and lead to different proposals for concrete
executable semantics. An extensive presentation and
comparison of the proposed semantics can be found
in [Mend07], [MeAa07], [AaHo05], [Wehl07]. The in-
herent problem of the OR-Join generally is that it is
hard to decide how long it should block the control
flow. It is especially hard in processes containing cy-
cles [Kind06]. Most discussions debate whether this
should be resolved through local knowledge, i.e. by
introducing additional arcs in the model or “negative
control tokens” (as it is done by dead-path elimina-
tion) that make it possible to unblock and evaluate
the join condition when it is clear that no more tokens
can arrive. On the other hand, execution engines have
been proposed that decide—by looking at the global
state of the process—if a join can be unblocked since
no more tokens will arrive on the input arcs. Natural-
ly, these “global semantics” of join nodes introduce a
significantly higher complexity of the evaluation of a
join [MeAa07], [DuGr+07]. Languages that depend
on such “global semantics” for join evaluation are
BPMN and EPC.

“Local join” semantics means that the execution relies
on dead-path elimination (see Section 3.1) or on the
introduction of additional arcs to tell the join node that
no control flow will arrive on a certain path. BPEL re-
alises local join semantics by dead-path elimination.
In that way, no additional arcs are introduced. Addi-
tional arcs are problematic when it comes to auditing
the deployed process: the model deployed differs
from the model finally executed by the engine.

4 Loops

A loop refers to a set of activities that are executed ei-
ther while a certain loop condition holds or until a cer-
tain exit condition is reached. Two forms of loops can
be found in common workflow languages: block-
structured and graph-based loops. Block-structured
loops, such as the while or repeat until loop, are char-
acterised by an explicit loop construct and an exit con-
dition at either the top or the bottom of the construct.
From the process definition languages analysed in the
paper, BPEL, BPMN and WF provide support for struc-
tured loop constructs. In BPEL and WF, exit conditions
can be specified to be evaluated either at the top of
the loop through the <while> activity or at the bottom
through the <repeat until> activity. BPMN distin-
guishes repeat until and while loops by attributes of
the looping activity.

In contrast to block-structured languages, loops are
modelled in graph-based languages without a dedi-
cated loop construct by defining control flow links be-
tween activities. Typically, these links are associated
with so-called transition conditions that define under
which condition the corresponding link is to be fol-
lowed by the navigator of the workflow management
system. While the absence of the necessity of an ex-
plicit loop construct conceptually allows for the defini-
tion of arbitrary loops with multiple incoming and
outgoing control links, such patterns are character-
ised by a number of problems. For instance, consider
the example of a loop represented through control
links between activities presented in Figure 5. In this
example, link u denotes the loop entry and link y de-
notes the loop exit. Node B denotes the activity that
evaluates the exit condition of the loop which repeat-
edly triggers execution of the loop activities C and D
until the exit condition of the loop is reached and the
loop is exited through link y.

The process presented in Figure 5 can only be execut-
ed under certain assumptions. While e.g. BPEL allows
for graph-based definition of process control flow
within the BPEL <flow> construct, it does not allow for
definition of graphs containing cycles; which restricts
BPEL to block-structured loops. This is due to the
dead-path elimination algorithm employed by BPEL
[OASIS07]. This algorithm essentially demands each
join operation—in case of the example activity B
which joins the incoming links u (the loop entry) and
x (the final link of the loop body)—to be synchronis-
ing, i.e. to block execution of the join activity until the
link status of each incoming link has been propagated
to the join activity and hence the value of the join con-
dition can be evaluated. As a result, execution of the
loop can never be started, since the start of the loop
depends on a defined link status of u which can only

Figure 5: Example for a graph-oriented loop,
modelled without an explicit loop

A

XOR

B

C

D

w

x

vy

u

E

F

z

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 9

be produced after evaluation of activity B. Other ap-
proaches [MeAa07] have solved the aforementioned
problem for EPCs by introducing a non-synchronising
(XOR) join construct and an extended form of dead/
wait status propagation.

The example presented in Figure 5 also shows a sec-
ond problem related to dead-path elimination in cyclic
graphs in combination with arbitrary split behaviour
[LeRo00]. Node B not only links to node C (which is
inside the loop) but also to the loop external node E
(which in turn links to node F) through the loop exit
link y. Assume that B is an OR-Split. In this case, after
B is executed, it is possible that both its outgoing links
are activated; as a result activities C and E are exe-
cuted. Assume that execution of activity C takes more
time than execution of E. After successful execution of
E, its outgoing link z is activated and activity F is ex-
ecuted. Given OR-Split semantics in B, the already
executed path E, F would be executed again, which
might or might not be desired by the modeller. This
ambiguity can be solved by restricting exit nodes on a
cycle to XOR semantics, meaning that either the loop
is exited (through one of potentially a number of exit
conditions) or the loop is continued with the next cy-
cle/iteration.

It is important to note that unstructured loops can be
mapped to structured loops, using a method proposed
in [ZhHa+06]. The presented approach derives a fi-
nite automaton from the unstructured loop, applies
reduction rules and then generates a set of semanti-
cally equivalent, non-reducible structured control flow
statements. These statements can then be represent-
ed by block-structured statements in the respective
process execution language. In the presented BPEL
example for instance, combinations of <sequence>,
<if>, <while> and <switch> are used. As a result,
languages that only support structured loops can still
support unstructured loops as well, given they sup-
port the structured control flow statements necessary
to express the result of the loop transformation.

Of the analysed languages BPMN and EPCs allow def-
inition of arbitrary cycles.

5 Comparison

In Table 1, a summary of the comparison of the work-
flow languages BPEL, BPMN, EPC and WF is presented
with respect to their intention, standardised rendering
and serialisation, modelling paradigm, supported
loops, splits, joins and whether they support explicit
data flow. Many of the decisions are commented later
in this section and referenced by Cxx, with xx stand-
ing for the number of the comment. The criteria are
explained in the following. Intention expresses
whether the respective language has been designed
primarily for human-human or human-machine com-
munication. While languages classified as human-hu-
man are used mostly for business process
documentation purposes, languages classified as hu-
man-machine are used for automatic execution of
business processes. As such, they require a clearly
defined execution semantics that gives precise and
unambiguous instructions on how a process must be
executed. Note that while BPEL’s abstract process
profiles also facilitate its use as a modelling language,
it has been classified as human-machine, since its pri-
mary focus is on executable processes (C01). Stand-
ardised rendering and standardised serialisation refer
to whether the language standard defines a graphical
notation or a machine-processable textual represen-
tation, respectively. Note that XPDL [Wor08] is the
proposed standard serialisation format for BPMN dia-
grams (C02). The WF is a proprietary language and
thus does not provide a standardised serialisation;
process models are directly translated to executable
code (C03). Apart from WF, all compared languages
support graph-oriented modelling of process control
flow with a restriction to acyclic graphs in BPEL due to
the reasons outlined in Section 5. WF is restricted to
purely block-structured modelling (C04). Languages
that only allow well-formed process models restrict

Table 1: Summarised comparison of BPEL, BPMN, EPC and WF

Criteria BPEL BPMN EPC WF

Intention human-machineC01 human-human human-human human-machine

Standardised

Rendering

- + + -

Standardised

Serialisation

+ +C02 - -C03

Graph Modelling + + + -C04

Well-Formed Only -C05 - - +

Block Modelling + +C06 -C07 +C04

Structured Loops + + + +

Arbitrary Cycles -C08 + + -C09

Parameterised Split +C10 + +C11 n/a

Parameterised Join +C12 +C13 + n/a

Join Semantics local (DPE) various various synchronisation

Explicit Data Flow -C14 + + -

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann10

consecutive split and join operations to the same type
are referred to as well-formed [Aals98]. Well-formed
means for example that if control flow is split using a
XOR-Split it must be joined through a XOR-Join; join-
ing a XOR-Split with an AND-Join is disallowed. In
BPEL arbitrary Boolean join conditions on the status of
incoming links can be specified (including in particular
those resulting in non well-formed process models,
C05), BPMN and EPC themselves do not define any re-
strictions on the types of consecutive split/join pairs.
Block-structured modelling constructs are supported
by BPEL and to a limited extent also by BPMN: BPMN
supports a while construct and sub-processes as the
only block-structured constructs (C06). EPCs offer to
emulate a block construct by a pairing of connectors,
but do not offer first-class block-constructs (C07). All
compares languages allow for structured loops; while
BPMN allows for modelling loops both as graphs and
through blocks, modelling structured loops in BPEL is
limited to blocks (due to the aforementioned required
acyclicity of graphs in BPEL, C08). For similar reasons
BPEL does not allow modelling of arbitrary cycles (see
Section 5); as a result loops have to be modelled us-
ing blocks. In WF arbitrary cycles have to realised us-
ing state machine-based modelling (C09), which is
also possible in the case of BPEL. Parameterised split
refers to the ability to specify the link status individu-
ally for each of potentially multiple outgoing links of
an activity. In BPEL this can be achieved through dif-
ferent transition conditions on the individual links
(where an exclusive split needs mutually exclusive
transition conditions, C10). EPCs are restricted to
AND-Splits, OR-Splits and XOR-Splits (C11). The
same restrictions hold for EPCs with respect to their
support of parameterised join operations, i.e. the abil-
ity of defining a join condition (see Section 4). Join
conditions in BPEL are restricted to Boolean expres-
sions over the status of incoming links of the join ac-
tivity (C12); BPMN allows for defining join conditions
also on process instance data (C13). Note that this
functionality of BPMN can be emulated in BPEL by de-
fining appropriate transition conditions on the incom-
ing links themselves. BPEL, as an executable process
language, has a precisely defined join semantics while
BPMN and EPC as languages focused primarily on
process modelling do not. However, a number of ex-
ecution semantics (including join semantics in partic-
ular) have been proposed for BPMN and EPC to fill this
gap [MeAa07], [Wehl07], [DuGr+07], [BöSö+09]. In
order to be more generic, we use the semantics de-
scribed in the respective specification of the language
for comparison, not the various proposed executable
interpretations or restrictions. WF only provides a
block construct for parallel execution which completes
its execution once each enclosed activity is complet-
ed. All compared languages express activity ordering
through modelling process control flow. BPMN and
EPC offer associations with data objects and thus al-
low to specify explicit data flow. In [KhLe06], BPEL-D

has been proposed as an extension of BPEL that al-
lows defining explicit data flow (C14).

6 Spectrum of Process Modelling
Languages

Figure 6 depicts the spectrum of process modelling
languages, ranging from custom languages for docu-
mentation purposes to languages that allow for auto-
matic execution of processes in so-called Workflow
Management Systems. The presented languages can
be classified into three groups according to their in-
tention: schema-less process documentation, process
documentation based on a defined process model,
and executable processes. The decision which process
modelling language to chose for describing certain
process models depends on their intended use and
whether they serve primarily documentation purpos-
es or should be used for automatic execution.

Languages for schema-less ad-hoc process documen-
tation, as shown on the left-hand side of Figure 6, al-
low for rich and flexible annotation of process models
with arbitrary information and thus provide greatest
flexibility with regard to the chosen representation of
the process model. However, this flexibility requires
modellers to precisely define the semantics of their
annodations. Similar to the Entity-Relationship Model
for describing the structure of relational databases,
pre-defined process modelling languages, such as
BPMN and EPC, assist process modellers by providing
them with a set of elements with a defined syntax
(and/or graphical representation) and semantics. On
the one hand this results in a loss of flexibility when
documenting processes, while on the other hand it
may (i) lead to reduced documentation effort due to
the use of graphical process modelling tools, (ii) re-
duce the ambiguity of the defined process models due
to the restriction to a set of well-defined process mod-
elling elements, and is (iii) less error-prone due to the
suitability for process model validation techniques.
The languages depicted on the right-hand side of the
spectrum, BPEL and WF, are languages for describing
automatically executable processes and are charac-
terised by the most restrictive set of language rules
and unambiguous execution semantics.

For scenarios in which a particular process should be
documented as well as automatically executed, a
number of so-called model transformations between
processes described using pre-defined modelling lan-
guages and languages for describing executable proc-
esses exist. Reasons for model transformation include
scenarios in which a process has been initially mod-
elled on an abstract level using a language such as
BPMN or EPC and the process should be refined for
automatic execution in a later stage in the business

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 11

process lifecycle or for visualisation purposes. An ex-
ample use-case for the latter is the rendering of BPEL
processes in BPMN stencils as shown in [ScKa+09],
[WeDe+08]. A taxonomy for model transformations is
provided in [MeGo06]. The most important criteria is
the distinction between horizontal and vertical trans-
formation. In a horizontal transformation, the model
is transformed to another model on the same abstrac-
tion level. In a vertical transformation, the target
model resides on a different level of abstraction.
A number of approaches for transformation between
different non-executable and executable process
modelling languages exist [OuDu+07], [StKü+08].
Generally, such transformations are problematic since
e.g. BPEL and BPMN have different target communi-
ties (technical analysts vs. business analysts) and are
employed on different stages on the BPM lifecycle
[ReMe06]. Another example is the mapping of EPCs to
BPEL, a general overview of all available transforma-
tions and their classification using the taxonomy of
[MeGo06] is given in [StKü+08].

Transformation strategies between block-structured
and graph-based languages as well as their limita-
tions are presented in [MeLZ08]. In general, all
graph-based models can be mapped to block-struc-
tured models and vice versa. Typically, a mapping
from a model A to a model B and mapping the model
B back results in a different model A’. The main rea-
son is that there are different strategies for the map-
ping and that arbitrary cycles are not supported by
block-structured languages and thus have to be

“emulated” by constructs offered by the block-
structured language. Such “emulation” is sketched in
Section 5 and described in detail in [ZhHa+06].

7 Conclusion

In the paper we presented a comparison of four com-
mon languages for modelling business processes—
BPEL, BPMN, EPC, and WF—with different fields of ap-
plication and different modelling approaches. We spe-
cifically showed that BPEL supports both, block-
structured and graph-based modelling. The implica-
tions of graph-based and block-structured modelling
have been discussed by providing examples that
highlight the languages’ key characteristics. Special
attention has been paid to discussing problems relat-
ed to joining multiple execution paths and loops as
well as identifying differences of graph-oriented and
block-structured modelling languages.

A summary of the comparison was given in Table 1.
Based on these results, we classified these languages
according to their execution capability in a spectrum
that ranges from schema-less documentation to auto-
matic execution.

The most interesting point in the spectrum of lan-
guages is the position between BPEL and BPMN. While
BPEL is a language geared towards automated execu-
tion of process models, BPMN is used mainly for proc-
ess documentation but the one closest to the verge of

Figure 6: Spectrum of Business Process Languages and Features

Plain Text

Unstructured Figures
EPK BPMN BPEL WF

DocumentationOnly ExecutionOnly

Explicit Data Flow

Standardised Rendering

Various Join Semantics

Restricted Join Semantics

Standardised Serialisation

GraphModelling

BlockModelling

Well formed only

Structured Loops

Arbitrary Cycles

Parameterised Split

Parameterised Join

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009

Oliver Kopp, Daniel Martin, Daniel Wutke, Frank Leymann12

executability amongst all process documentation lan-
guages. Interestingly, this is also acknowledged by
the BPMN committee where executability is one area
of development for the upcoming BPMN 2.0 specifica-
tion [OMG08].

References

[AaHo+03] van der Aalst, W. M. P.; ter Hofstede, A. H. M.;
Kiepuszewski, B.: Workflow Patterns. In: Distributed
and Parallel Databases 14 (2003) 1, S. 5–51.

[AaHo05] van der Aalst, W. M. P.; ter Hofstede, A. H. M.:
YAWL: Yet Another Workflow Language. In: Information
Systems 30 (2005) 4, S. 245–275.

[Aals98] van der Aalst, W. M. P.: The Application of Petri
Nets to Workflow Management. In: The Journal of Cir-
cuits, Systems and Computers 8 (1998), S. 21–66.

[BaDe+07] Barros, A. P.; Decker, G.; Dumas, M.: Correla-
tion Patterns in Service-Oriented Architectures. In: Pro-
ceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering
(FASE), LNCS 2007, S. 245–259.

[BaDu05] Barros, A.; Dumas, M.; ter Hofstede, A. H. M.:
Service Interaction Patterns. In: Proceedings of the 3rd
International Conference on Business Process Manage-
ment, LNCS 2005, S. 302–318.

[BaHa95] Baroth, E.; Hartsough, C.: Visual programming in
the real world. In: Visual object-oriented programming:
concepts and environments, Manning Publications Co.
1995.

[BrKo06] van Breugel, F.; Koshkina, M.: Models and Verifica-
tion of BPEL. http://www.cse.yorku.ca/~franck
/research/drafts/tutorial.pdf (22 April 09).

[BöSö+09] Börger, E.; Sörensen, O.; Thalheim, B.: On
defining the behavior of or-joins in business process
models. Journal of Universal Computer Science (2009).

[ChKu01] Chattratichart, J.; Kuljis, J.: Some Evidence for
Graphical Readership, Paradigm Preference, and the
Match-Mismatch Conjecture in Graphical Programs. In:
Psychology of Programming Interest Group (PPIG 2001)
2001.

[CuKh+03] Curbera, F.; Khalaf, R.; Leymann, F.: Exception
Handling in the BPEL4WS Language. In: International
Conference on Business Process Management, Bd. 2678
von LNCS 2003, S. 276–290.

[CuTa87] Cunniff, N.; Taylor, R. P.: Graphical vs. textual
representation: an empirical study of novices’ program
comprehension. In: Empirical Studies of Programmers:
Second Workshop, Ablex Publishing Corp., Norwood,
NJ, USA 1987, S. 114–131.

[DeMe08] Decker, G.; Mendling, J.: Instantiation Semantics
for Process Models. In: Proceedings of the 6th Interna-
tional Conference on Business Process Management
(BPM), LNCS 2008, S. 164–179.

[DuAa05] Dumas, M.; van der Aalst, W. M. P.; ter Hofstede,
A. H. M.: Process Aware Information Systems: Bridging
People and Software Through Process Technology.
Wiley-Interscience 2005.

[DuGr+07] Dumas, M.; Grosskopf, A.; Hettel, T.: Semantics
of Standard Process Models with OR-Joins. In: Proceed-
ings 15th International Conference on Coopartive Infor-
mation Systems (CoopIS), Bd. 4803 von LNCS 2007, S.
41–58.

[Ecli09] Eclipse Foundation: BPEL to Java (B2J) Subproject.
2009, URL: http://www.eclipse.org/stp/b2j/ (22 April
09).

[GrPe91] Green, T R G.; Petre, M.; Bellamy, R K E.: Compre-
hensibility of visual and textual programs: a test of
superlativism against the ’match-mismatch’ conjec-
ture. In: Empirical Studies of Programmers, Fourth
Workshop, Open University, Computer Assisted Learn-
ing Research Group 1991.

[GrPe92] Green, T. R. G.; Petre, M.: When visual programs
are harder to read than textual programs. In: Sixth
European Conference on Cognitive Ergonomics (ECCE-
6) 1992.

[KeNü+92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Seman-
tische Prozeßmodellierung auf der Grundlage Ereignis-
gesteuerter Prozeßketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik 1992.

[KhLe06] Khalaf, R.; Leymann, F.: Role-based Decomposi-
tion of Business Processes using BPEL. In: Proceedings
of the IEEE International Conference on Web Services
(ICWS ’06), IEEE Computer Society 2006, S. 770–780.

[KiAu97] Kiper, J. D.; Auernheimer, B.; Ames, Charles K.:
Visual Depiction of Decision Statements: What is Best
for Programmers and Non-Programmers? In: Empirical
Softw. Eng. 2 (1997) 4, S. 361–379.

[Kiep03] Kiepuszewski, B.: Expressiveness and Suitability of
Languages for Control Flow Modelling in Workflows. Dis-
sertation, Queensland University of Technology, Bris-
bane, Australia 2003.

[Kind06] Kindler, E.: On the Semantics of EPCs: A Frame-
work for Resolving the Vicious Circle. In: Data and
Knowledge Engineering 56 (2006) 1, S. 23–40.

[KoMa+08] Kopp, O.; Martin, D.; Wutke, D.: On the Choice
Between Graph-Based and Block-Structured Business
Process Modeling Languages. In: Modellierung betriebli-
cher Informationssysteme (MobIS 2008). Saarbrücken,
Germany, November 27 - 28, 2008., Bd. P-141 von
Lecture Notes in Informatics, Gesellschaft für Informa-
tik e.V. (GI) 2008, S. 59–72.

[LeRo00] Leymann, F.; Roller, D.: Production Workflow:
Concepts and Techniques. Prentice Hall PTR 2000.

[Leym01] Leymann, F.: Web Services Flow Language (WSFL
1.0). 2001, IBM Software Group.

[MeAa07] Mendling, J.; van der Aalst, W. M. P.: Formaliza-
tion and Verification of EPCs with OR-Joins Based on
State and Context. In: Proceedings of the 19th Interna-
tional Conference on Advanced Information Systems
Engineering (CAiSE 2007), Bd. 4495 von LNCS 2007, S.
439–453.

[MeGo06] Mens, T.; van Gorp, P.: A Taxonomy of Model
Transformation. In: Electronic Notes in Theoretical
Computer Science 152 (March 2006), S. 125–142.

[MeLZ08] Mendling, J.; Lassen, K. B.; Zdun, U.: On the
Transformation of Control Flow between Block-Oriented
and Graph-Oriented Process Modeling Languages. In:

Enterprise Modelling and Information Systems Architectures
Vol. 4, No. 1, June 2009
The Difference Between Graph-Based and Block-Structured Business Process Modelling Languages 13

International Journal of Business Process Integration
and Management (IJBPIM) 3 (September 2008) 2.

[Mend07] Mendling, J.: Detection and Prediction of Errors in
EPC Business Process Models. Dissertation, Vienna Uni-
versity of Economics and Business Administration 2007.

[Micr09] Microsoft: Windows Workflow Foundation. 2009,
URL: http://www.microsoft.com/net/WFDetails.aspx
(22 April 09).

[MoMa+93] Moher, T. G.; Mak, D. C.; Blumenthal, B.: Com-
paring the comprehensibility of textual and graphical
programs: The case of Petri nets. In: Empirical Studies
of Programmers: Fifth Workshop, Ablex 1993.

[OASIS07] Organization for the Advancement of Structured
Information Standards (OASIS), Web Services Business
Process Execution Language Version 2.0 – OASIS
Standard. 2007, URL: http://docs.oasis-open.org/wsb-
pel/2.0/wsbpel-v2.0.html (22 April 09).

[OMG08] Object Management Group. Business Process Mod-
eling Notation, BPMN 2.0 RFP revised submission (BMI/
08-09-04), URL: http://www.omg.org/cgi-bin/doc?bmi/
2008-09-04 (22 April 09).

[OMG09] Object Management Group, Business Process Mod-
eling Notation, V1.2. 2009, URL: http://www.omg.org/
spec/BPMN/1.2/PDF (22 April 09).

[OuDu+07] Ouyang, C.; Dumas, M.; ter Hofstede, A.H.M.:
Pattern-based translation of BPMN process models to
BPEL web services. In: International Journal of Web
Services Research (JWSR) (2007).

[Palm06] Palmer, N.: Understanding the BPMN-XPDL-BPEL
Value Chain. In: Business Integration Journal (Novem-
ber/December 2006).

[Petr95] Petre, M.: Why looking isn’t always seeing: reader-
ship skills and graphical programming. In: Commun.
ACM 38 (1995) 6, S. 33–44.

[PuWe05] Puhlmann, F.; Weske, M.: Using the pi-Calculus
for Formalizing Workflow Patterns. In: Proceedings of
the 4th International Conference on Business Process
Management (BPM 2006), Bd. 4102 von LNCS 2005, S.
414–419.

[ReMe06] Recker, J.; Mendling, J.: On the Translation
between BPMN and BPEL: Conceptual Mismatch
between Process Modeling Languages. In: CAiSE 2006
Workshop Proceedings – Eleventh International Work-
shop on Exploring Modeling Methods in Systems Analy-
sis and Design (EMMSAD 2006) 2006.

[RuAa06] Russell, N.; van der Aalst, W. M. P.; ter Hofstede,
A. H. M.: Workflow Exception Patterns. In: Advanced
Information Systems Engineering (AISE), Bd. 4001 von
LNCS 2006, S. 288–302.

[RuHo+05] Russell, N.; ter Hofstede, A. H. M.; Edmond, D.:
Workflow Data Patterns: Identification, Representation
and Tool Support. In: 24th International Conference on
Conceptual Modeling (ER 2005), Bd. 3716 von LNCS
2005.

[Scan89] Scanlan, D. A.: Structured Flowcharts Outperform
Pseudocode: An Experimental Comparison. In: IEEE
Software 6 (Sep 1989) 5, S. 28–36.

[ScKa+09] Schumm, D.; Karastoyanova, D.; Leymann, F.:
On Visualizing and Modelling BPEL with BPMN. In: Pro-
ceedings of the 4th International Workshop on Work-
flow Management (ICWM2009), IEEE Computer Society
2009.

[ScTh05] Scheer, A.-W.; Thomas, O.; Adam, O.: Process
Aware Information Systems: Bridging People and Soft-
ware Through Process Technology. Wiley-Interscience
2005 .

[StKü+08] Stein, S.; Kühne, S.; Ivanov, K.: Business to IT
Transformations Revisited. In: MDE4BPM 2008.

[That01] Thatte, S.: XLANG Web Services for Business Proc-
ess Design. Microsoft Corporation, 2001.

[WeDe+08] Weidlich, M.; Decker, G.; Großkopf, A.: BPEL to
BPMN: The Myth of a Straight-Forward Mapping. In:
Proceedings of the 16th International Conference on
Cooperative Information Systems (CoopIS 2008), LNCS
2008.

[Wehl07] Wehler, J.: Boolean and free-choice semantics of
Event-driven Process Chains. In: Geschäftsprozessman-
agement mit Ereignisgesteuerten Prozessketten (EPK
2007) 2007, S. 77–96.

[Wesk07] Weske, M.: Business Process Management: Con-
cepts, Languages, Architectures. Springer, Berlin 2007.

[WoAa+06] Wohed, P.; van der Aalst, W. M. P.; Dumas, M.:
On the Suitability of BPMN for Business Process Model-
ling. In: Fourth International Conference on Business
Process Management (BPM), Bd. 4102 von LNCS 2006,
S. 161–176.

[Wor08] Workflow Management Coalition, XML Process Defi-
nition Language Version 2.1. 2008, URL: http://
www.wfmc.org/xpdl-developers-center.html (22 April
09).

[WyEd+05] Wynn, M. T.; Edmond, D.; van der Aalst, W. M.
P.: Achieving a General, Formal and Decidable
Approach to the OR-Join in Workflow Using Reset Nets.
In: Applications and Theory of Petri Nets, Bd. 3526 von
LNCS 2005, S. 423–443.

[ZhHa+06] Zhao, W.; Hauser, R.; Bhattacharya, K.; Bryant,
R. B.; Cao, F.: Compiling business processes: untan-
gling unstructured loops in irreducible flow graphs. In:
International Journal of Web and Grid Services 2 (Feb.
2006), S. 68–91.

Oliver Kopp, Daniel Martin,
Daniel Wutke, Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstrasse 38
70569 Stuttgart
Germany

	coverpage.pdf
	Foliennummer 1

