
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Distributed Systems Group,
Vienna University of Technology, Austria

dustdar@infosys.tuwien.ac.at

Moving Applications to the Cloud:
An Approach based on Application Model Enrichment

Leymann, Frank; Fehling, Christoph; Mietzner, Ralph; Nowak, Alexander;
Dustdar, Schahram

@article{LeymannFMND11,
 author = {Frank Leymann and Christoph Fehling and Ralph Mietzner and
 Alexander Nowak and Schahram Dustdar},
 title = {Moving Applications to the Cloud: An Approach based on
 Application Model Enrichment},
 journal = {International Journal of Cooperative Information Systems},
 volume = {20},
 number = {3},
 year = {2011},
 pages = {307-356},
 doi = {10.1142/S0218843011002250},
 publisher = {World Scientific Publishing Company}
}

:

Institute of Architecture of Application Systems

Electronic version of an article published as International Journal of Cooperative

Information Systems, 20(3), 2011, pages:307-356,

DOI: 10.1142/S0218843011002250

© copyright World Scientific Publishing Company http://www.worldscinet.com/ijcis/

International Journal of Cooperative Information Systems

 World Scientific Publishing Company

MOVING APPLICATIONS TO THE CLOUD:

AN APPROACH BASED ON APPLICATION MODEL ENRICHMENT

FRANK LEYMANN, CHRISTOPG FEHLING,

RALPH MIETZNER, ALEXANDER NOWAK

Institute of Architecture of Application Systems, University of Stuttgart

Stuttgart, 70569, Germany

frank.leymann@iaas.uni-stuttgart.de

SCHAHRAM DUSTDAR

Distributed Systems Group, Vienna University of Technology
Wien, 1040, Austria

dustdar@infosys.tuwien.ac.at

Received Day Month Day

Revised Day Month Day

In this paper we describe a method and corresponding tool chain that allows moving an application

to the cloud. In particular, we support to split an application such that various parts of it are moved

to different clouds. This split can be done manually or by support of optimization algorithms. The

split application is then automatically provisioned in the different target clouds. A metamodel for

such applications supporting the proposed method is introduced. The architecture of a supporting

tool is described. Experiences from the usage of the proposed method are reported.

Keywords: Application Modeling, Metamodels, Cloud Computing

1. Introduction

Today, many companies consider moving entire applications or parts of them to the cloud

(see Refs. 1, 2, 3, 4 and 5). Applications today are often composite, multi-tier

applications, consisting of application components such as UIs, services, workflows and

databases as well as middleware components such as application servers, workflow

engines and database management systems. When moving such a composite application

into the cloud, decisions must be made about putting which tier and even which

component of such an application to which cloud.
6
 Drivers for these decisions include

functional properties of a cloud such as the possibility to run a specific required

middleware and non-functional properties such as data privacy, cost and offered quality

of service by a specific cloud provider. European enterprises, for example, face

difficulties in putting customer-relevant data into a cloud that has resources that are

physically outside the European Union. They may, however, opt to put other parts of an

application that are not dealing with customer-relevant data into an overseas cloud that

might be cheaper or offers superior quality of service.

Effectively, moving an application to the cloud is a rearrangement of the application’s

deployment topology in which component dependencies are captured. Such a

2 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

rearrangement of an application is often not only based on criteria like latency and data

transfer, as investigated in distributed systems research in the past, but also on criteria

such as data privacy, legislative compliance or trust, for example. Thus, an approach is

needed to support splitting and scattering (i.e., rearranging) applications in a generic way

to support a variety of reasons for splitting.

The general problem to be solved is then (i) how to rearrange the components of a

multi-tier, multi-component application into disjoint groups of components, such that (ii)

each such group can be provisioned separately to different clouds while preserving the

desired properties of the whole application– we refer to this problem as the Move-to-

Cloud problem.

In this paper we formally transform the Move-to-Cloud problem into a graph

partitioning problem and use existing optimization algorithms such as simulated

annealing to optimize the distribution of components between different clouds. The main

contribution of this paper is thus not a novel optimization algorithm, but the methodology

and a corresponding tool chain that allows application developers and architects to (i)

model their application components and properties and (ii) define relevant criteria for the

splitting. This is done using a variety of diagrams and models that capture the

information relevant for the splitting. The annotated application models then serve as an

input for the optimization algorithms which produce sets of component groups that can

be moved into the same cloud. The presented tools are integrated with existing

provisioning tools to automatically setup the components in the correct cloud.

One essential property of the presented approach is its general applicability, i.e., the

approach does not depend on one cloud framework, virtualization technology or

programming language, but gives general guidance on how to solve the Move-to-Cloud

problem for a large variety of programming languages, virtualization technologies and

clouds. Therefore the presented approach is not limited to public clouds but is also

suitable for private and hybrid clouds and can even be exploited (with limitations

regarding elasticity) for the splitting of applications that are (partially) run in traditional

datacenters.

The presented approach is based on requirements from two projects in concrete

companies the authors have been involved in. These projects dealt with existing JEE

applications as well as process-based service applications on the Web. The software

stacks used in the projects have been corresponding JEE and SOA stacks including

relational database systems, both, from commercial vendors as well as from open source

vendors. In one project, the rearrangement of the application was based on trust criteria,

the other project was focused on costs. The corresponding modeling of the applications

as well as the provisioning in the target clouds have been prototypically realized based on

the tools presented in the paper. Both projects split their applications across a public

cloud and a private cloud, but different clouds have been used in the different projects.

The paper is structured as follows: Section 2 discusses the conceptual approach to

move applications to the cloud and a running example is given; especially, a

corresponding method and a supporting metamodel are presented. Core concepts

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 3

underlying the presented method are formally defined in Section 3 and the problem of

automatically deriving cloud distributions is presented as an optimization problem. The

architecture of a prototypical tool suite supporting the proposed method is described in

Section 4. Experiences in using the proposed method in a concrete use case are reported

in Section 5. The presented approach is compared to related work in Section 6. Finally,

Section 7 concludes the paper.

2. Conceptual Approach

In this section we discuss the details of the proposed method called MOCCA (MOve to

Clouds for Composite Applications), its metamodel and its underlying concepts. A

running example is used to demonstrate the major steps of the method.

2.1. First Overview of the MOCCA Method

The proposed method assumes that for the application to be moved to the cloud three

main artifacts will be provided: (i) an architecture model of the application, (ii) a

deployment model of the application, and (iii) implementation artifacts such as virtual

images of (parts of) the application. As an example for the application to be moved to the

cloud we exemplarily use a simple order system that is able to receive and evaluate a

user’s order request, process the order and finally make the results persistent (see Fig. 3).

This sample application abstracts the kind of applications we dealt with in practice: it has

a Web frontend, makes use of servlets and enterprise Java beans, and depends on a Web

server, an application server, and a database system.

Covering the three main artifacts, the architecture model first describes the

architectural components of the application (i.e., the “boxes” of the diagram) and their

relations (i.e., the “arrows” of the diagram). Note that the granularity of the specified

components has an impact on the flexibility and quality of the split of the application into

groups that are provisioned in different clouds (see Section 2.7.). The deployment

model specifies the runtime containers required by the application and which component

of the architecture is hosted by which of the containers. Furthermore, deployment

relevant parameters must be indicated that will be needed at provisioning time at the

latest. The implementation artifacts of the application encompass installable units of the

application, like executable or virtual images of (parts of) the application. But it may

contain more than that, and the content of the virtual image has impact on quality of the

resulting installation in the cloud (see Section 2.8.).

Based on the first two artifacts a forth artifact is derived called a cloud distribution

(see Section 3.1.). A cloud distribution is a set of architectural components of the

application that are to be moved to the same cloud. As shown later, a cloud distribution

can be specified manually or it can be derived automatically. An automatic derivation of

a cloud distribution requires specifying additional information (so-called “labels”) with

the architecture diagram (see Section 3.2.). Finally, the actual provisioning of the cloud

distribution in the target clouds is performed based on the automatic creation of a fifth

artifact called a provision cluster (see Section 3.1.). During provisioning actual values

4 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

for the relevant deployment parameters indicated with the deployment model will be

derived or enquired (see Section 4.3.).

Before describing the MOCCA method in detail (see Section 2.6.) we discuss the

metamodel underlying the MOCCA method in the following Section 2.2. Next, the

sample application of the simple order system is given in detail and modeled using the

proposed metamodel at its architectural level (Section 2.3.), at its deployment level

(Section 2.4.) as well as its provisioning and virtual image level (Section 2.5.).

2.2. The MOCCA Metamodel and Diagram Types

In Ref. 7 we propose a framework for provisioning customizable composite applications

in the cloud. This metamodel has been adapted for the purpose of supporting MOCCA

and is shown in Fig. 1. Note that only those attributes are shown and discussed here

which are relevant in our context.

A customizable application is represented by an instance of the entity type

Application Template. Such a template consists of one or more instances of

the Component entity type. A component may contain other components. Amongst

other attributes a component has a Name and a Type. The latter attribute has no fixed set

of predefined values; for example, a component may be of type Application Server. A

Component is source of as well as target of zero or more Component

Relation entities. The relevant attribute of a Component Relation is its Type

attribute indicating the semantics of the relation between the two associated components.

Each component relation and each component has zero or more Labels which are

specified as pairs of a Name and a Value attribute of the Label entity (the role of

labels is described in Section 3.2.).

Each component is realized by exactly one Implementation. The most

important attribute of the implementation is the Type attribute. This attribute indicates

the main manner or technological basis used to realize the implementation (e.g., whether

it has been realized as a BPEL orchestration, or an OVF image etc.); for example, a

Component of Type Application Server may be realized by an Implementation of

Type OVF. If the implementation is of Type External, it points to its realization via an

Endpoint Reference (EPR)
8
; if it is of Type Provider Supplied, the actual realization of

the component will be provided at a later point in time by a particular provider (e.g., the

provider has it already installed and as basis for the proper installation and deployment of

new components). The middleware components in the practical exploitations of MOCCA

had been of Provider Supplied implementation type to get experiences with middleware

offered in the cloud; the implementations of application specific components had been of

type BPEL, WSDL etc. An implementation consists of zero or more Artifacts. An

artifact is the generalization of different kinds of artifacts like BPEL files, WSDL files,

and so on up to BLOBs that contain binaries of actual code. For example, an

Implementation of type BPEL consists of BPEL files (i.e., instances of the BPEL

artifact), WSDL files (i.e., instances of the WDSL artifact) and other corresponding

artifacts (e.g., deployment descriptors,…).

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 5

Fig. 1 - Metamodel for Composite Applications

An artifact has zero or more Variability Points. A variability point has a Name

and a Locator attribute. The latter attribute is used to point directly into the artifact to

distinguish the piece within the artifact that may be overwritten; for example, a locator

may be an XPath expression pointing to an operation name of a port type of a WSDL file.

A variability point is associated with zero or more Alternatives. An alternative has a

Name and Value attribute. When binding a variability point it is assigned a value of

exactly one of the alternatives associated with the variability point. Thus the set of

alternatives associated with a variability point support users in customizing an application

template by providing a list of potential values to choose from for a variability point.

There are multiple types of Alternatives. In our context Explicit alternatives,

Free alternatives and Property alternatives are relevant. An Explicit alternative

provides a pre-defined value that a user can select when binding a variability point. A

Free alternative allows the input of an arbitrary value by a user to bind a variability

point. Property alternatives point to a Visible Property of a Component.

A Visible Property is a property of a component that is made visible to the

outside for the purpose of overwriting. A visible property has a Name and a Value

attribute; for example, its Value can be an EPR under which its associated component

can be reached. The Phase attribute of a visible property defines the point in time when

it becomes available for overwriting. The two Phases relevant for this context are Pre-

Provisioning (i.e., the component is not yet provisioned) and Runtime (i.e., the

component is already running). In case a Property alternative points to a visible

property the Value of this visible property serves as the Value of the Property

alternative and is thus used to bind the associated variability point.

Name
Value

Type

Name

Locator
Value

Phase

Name

Name

Type

CAR Metamodel

Application
Template

Implementation

Artifact

Visible
Property

Alternative
Variability

Point

0..*

1

0..* 1..*

1..*1..*

BPEL WSDL … BLOB

1

0..*

contains

0..*

1..*

1..*

0..*

1..*

0..*

has

value for

has

has

realized by

consists of

consists of

Value

Name

Type

OVF
BPEL
External
ProviderSupplied
…

Binary
(Code,…)

0..*

Property Explicit Free …

0..1

Pre-Provisioning
Runtime

source
of

0..*

0..*Component
Relation

Component

target
of

1
1

Label

has
0..*

0..*

0..*

0..*

has

6 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Fig. 2- Model Types and Metamodel

Fig. 2 summarizes how the metamodel represents the various artifacts assumed by the

MOCCA method are represented by the proposed metamodel. The corresponding

metamodel elements are grouped by dashed lines, and the names of the corresponding

artifacts are given in rectangles with rounded edges. Components and Component

Relations of the metamodel are used to describe the “boxes” and “arrows” of the

architecture diagram of an application (see Section 2.3. for an example). The metrical

annotations of a “box” or an “arrow” of an architecture diagram used to automatically

propose a cloud distribution of an application (see Section 3.2.) are represented by the

Labels associated with the Component representing the “box” or with the

Component Relation representing the “arrow”. At the topological level deployment

models are represented by means of Components and the contains relationship

between components: a container at the middleware level is represented as an instance of

Component and contains all components it hosts (see Section 2.4. for an

example). Beyond the topology of a deployment Visible Properties and

Variability Points can be defined for the components of an application to

support the specification of the parameterization aspects of a deployment (see Section

2.5. for an example) which will support an automatic provisioning of applications. To

support an automatic installation of an application the Implementation and

Artifacts of a component have to be defined. We employ a very generic metamodel

for various reasons. First of all this generic approach does not restrict the approach to a

particular platform or programming language. By using a generic orthogonal variability

model we allow all variability of an application to be expressed in one model. This

variability can range from SLAs to functional variability. Having an orthogonal

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 7

variability model is necessary as variability in one component (for example, the required

availability of an application server) might depend on the binding of other variability

points of other components (for example, the required availability of the whole

application).

Our model allows importing the visible properties of other components in the model

of an application template. This enables providers or middleware vendors to advertise the

visible properties for a component (for example, an application server), that can then be

imported into the model of an application that makes use of that application server thus

allowing to reuse already modeled artifacts.

2.3. Example – Architecture Level

The application to be moved into the cloud is a simple order system; note again that the

sample application is an abstraction of the applications we dealt with in practice, but it

shows all the major aspects relevant to see how our method can be used in practice. Its

architecture diagram is sketched in Fig. 3; as usual, components of the architecture are

presented as boxes and interactions between the components are represented by arrows.

The customer request is received by the Input Entry component. Once the order is

received, the Input Entry component passes appropriate data to the Good Standing

Verifier component. Based on the results returned by the latter component, the Input

Entry component asks the Risk Assessor component to evaluate the risk for accepting the

order for certain kinds of customers. In case the risk is low, the Risk Assessor kicks of

the proper processing the order by using the Order Processor component. The latter

component makes use of the Data Handler component for dealing with the persistence

aspects of the actual order. In parallel, the Order Processor component instructs the Stock

Management component to deal with all stock related aspect of the order. The Stock

Management component too makes use of the Data Handler component for persistency

aspects. The Progress Monitor component allows monitoring the progress of the order at

any time; for that purpose, this component makes use of the status information about the

order available via the Data Handler component. It is important that all components that

should be subject of the movement to a cloud environment are modeled explicitly. This is

the case for both technical and business components.

8 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Fig. 3 - Architecture Diagram of the Order System

Within the metamodel the “Architecture Model” part shown in Fig. 2 supports specifying

the corresponding model. For example, the Input Entry component is an instance of

Component with the Name attribute set to Input Entry. The Risk Assessor is an instance

of Component with Name Risk Assessor. The arrow between these two components is

realized by an instance of Component Relation with Type set to

InputEntryusesRiskAssessor. The Input Entry component is source of the

InputEntryusesRiskAssessor Component Relation and the Risk Assessor component

is target of the InputEntryusesRiskAssessor Component Relation.

2.4. Example – Deployment Level

The various components of the architecture of the application are realized based on

different technologies: The Input Entry component, the Good Standing Verifier

component, and the Progress Monitor component are implemented as servlets in a

corresponding Web server. The Risk Assessor component and the Order Processor

component are realized as session beans in a JEE application server. Both, the Data

Handler component as well as the Stock Management component are built as stored

procedures directly within a database management system. Fig. 4 exemplarily shows the

corresponding deployment of the application. The components are also annotated by

properties (depicted as rectangles) and variability points (depicted as “bowls”) required

being set during deployment in order to support the proper interactions between the

components. These annotations are discussed in the next section.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 9

Fig. 4 - Sample Deployment of the Order Application

Within the metamodel the “Deployment Topology” part shown in Fig. 2 supports the

specification of the corresponding model. For example, the DBMS is represented as an

instance of Component with Type attribute set to DBMS. It is connected by an instance

of the contains relationship with an instance of Component with Name set to Stock

Management and Type set to Database. This component, for example, also has two

visible properties with Name set to Username and Password and a Value set

to the corresponding values as well as a Variability Point with Name set to

DatabaseName and a freeAlternative where the database name can be set.

2.5. Example – Deployment Parameterization and Automatic Installation

In our sample application we aggregate the middleware components into another

component called MWStack to clearly distinguish middleware aspects and application

aspects of the architecture of the sample application. Fig. 5 shows how this aggregation is

realized by an instance of Component called MWStack. This component contains

two other components, a component of Type AppServer with Name WebSphere, and a

component of Type DBMS with Name DB2.

Next, the “Automatic Installation” part as well as the “Deployment Parameterization”

part of the metamodel from Fig. 2 is used to specify further deployment information

beyond the pure middleware containment information. As shown in Fig. 5 the WebSphere

component is realized by an Implementation of Type OFV. It consists of

a BLOB Artifact that points to an element called MWStack/Websphere.ovf within the

OVF file. This is achieved via its FileRef attribute. The artifact further has a

Variability Point with Name hostname. The Locator attribute of this

10 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Variability Point points to the “..\vs\hn” element of the MWStack/Websphere.ovf

file. A Property Alternative is defined for the hostname, i.e., the actual value of

the hostname will be provided via a Visible Property. The corresponding

Visible Property with Name hostname and Value franksDB2 has been defined

for the DB2 component. This component is realized by an Implementation of

Type OVF too, and this Implementation also consists of a BLOB Artifact

with the FileRef attribute set to MWStack/DB2.ovf.

As a net effect, the value franksDB2 of the hostname Visible Property of the

DB2 Component becomes the value of the hostname Property Alternative of

the WebSphere Component which represents the hostname of the database system to be

used by the WebSphere Component. At runtime this enables a connection of

WebSphere to the corresponding DB2.

Fig. 5 - Sample Composite CAR Component Realized by Virtual Images

Fig. 6 depicts the overall middleware stack required by the application as (a fragment of)

an OVF file.
9
 The VirtualSystemCollection element of the OVF file consists of

three VirtualSystem elements each of which represents the virtual machine

configuration of the particular piece of middleware. The figure is an overlay of the

deployment model in Fig. 4 and the concrete syntax of an OVF file to show how

individual components might point to corresponding OVF Virtual Systems. However, the

OVF file does not contain the model, but the model may point to the OVF artifacts. It

graphically depicts that the VirtualSystem Tomcat hosts the application components

Input Entry, Good Standing Verifier and Progress Monitor. The VirtualSystem

WebSphere hosts the Risk Assessor and the Order Processor component. Finally, the

VirtualSystem DB2 hosts the Stock Management and Data Handler Component. The

fact that the WebSphere component is provided within an OVF file in the

VirtualSystem WebSphere has been specified by means of the metamodel as

sketched before.

Name:
DB2

Type:
AppServer

Name:
MWStack

Value: Name:
hostname

Locator:
..\vs\hn

Name:
hostname

CAR Example

Name:
WebSphere

Component

Type:
OVF

Implementation

FileRef:
MWStack/Websphere.ovf

Artifact
(BLOB)

Variability
Point

…points to a field in file…

Property
Alternative

Value:
franksDB2

Name:
hostname

Type:
DBMS

Component

Type:
OVF

Implementation

FileRef:
MWStack/DB2.ovf

Artifact
(BLOB)

Visible
Property

consists ofrealized by

realized by consists of

has has

value forhas

…provides actual value…

Component

contains

contains

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 11

Fig. 6 - Sample OVF Overlay of the Sample Application

2.6. MOCCA Method Details

The main idea behind the method proposed is that an architecture model of the

application is enriched by additional information and that this enriched model becomes

the basis for automatically rearranging the application and provisioning the rearranged

application in different clouds. Fig. 7 shows the major artifacts created by following the

MOCCA method.

One kind of additional information represents deployment information: the

architecture model is combined with a deployment model of the application, and

deployment relevant parameters are added. The other kind of additional information is

about implementation units such as virtual images of the application that are associated

with the components of the combined model. Finally, additional information may specify

data associated with the architectural components and the interactions in-between these

architectural components, and this data can be used to decide on an optimal

rearrangement of the application (see Section 3.2.).

The enriched architecture model is the basis for determining which part of the

application is moved to which cloud, i.e., it is the basis for determining how the

application should be rearranged. The rearrangement of the architectural components into

groups of components is referred to as a cloud distribution; Fig. 7 indicates a cloud

distribution in its lower left part. A cloud distribution is a disjoint partition of the set of

12 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

all architectural components of the application into groups that are built according to the

“cohesiveness” of the components. Cohesiveness is decided based on the third kind of

additional information mentioned before that may be added to the architecture model and

determines whether components have to be provisioned in the same cloud (see

Section 3.1.).

After deriving the cloud distribution for an application, the implementation units

associated with each component of a group within the cloud distribution are bundled with

the corresponding group of components. This result is called a provision cluster; Fig. 7

indicates a provision cluster in its lower part. Each such bundle of a provision cluster can

be automatically provisioned (in a different cloud). As the result of provisioning, the

overall collection of provisioned bundles is set up based on the deployment relevant

parameters captured before such that the rearranged application is operable again.

Note that an implementation unit that is (part of) a virtual machine may have to be

split or copied in the course of building a provision cluster because it may be associated

with different components assigned to different bundles in a cloud distribution. For

example, in Fig. 6 the fragment of the OVF file shown contains the VirtualSystem

with identifier WebSphere. The two architectural components Risk Assessor and Order

Processor are hosted by WebSphere as shown by the overlay of the architecture model

and the OVF file in Fig. 6. Assume that Risk Assessor and Order Processor are decided

to be moved to different clouds, i.e., they are assigned to different groups in the cloud

distribution derived (as indicated in the box called “Provision Cluster” in Fig. 7). Since

both, Risk Assessor as well as Order Processor will still require to be hosted by

WebSphere after being moved to different clouds the corresponding virtual machine has

to be copied and bundled with the corresponding group in the resulting provision cluster.

Section 3.1. and especially Definition 4 defines this precisely.

Fig. 7 - Major Artifacts of the MOCCA Method

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 13

In a nutshell, the MOCCA method consists of the following major steps producing and

combining artifacts resulting in a rearrangement and provisioning of an application in the

cloud (see Fig. 7):

(i) As the basis, an architecture model of the application to be moved to the cloud has to

be provided.

(ii) Furthermore, a deployment model of the application is required. Transition (1) in

Fig. 7 represents the enrichment of the architecture model with deployment

information.

(iii) Also, the architecture model is rearranged into groups of components that belong

into the same cloud. Fig. 7 depicts this as transition (3) that creates a cloud

distribution from the architecture model. Note, that the creation of the cloud

distribution and the deployment model can be performed in any order, even in

parallel.

(iv) To support automatic provisioning, all implementation units must be provided that

are required to actually run the application. Transition (2) in Fig. 7 indicates that this

implementation information is added to the combined architecture/deployment

model.

(v) Finally, the cloud distribution and the combined architecture/deployment model

annotated with the required implementation units are combined into a provision

cluster: the joint transition (4) in Fig. 7 represents this step. The provision cluster

represents all the information needed to provision the rearranged application into its

target clouds.

The creation of these artifacts can be supported by corresponding tools: in Section 4.

we present the architecture of a corresponding tool suite and describe the individual tools

of this suite; the appendix shows screenshots of the implementation of these tools. But it

should be explicitly noted that the MOCCA method itself is independent of any specific

tool: it provides a procedure of steps to be done and artifacts to create in order to move an

application to the cloud. The artifacts could be created by any tool: for example, the

architecture model could be drawn by pencil on a sheet of paper, could come as a set of

power point slides, could be modeled via the ACME tool
10

, the Cafe tool
7
 or the VBMF

tool
11

, as a UML model and so on. But the tool suite presented in Section 4. supports

the proposed method seamlessly. In the prototypical experiments performed in practice,

all steps of the MOCCA method have been executed.

14 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Fig. 8 – Process Model Representation of the Method

Fig. 8 shows the procedural details of the MOCCA method as a BPMN
12

 process model.

The process begins with a task that provides an architecture model. This architecture

model might already exist and is simply retrieved, or it is explicitly created by this task.

Next, the cloud distribution of the application has to be determined and deployment

information is to be provided: the process model represents these activities as expanded

subprocesses with corresponding names. These two subprocesses may be performed in

parallel or in any order.

The Determine Cloud Distribution subprocess begins with a decision whether or not

the cloud distribution is derived by manually partitioning the architectural components of

the architecture model or not. If a manual partitioning is performed the Provide Cloud

Distribution task outputs the cloud distribution. If an automatic partitioning is chosen, the

architecture model must be labeled by appropriate information within the corresponding

task shown. Once the labels have been provided the cloud distribution is automatically

computed by the following task (Sections 3.2. and 3.3. detail how this is achieved).

The usage of MOCCA in practice was based on manual partitioning because the

practitioners have been skeptical about automatic partitioning; nevertheless, the manual

distribution chosen could be confirmed by the automatic partitioning afterwards.

The Provide Deployment Information subprocess starts with a task that provides the

deployment model of the application; again, this model might already exist and is simply

retrieved by the task, or the deployment model is created by that task. If some of the

artifacts that represent implementation units are (part of) virtual images, these virtual

images are provided in a separate task. As mentioned before, the practical usages

exploited Provider Supplied types of Implementations of middleware components,

i.e. the task Provide Virtual Images has not been performed. In any case, the task Define

Implementation Artifacts associated the architectural components as well as the

deployment components with their implementation units; especially, components whose

implementation is provided as virtual images are linked to the corresponding

VirtualSystem elements in OVF files (assuming OVF as format). Finally, the

deployment relevant parameters are defined.

Once the cloud distribution as well as the deployment information is available, the

implied provision cluster is automatically computed. Based on this information the

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 15

appropriate provision flows are automatically generated (see Section 4.3.). Finally, the

provisioning flow is executed resulting in the installation and proper deployment of the

rearranged application in the cloud.

As indicated before, the method we propose can be used in a whole spectrum of

scenarios each of which relate to a different degree of automation for moving an

application to the cloud: it is possible to move an application to the cloud without any

tool support at all, or by supporting some of the steps of the method by tools, or by using

an environment that supports all of the steps of the method by corresponding tools.

At the low end of the spectrum our method can be used without any tool support, i.e.,

it is then considered as a guideline for the major steps to be performed when moving an

application to the cloud. In this case all of these steps have to be performed manually

relying completely on the skills and knowledge of human beings performing these steps.

At the high end of the spectrum an environment build by a tool suite on top of Cafe is

used (see Section 4.), i.e., the major steps of our method are supported by the

environment guiding users through these steps. Some of these steps require user input

and while other steps will be executed by the environment in an automatic manner. The

practical work of the authors has been at this high end of the spectrum, i.e. it has been

supported by tools.

Furthermore, the granularity of the architecture model and of the virtual image

provided significantly influences the flexibility of spreading the application across

different clouds as well as the reuse of componentry across applications moved to clouds

(see Section 2.7. for a more detailed discussion). Similarly, if the virtual image consists

of the collection of images of the individual middleware elements without any of the

proper application components to be deployed into and hosted by these middleware

elements, the same middleware elements can easily become containers for components of

different applications (see Section 2.8. for a more detailed discussion).

2.7. Impact of Application Architecture Model Granularity

Obviously, the finer the granularity specified in the architecture model (i.e., the more

components are specified) the more possibilities to split and scatter the application exist.

More components typically means to have more detailed and more specific metrical

information about the interaction between the components, which in turn typically results

in more optimization options and better optimization results in splitting the application

(see Section 3.2.).

Coarse grained models such as ACME models
10

 tend to capture the high-level logical

components (“building blocks”) of an application. However, in order to automatically

split and especially provision an application later on, more fine grained models such as

the ones employed in Cafe
7
 are needed. These finer grained models go deeper than

modeling the high-level logical components of an application and their relationships by

capturing also technical components relevant for distributing and hosting the application

(“deployment architecture”).
13

 Such deployment architecture models add deployment-

relevant components and cross-component configuration needs.

16 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Deployment-relevant components are components that explicitly specify their

deployment needs. The advantage of deployment-relevant components is that they often

can be automatically deployed, while logical components typically require manual

intervention because their opaque, not explicitly modeled different parts must be

deployed on different middleware stacks. When explicitly modeling the deployment-

relevant components and their dependencies (i.e., component X must be configured with

the IP address of component Y) the provisioning infrastructure can then interpret the

respective model when provisioning the application which is not possible for the coarse

grained models.

Thus, refinement of logical components is advantageous. When being refined, logical

components are typically split into multiple deployment-relevant components each of

which is separately represented in the refined model. For example, a Web Portal logical

component of a coarse grained architecture model might consist of both, a Portal Engine

as deployment-relevant component that must be deployed on an application server, as

well as a Portal Database deployment-relevant component that must be deployed on a

DBMS. Specifying these two deployment relevant components explicitly in the

architecture model allows to automatically provision and deploy them.

2.8. Impact of Virtual Image Content

The content of the virtual images that get overlaid has impact on the quality of the

installation, potentiality of security threats, licensing issues etc. For example, if the

virtual image of an application server contains EJBs that are not needed by the

application to be moved to the clouds the installation will be polluted. Components that

are not required for an installation may open up security holes. Finally, components that

are not needed by an installation may require unnecessary payments of license fees.

Obviously, superfluous components generate management efforts because corresponding

management processes (ITIL processes) automatically take care of them, for example.

Thus, the balance is between a set of pre-defined “empty” virtual images and

application-specific images containing both the middleware and the application

components. The advantage of employing images that contain only the middleware stack

is their reusability. Instances of such images can be reused across different applications

that have the same middleware requirements without being burdened by superfluous

components that are not needed in that particular application. In addition to that, one

instance of such an image can be reused in multiple applications and thus the amount of

instances of such images can be greatly reduced. Furthermore management and

maintenance overhead of the images can be reduced if only a predefined set of virtual

images can be used in applications.

However, limiting the amount of usable images to a set of predefined middleware

images also imposes a set of challenges: To ensure usability of the predefined images in

multiple scenarios the middleware images must be highly configurable which again

makes their definition and use very cumbersome as a lot of configuration options must be

defined and bound before they can be used. As a consequence, not all possible

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 17

configuration options can be captured in a configuration model for these images. Thus

application components that can be deployed on top of these images must be able to live

with the possible configuration options. This may be a viable option for application

components that are developed with these restrictions in mind. However, when moving

existing legacy applications into the cloud these may be “by chance” compliant to one of

the possible configurations but may also not be compliant. In addition to that, when using

predefined virtual images the corresponding provisioning infrastructure must be able to

deploy application components on top of these virtual images. In case of virtual images

that contain both, the middleware components and the application components

representing the complete application, this is not necessary.

To capture the advantages of both worlds Cafe
7
 employs an approach where pre-

defined virtual images can be reused across multiple customers and applications.

Additionally the Cafe application metamodel allows the inclusion of custom virtual

images that may have special combinations of middleware and application components

that cannot be decoupled into a predefined image and an application component.

3. Formal Aspects

In this section we describe some formal aspect of the MOCCA method. First, we provide

a formal model of provision clusters (see 3.1.). Next, we describe the derivation of

cloud distributions and provision clusters as an optimization problem (Cloud Distribution

Problem) in Section 3.2. Finally, in Section 3.3. we give an example for such an

optimization problem and sketch a tool for automatically solving the cloud distribution

problem.

3.1. Provision Clusters

The core concept underlying the MOCCA method is that of a provision cluster (see

Definition 4). To prepare its formal definition we need to define formally what cloud

distributions (see Definition 1) and middleware deployments (see Definition 2) are.

Informally, a cloud distribution is a partitioning of the architectural components of an

application (see bottom left model of Fig. 7). The partitions are determined based on

some criteria (“labels” in Definition 6) that allow evaluating the cohesiveness of the

corresponding components. For example, business logic components very frequently

accessing a particular database handler component and exchanging lots of data with the

database handler might be put into a single joint partition together with the database

handler to minimize latency and data transfer cost by putting the whole partition in the

same cloud or even onto the same machine. A set of such placements considering also the

middleware required by the partitioned architectural components is called a provision

cluster (see Definition 4). For example, the business components above require an

application server and the mentioned database handler component requires a database

system, i.e., the corresponding partition of the components of the provision cluster

includes an application server and a database system (see bottom center model of Fig. 7).

18 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Definition 1: (a) Let A be an application and C(A)={C1,…,Cn} be the set of

architectural components of A. A disjoint partition D={P1,…,Pm}  (C(A)) of C(A) is

called a cloud distribution of A (where (M) denotes the powerset of a set M).

(b) A cloud distribution D is derived based on a set of criteria that are represented by a

function  that evaluate the cohesiveness of elements of C(A)={C1,…,Cn} with respect

to having to belong to a joint single cloud. When this is important to emphasize the cloud

distribution is denoted as D=(C(A)). 

 may cover a large spectrum of types of criteria reaching from “gut feeling” over “best

practices” to the use of algorithms. For example, an architect may simply “know” based

on experience which components must be put into one and the same cloud. Another

option may be the use of patterns for determining which components must be placed

jointly into a single cloud. Also, optimization algorithms for determining the best

placement of each component can be used based on metrical information associated with

each component (see Section 3.2.); in this case, =(,,) is a triple consisting of

labels , node-labeling map , and edge-labeling map  (see Definition 6).

Definition 2: Let A be an application and M(A)={M1,…,Mr} be the set of middleware

components hosting at least one of the architectural components Cj  C(A) of A. M(A)

is perceived as a disjoint partition M(A)  (C(A)) by defining Mi:={Cj| CjC(A)  Cj

is hosted by Mi} for 1ir. M(A) is called middleware deployment of A. MiM(A) is

called the container of the architectural components of A it hosts. 

Let the components C(A) of an application A be rearranged into the cloud distribution

(C(A)) based on the criteria . In general, components Ci and Cj originally belonging to

the same container Mk will be assigned during the rearrangement to different Ps and Pt of

the partition (C(A)), i.e., CiPsMk and CjPtMk. The meaning of MkPs and

MkPt is that some components of Ps as well as some components of Pt require after

the rearrangement still to be hosted by a container “of the same kind” Mk.

To crisply define the situation we introduce the following set operation:

Definition 3: Let T, T’  (M) be two non-empty sets of subsets of the set M. The deep

intersection of T and T’ is defined as T  T’ := {tt’|tT  t’T’} – . 

I.e., the deep intersection “” of two sets of sets T and T’ is not the intersection of the

two sets themselves but it is the set of pairwise intersections of sets contained in the

encompassing sets T and T’. Based on this definition, the set of middleware components

required to host the rearranged set of components of an application A is the deep

intersection of the middleware deployment and the cloud distribution of A:

 M(A)  (C(A)) = {Mi Pj |1ir  1jm} –  . (1)

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 19

Fig. 9 - Sample (a) Cloud Distribution and (b) Provision Cluster

Fig. 9 (a) shows a sample cloud distribution of an application. The underlying

deployment topology shows which component Ci within the architecture model of the

application is contained in (a.k.a hosted by) which middleware container Mk. The

partitions Ps of the cloud distribution are represented by components Ci surrounded by

dashed lines and containers of the middleware deployment are represented by rectangles.

Intuitively, the partitions of the cloud distribution “tear apart” the containers, e.g., M1 is

split into M11 and M12. Thus, the rearranged application requires two copies M11 and M12

(drawn as rectangles with dashed-bulleted lines in part (b) of Fig. 9) of the original

middleware container M1. While M1 originally hosted C1, C2, and C3, after rearrangement

M11 will host C1 and C2, and M12 will host C3. Part (b) of the figure groups those

application components that can be provisioned into separate clouds together with the

middleware containers required to host the corresponding components by lines with

narrow dashes.

The following definition introduces this formally:

Definition 4: Let A be an application, M(A) = {M1,…,Mr} be the set of containers

hosting at least one architectural component of A and (C(A)) = {P1,…Pk} be a cloud

distribution of A. Then, the deep intersection of M(A) and (C(A)), i.e.,

 M(A)  (C(A)) = {Mi Pj |1ir and 1jk} –  (2)

is the set of containers required to host the components of the rearranged application A.

The pair (A):=((C(A)), M(A)(C(A))) is called a provision cluster of A. 

P2

C1

C9C8

C7C6

C5C4

C3C2

M1

M2

M3

M4

P1

P3

C1

C9C8

C7C6

C5C4

C3C2 M12

M22

M33

M43

M11

M31

M41

(a) (b)

20 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

3.2. Cloud Distribution Problem: Computing Cloud Distributions and Provision

Clusters

A cloud distribution of an application A can be computed by evaluating metrical

annotations (or “labels”) of the architecture model of A. This implies that a provision

cluster of A can be automatically proposed by computing the deep intersection of the

computed cloud distribution and the given middleware deployment of A.

The problem of computing a cloud distribution is mapped to a combinatorial

optimization problem, more precisely to a variant of the graph partitioning problem
14

 in

which partitions do not necessarily have similar size.

In order to formalize the problem of computing a cloud distribution of an application

A, the notion of an architecture model of A is defined as a directed graph the nodes of

which are the components of A and the edges of which are the interactions between the

components of A.

Definition 5: Let A be an application, C(A) = {C1,…,Cn} be the set of architectural

components of A and R(A)  C(A)  C(A) be the set of interactions between the

architectural components of A. The directed graph G(A) = (C(A), R(A)) is called the

architecture model of A. 

For deciding on the cohesiveness of architectural components of an architecture model,

the model must be instrumented by different kinds of metrical information (collectively

referred to as “labels”). Metrical information might be associated with the components of

the architecture model (i.e., C(A): the nodes, architectural components or “boxes”,

respectively), with its interactions (i.e., R(A): the edges, interactions or “arrows”,

respectively) or even with both. For example, when the overall cost of hosting an

application is to be evaluated, the cost of hosting each architectural component of the

application will be assigned as label to the nodes of the architecture model. When the

amount of data transferred across the network is to be evaluated, the amount of data

exchanged between two components will be assigned as metrics to each edge of the

architecture model.

The following definition introduces labeling of directed graphs formally:

Definition 6: Let G=(N,E) be a directed graph and let  = {1,…,n} be a set of non-

empty sets, where each i is called set of labels of a certain type. A label f  i, 1in, is

a function f : Df , where Df denotes the domain of f. If a non-empty set (N)  -

and a map

()
 : N

N



  

has been defined, G is called a node-labeled graph,  is called node-labeling map, (N)

is the set of node labels. If a non-empty set (E)  - and a map

(3)

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 21

()
 : E

E



  

has been defined, G is called an edge-labeled graph,  is called edge-labeling map,

(E) is the set of edge labels. G, is called a labeled graph if it is both, node-labeled as

well as edge-labeled with node-labeling map  and edge-labeling map . 

Architecture models are directed graphs and, thus, can be turned into (node-, edge-)

labeled graphs by annotating the architectural components C(A) or the interactions R(A)

of the model with corresponding metrical information (i.e., with labels). Examples for

labels of architectural component are average response time of a component, the cost of

hosting a component, or the trust sensitivity of a component. Examples of interaction

labels are number of calls the source of the interactions performs on the target of the

interaction, or the amount of data transferred between the components. Within the

MOCCA metamodel (Fig. 1) labels are specified as instances of the Label entity type.

An instance of Label is assigned to a Component (i.e., architectural component) or a

Component Relation (i.e., interaction) via the corresponding has relationship type.

Note that a label f that is a constant function (i.e., f(x)=c for all xDf) is considered as

fixed value c. For example, each interaction r  R(A) can be associated with the average

amount of data dr transferred per hour across r as a label (that is fixed, i.e., that is a

constant function), i.e., (r)=dr. This example also shows that i is typically really a set

with many elements: each interaction is likely associated with at different value dr, and

these values are of the same type “data transferred per hour” and are thus grouped into a

corresponding set of labels data/hour. Another example of a set of labels is the set of cost

functions fprovider each of which returns the cost of hosting a piece of software at a certain

provider. This cost is based on a set of parameters like size of the image of the software,

number of invocations per hour making up the domain of fprovider, and these parameters

may be different for different providers. Thus, a single cost function is not sufficient to

determine the cost of hosting a partition of the components of an application at different

providers, but a set costFunction of provider dependent cost functions is needed.

For each type of label i we assume a corresponding aggregation function (i) (or i

for short) that is used to appropriately aggregate a set of label values of nodes {i((m)) |

mMN} (where i is the projection of a tuple onto its i-th component) or label values of

edges {i((m)) | mFE}. If i is a set of node labels, (i) is a function

 (i) : (N)  ; (5)

if j is a set of edge labels, (j) is a function

 (j) : (E)  . (6)

For example, if i represents the cost for hosting an architectural component C(A), the

aggregation function (i) (or i for short) is simply the sum of all the hosting costs

associated with all the architectural components within MN:

(4)

22 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

()() () (())i i i

m M

M M m  


   
.

In general, each node and each edge of a labeled graph is associated with more than one

label (the mapping of all labels to real values is here used due to simplification reasons

and to focus on the MOCCA tool-chain). For example, an architectural component may

be associated with the cost of its hosting and its trust sensitivity. Typically, different

types of labels have different importance (i.e., different priorities); for example, the trust

level achieved when hosting a component with a certain provider may be more important

than its low hosting cost offered. The different priorities of the different types of labels i

is reflected by associating a particular priority (i)   (or i for short) with each

particular i. However, sometimes users may not have clear what their priorities are. In

the case that users cannot determine their exact priorities or that there are no priorities

given by the user at all, they all can be set to the same value and the proposed method

will continue to work anyways. We will further provide different priorities within the

same type of label in future work.

When partitioning the nodes of a directed graph G=(N,E) a corresponding partition of

the edges of G can be defined in a canonical manner: all edges pointing to a particular set

of nodes are grouped into one and the same set of edges. More precisely, for each disjoint

partition of nodes {P1,…,Pm} (N) the induced edge partition {Q1,…,Qm} (E) is

defined via Qj:={e  E | 2(e)  Pj}, 1jm.

With this terminology the problem of computing a cloud distribution can be defined

as follows.

Definition 7 (Cloud Distribution Problem): Let ={1,…,n} be a set of node labels,

{(1),…, (n)} be corresponding aggregation functions, and {(1),.., (n)} be

priorities of the labels. Furthermore, let G,(A) = (C(A), R(A)) be a corresponding

labeled architecture model with node-labeling map  and edge-labeling map . The

Cloud Distribution Problem is to find a disjoint partition {P1,…,Pm} (C(A)) such

that

1 (()) (())

(() ()() () ()())
m

i i

i C A R A

P Q
 

       
  

    

becomes a minimum. Such a partition {P1,…,Pm} is a cloud distribution of G,(A).

In the formula above (which is referred to as target function), {Q1,…,Qm} denotes the

edge partition induced by {P1,…,Pm}, (C(A))   are the node labels of G,(A), and

(R(A))   are the edge labels of G,(A). 

(7)

(8)

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 23

3.3. Example and Experiments: Solving the Cloud Distribution Problem

Next, we describe a solution of the cloud distribution problem by using simulated

annealing
15

 as well as a combination of multiple optimization methods. An

implementation of our solution is provided as an adaptation of a tool that we introduced

in Ref. 16 (for implementation details see there). To automatically compute an optimized

cloud distribution we exploit (i) hillclimbing, (ii) simulated annealing, (iii) an

evolutionary algorithm and, (iv) a hybrid approach containing elements from (i) and (ii).

We extended the prototype from Ref. 16 with a new data structure covering both,

architecture models as appropriate graphs and cloud structures; furthermore, the

algorithms have been adapted to solve the cloud distribution problem.

We continue our running example and define labels and associate them with the

components and component relations of the architecture diagram from Fig. 3 as shown in

Fig. 10. Each label is defined as an instance of Label (see the metamodel in Fig. 1) with

appropriate Name and Value attributes. For example, compute units labels are instances

of Label having their Name attribute set to ComputeUnits; and a ComputeUnits label

with actual value 2 is an instance of Label having its Value attribute set to 2. Labels

are associated with Components and Component Relations by means of

instantiating the appropriate has relationship. In Fig. 10 all components and component

relations of the architecture diagram from Fig. 3 have been labeled.

Fig. 10 - Sample Labeling of the Architecture Graph

Clouds are modeled as tuples of properties relevant for deciding the cloud distribution

problem. Which properties to use, i.e., to decide which properties are appropriately

characterizing the cloud candidates, are dependent on the specific situation. In our

example, we characterize a cloud by four properties: (i) computeUnitCosts represents the

24 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

amount of money charged for each compute unit, (ii) cloudSecurityLevel represents the

security level a corresponding cloud can provide, (iii) innerEdgeDataThroughputCosts

represents the amount of money to be paid per data unit transferred within the

corresponding cloud, and (iv) outerEdgeDataThroughputCosts represents the amount of

money to be paid per data unit out of and into the corresponding cloud. The concrete

property values of two different clouds used as basis for our example are shown in

Table 1.

Table 1. Cloud Definition

Cloud Property Cloud 1 Cloud 2

computeUnitCosts 0.5 0.4

cloudSecurityLevel 5 5

innerEdgeDataThroughputCost 0.0 0.0

outerEdgeDataThroughputCost 0.2 0.5

Let  be the search space that represents a set of valid cloud distributions, x,y two

valid cloud distributions and U(x)=\{x} the environment of x; then the heuristic

hillclimbing algorithm can be sketched as follows: the algorithm first selects a random

element x from the given search space  and calculates the initial fitness of this element

(see step 1 in Algorithm 1); the “fitness” of an element x is represented by the value of

the target function (Definition 7) for this element. In our scenario, some of the labels

associated with a component or a component relation are in fact formulas having as

parameter the value of the label as well as one of the characteristic properties of the

potential target clouds. For example, the label ComputeUnits represent the computing

units consumed by a component, but its value must be multiplied with the corresponding

cloud compute unit costs (computeUnitCosts) being a characteristic property of a

particular cloud. Similarly, the label dataThroughput represent the data throughput of a

component relation, but its value is multiplied with either

innerEdgeDataThroughputCosts or outerEdgeDataThroughputCosts depending on where

the communication partner is located. In our use data traffic within a single cloud is

assumed to be free of charge while incoming and outgoing data traffic is with costs. This

way, each term of the sum of the target function is evaluated and the total fitness value of

a specific cloud distribution considering all labels is calculated as defined in Definition 7.

At the end the cloud distribution with minimal fitness is selected as optimal solution (see

step 6 and 7 in Algorithm 1).

Algorithm 1 Hillclimbing

1: select x and calculate fitness(x)
2: i=0

3: while (i < Number of Steps) do

4: select neighbor: yU(x)

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 25

5: calculate fitness(y)

6: if fitness(y) fitness(x)

7: x =y

8: end if

9: i = i+1

10: end while

To determine a valid neighbor of x in U(x) to compare the calculated fitness values to

(see step 4 in Algorithm 1) we additionally introduced two evaluation constraints named

targetCloud and securityLevel implemented as node labels (see Fig. 10). The first one

verifies if a component had to be stored on a specific or arbitrary cloud by comparing the

node label with the corresponding cloud definition, and the second one verifies if the

components security level (securityLevel) is less or equal the clouds provided security

level (cloudSecurityLevel). We decided to use a securityLevel range between 0 and 5 (0

indicates lowest and 5 highest security level) to calculate the aggregation function

introduced in Definition 7. Furthermore, this allows users to manipulate the cloud

distribution based on their know-how or legislative guidelines, for instance. All labels

including their concrete values and cloud properties can be found in Fig. 10 and Table 1,

respectively.

Table 2. Algorithm Execution Times

Algorithm Execution

Time (in ms)

Parameter Fitness (in

monetary units)

Hillclimbing 296 Number of Steps = 50 13,2

Simulated Annealing 767 Number of Steps = 200 13,2

Hybrid 869 Number of Steps = 50 13,2

Evolutionary 3224 Number of Steps = 50 13,2

Table 2 summarizes the measurements by using the different optimization methods we

used in our experiments for one setting of label values: all optimization methods resulted

in the same cloud distribution with the same fitness. This computed cloud distribution is

shown in Fig. 11.

Additionally, we repeated the computations with various combinations of label

values, and the different optimization methods always produced the same result. Thus,

from a pure result perspective the concrete optimization method chosen was irrelevant in

our experiments. But significant differences in execution time could be observed, which

we ascribe to the various complexities of the different algorithms. Decreasing the number

of steps each algorithm runs through up to a certain threshold the hillclimbing algorithm

is performing even better than the others (i.e., it finds the optimal solution faster).

This tendency may change when increasing the number of architectural components

or component relationships significantly, because of the well-known disadvantages of

26 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

hillclimbing as local search algorithm. Then, the other algorithms may take the advantage

of finding the global optimal solution instead of finding a single local optimal solution

based on hillclimbing. Certainly the execution time will increase as well and maybe more

calculation steps are necessary to find an optimal solution.

Fig. 11 – Sample Computed Cloud Distribution

One project from practice rearranged an application based on trust aspects. These aspects

correspond to securityLevel lables and cloudSecurityLevel labels above. Another project

rearranged an application based on costs of hosting individual components of the

application. These costs had been derived by licensing costs of the middleware

components as well as corresponding hosting costs of the cloud provider. The cloud

distributions had been specified manually by the practitioners, which could be

reproduced algorithmically. If more labels and especially a mixture of labels of different

kinds will be used (e.g. costs, times, availability, security etc.) it is expected that

manually determined cloud distributions will often fails to be optimal and the

automatically determined cloud distributions will be “better”: But this has not be verified

in practice yet.

4. The MOCCA Tool

In this section, we describe the architecture of a tool supporting the MOCCA method and

concepts. Especially, the overall architecture is given and the individual components of

the tool are described. Finally, the role and use of the Cafe environment
7
 is sketched.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 27

4.1. Overall Architecture

Fig. 12 shows the overall architecture of the MOCCA tool. The tool consists of several

components supporting the various artifacts of the method proposed. Architecture models

(Definition 5) are modeled using the Architecture Modeler. Deployment topologies and

models, middleware deployments (Definition 2) as well as deployment relevant

parameters and installation relevant artifacts are specified by means to the Deployment

Modeler. The cloud distribution (Definition 1), i.e., the split of the application is derived

via the Cloud Distributor. Based on the cloud distribution and the middleware

deployment the Provision Preparation component determines the corresponding provision

cluster (Definition 4). Together, this enables the Provisioning component to provision the

split (i.e., rearranged) application in the various clouds.

Fig. 12 - Tool Architecture

The components exchange data via a shared repository. Basically, the schema of this

repository is the metamodel described in Section 2.2. Note that the Provisioning

component is basically the core of the Cafe environment. Since Cafe defines its own

exchange format (Cafe ARchive, called CAR files) the Provision Preparation component

supports the generation of CAR files in order to allow using Cafe implementations not

sharing the same repository.

4.2. Component Descriptions

The Architecture Modeler consists of two components, namely the Architecture

Diagram component and the Diagram Labels component. The Architecture Diagram

component supports the graphical modeling of architecture models, i.e., the architectural

building blocks of an application as well as the relations between them; this component

instantiates the “Architecture Model” part of the metamodel in Fig. 2. The Diagram

Labels component is used to define properties (i.e., “labels” in Definition 6) relevant for

deciding on the cohesiveness of architectural building blocks. Cohesiveness is decided

based on properties of components or properties of interactions between components.

Since interactions are represented by relations between architectural building blocks,

28 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

these properties are associated with relations or with components of an architecture

model as corresponding metrical information. Together, this results in instances of the

“Optimized Clustering” part of the metamodel in Fig. 2. The use of the Diagram Labels

component is required when cloud distributions should be proposed automatically by

MOCCA.

The Deployment Modeler consists of the Deployment Diagram component that

allows to graphically create the corresponding models, the Artifact Definition

component, the Image Overlay component and the Parameterization component. The

Deployment Diagram component supports the graphical modeling of the deployment

topology of an application, i.e., it instantiates the “Deployment Topology” part of the

metamodel in Fig. 2; especially, the middleware deployment of an application can be

modeled. The Artifact Definition component allows specifying details about the

implementation artifacts required to install a component in its runtime environment; this

component instantiates the “Automatic Installation” part of the metamodel in Fig. 2. The

artifacts needed are essentially the code files or packages (such as WAR files, or OVF

images) that implement the component. These can be reused across different applications,

for example the implementation of a Web service can be used in several applications.

Depending on its implementation type, an artifact may be deployable on components of

different types, i.e. a WAR file might be deployable on a component of type Apache

Tomcat, or a component of type JBOSS. By defining artifacts representing virtual

images (or parts thereof) as implementations of application components, the Image

Overlay component supports overlaying the architecture of an application and virtual

images. The Parameterization component allows defining both, deployment relevant

properties and variability points of a component as well as the relations between them.

Thus, this component is used to instantiate the “Deployment Parameterization” part of the

metamodel in Fig. 2.

The Cloud Distributor is used to determine a cloud distribution for a given

application. A cloud distribution can be defined manually by using the Manual

Assignment component. If the Diagram Labels component has been used to annotate the

architecture model of an application with cohesion relevant properties, the Automatic

Derivation component can be used: it will automatically propose a cloud distribution

based on the optimization algorithms described in Section 3.2.

The Provision Preparation component especially derives the provision cluster of an

application based on the middleware deployment determined by using the Deployment

Modeler and the cloud distribution determined by the Cloud Distributor. The

corresponding deep intersection is computed by the Provision Clustering component of

the Provision Preparation. As a result, the application template of the rearranged

application is build. Furthermore, the “CAR Generation” component could be used to

generate the CAR file for the rearranged application, i.e., the file format used by the Cafe

tool and a proposed interchange format for composite cloud applications.

The Provisioning component is a subset of the Cafe environment as used in

MOCCA; the corresponding functionality is described in Section 4.3. (see also Ref.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 29

17). Basically, the Customization Flow Generator generates a customization workflow

that derives the properties required for provisioning and deployment of the rearranged

application. This is an important step in the provisioning process as the customization

flow gathers the required values to bind variability points either from a user or from the

associated visible properties and overwrites the configuration settings of the

corresponding artifacts as indicated by the locators. For example, EPR values or JNDI

properties of components are overwritten with concrete values obtained from the visible

properties of other components. The customization workflow is used by the provisioning

workflow generated by the Provisioning Flow component. The provisioning flow is

enacted by the Provisioning Engine to finally install the rearranged application in the

target cloud environments.

4.3. Usage of Cafe For Performing Actual Deployment

Cafe maps OVF artifacts like virtual systems to separate components. Currently, Cafe

assumes that a single OVF file represents a single component. Thus, in case a

provisioning cluster contains an OVF file that contains the virtual image of more than

one component (i.e., more than one virtual systems), this file must be split into separate

OVF files manually. A straightforward extension of Cafe will either perform this split

automatically (thus, using the existing Cafe unchanged) or will support OVF files with

virtual images of multiple components.

From the deployment parameterization of an application (which is called “variability

model of an application template” in Cafe) the Cafe infrastructure generates a so-called

customization flow that deals with the binding of the variability points contained in the

deployment parameterization. The provisioning flow is a workflow that represents the

variability points, their alternatives, their enabling conditions and the dependencies

between the variability points. The provisioning flow ensures a complete and correct

customization of the application during deployment. “Complete and correct” means that

(i) each variability point is bound and (ii) the rules imposed on the binding of variability

points, i.e., which alternatives may be selected and in which order the variability points

are bound, are followed. The generation of customization flows from variability models

is described in detail in Ref. 17.

The deployment topology and the automatic implementation artifacts of an

application (called “application model” in Cafe) as well as the dependencies between

components induced by the deployment parameterization are interpreted by the Cafe

provisioning environment in the following way: First a so-called “provisioning order

graph” is generated. The provisioning order graph specifies in which order the

components of the application must be provisioned. Three rules apply here: (i) before a

component can be provisioned all components that transitively contain this component

must be provisioned; (ii) before a component can be provisioned, all its variability points

that must be bound at pre-provisioning time must be bound. Thus, all components to

which a given component is connected via a property alternative whose associated visible

properties become only available at runtime must be provisioned before the given

30 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

component; (iii) components that do not have any dependencies on each other can be

provisioned in parallel.

A provisioning flow can be generated from the provisioning order graph that

performs the provisioning in the right order as follows: For each node in the graph so-

called “provisioning activities” are added to the workflow model, these are connected via

control connectors that represent the dependencies. This way the three rules above are

ensured. The provisioning activities then contain activities to bind the pre-provisioning

variability points of a component by calling the provisioning flow who will then either

prompt the user for inputs if the deployment parameterization requires it or queries the

already provisioned components for their respective visible properties. These are always

already available as the ordering of the provisioning of the components follows rule (ii)

above.

All already provisioned components in Cafe are represented by so-called “component

flows” that provide a unified interface of components at different providers to the

provisioning infrastructure. In order to deploy a component on an already deployed

component, the deploy operation of the component flow of this component is called with

the location of the repository in which the component that must be deployed is located.

In case the component to be deployed is a virtual image (for example an OVF image) the

component flow that represents the hypervisor of the provider that will later run the OVF

image is called along with the repository location in which the customized OVF image is

deployed. This operation is then mapped by the component flow to a hypervisor-specific

operation that starts a new virtual image from a virtual image package such as OVF.

When starting the new virtual image the hypervisor also starts the activation engine

which starts the corresponding scripts contained in the virtual image. In case other

components must be deployed on the infrastructure contained in the virtual machine, the

component flow for the hypervisor starts a component flow that can deploy other

components on the middleware component contained in the virtual machine. This

component flow can be developed specifically for the virtual image or can be a standard

component flow that makes use of the deployment interface of the component in the

virtual machine, for example, a standard component flow could copy a Web application

archive to a specific directory in the virtual machine or could deploy a process archive

via the deployment Web service of the BPEL
18

 engine contained in the virtual machine.

Thus a component flow that implements the deploy operation for components that must

be deployed on the middleware component in the virtual machine must be deployed in

the Cafe environment before the corresponding application can be provisioned.

5. Case Study

In this section, we report about the actual move of the sample application introduced in

Section 2.3. into the cloud. First, the implementation of the architecture components is

described followed by their corresponding Deployment Parameterization used by Cafe

for the actual provisioning of the application. The associated Cafe artifacts and their

relevance for the MOCCA method are described.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 31

5.1. Application Components

All components of the sample applications depicted in the architecture diagram (see Fig.

3) have been prototyped (with basic functionality only) by using open source software.

To facilitate their provisioning using Cafe a set of properties and Variability

Points as well as their dependencies were identified. The Input Entry component offers

customer interaction through Java Server Pages. It also contains Web service clients

implemented in Java to interact with the Good Standing Verifier and the Risk Assessor

components. Those clients are initiated from the Java Server Pages and their output is

displayed to the customer. The Progress Monitor constitutes another component used for

customer interaction. It is also realized as a Java Server Page using a Web service client

to obtain a list of all processed orders from the Data Handler component. The good

standing of a customer is evaluated by the Good Standing Verifier component which is

implemented as a Web service and is called by the Input Entry component. The Risk

Assessor component is implemented as a BPEL process, assessing the risk computed by

the Good Standing Verifier. If the risk is acceptable, the Risk Assessor initiates the

processing of the order by the Order Processing component. The Order Processing

component (another BPEL process) handles the actual ordering of an item. First, it

verifies that the item is available by accessing the Stock Management component. If so, it

removes the item from the stock and stores the order information using the Data Handler

component. The Stock Management component is realized as a Web service. It manages

the items available to the ordering application. The Data Handler component manages the

persistent information about all orders processed. It is also implemented as a

Web service.

The general package format for all application components are WAR files with the

exception of the BPEL processes which are packaged as ZIP files. The Input Entry,

Progress Monitor, and Good Standing Verifier are deployed on Apache Tomcat, the Risk

Assessor and Order Processing on Apache ODE, and the Stock Management and Data

Handler on JBoss which allows them to access a Hyper SQL Database (HSQLDB)

through Hibernate. The required middleware is provided as three virtual machine images.

Corresponding to MOCCA’s deployment model, the first virtual image contains Apache

Tomcat, the second contains Apache ODE, and the third contains JBoss and HSQLDB.

5.2. Deployment Parameterization Used By Cafe

In order to be provisioned using the Cafe environment Variability Points of the

components have to be identified and made accessible to Cafe. Cafe may access and

manipulate any XML file within the component package during the provisioning process.

The Cafe metamodel does currently not include Visible Properties but it treats

them as Variability Points that are filled by the provisioning infrastructure. All

properties (i.e., instances of Property) of the application components are thus

transformed into Variability Points for the usage in Cafe. Instead of allowing to

import Visible Properties for a component of a specific type, Cafe allows the

32 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

import of the Variability Points for a component type, i.e. a concrete application

server. For the sample application these Variability Points are the addresses

(e.g., URLs) of the components themselves as well as the addresses of accessed

components since they are unknown until after provisioning. For the Item Manager and

Data Handler components an additional property is the address of a Hyper SQL

Database. To ensure that Cafe can process Variability Points they have to be

accessible, i.e., may not reside in compiled source files. Web services offered and

accessed by the components are therefore configured through WSDL files. During the

provisioning process Cafe may adjust the SOAP addresses of the WSDL ports in those

files. To configure the database access Hibernate also offers configuration through an

XML file that can be set automatically by the Cafe provisioning infrastructure.

5.3. Provisioning the Application Using Cafe

Utilizing MOCCA tools, the application architecture model is modeled and the cloud

distribution is computed as described in Section 3.3. and based on the labels discussed

there. This information is then used to create the Cafe artifacts necessary for

provisioning. Semantics and usage of these artifacts have been discussed in Section 4.3.

Please consider that in practical settings these tools will import existing models.

Fig. 13 Provision Cluster of the Sample Application

Since MOCCA and Cafe use the same metamodel regarding the models for deployment

topology, automatic installation, and deployment parameterization depicted in Fig. 2,

Cafe tools integrate with those of the MOCCA architecture almost seamlessly. Its

application model can be obtained from the MOCCA deployment model. However, to

provision the sample application this model needs to conform to the provision cluster.

Currently, Cafe does not support to overlay an application model with the hyper edges of

a cloud distribution to obtain provision clusters. This is due to the fact that Cafe

Good
Standing
Verifier

Progress
Monitor

Input
Entry

Risk
Assessor

Order
Processor

Data
Handler

Stock
Management

Cloud 2

Cloud 1

Apache
ODE

Apache
Tomcat

JBOSS +
HSQLDB

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 33

originally does not support the notion of multiple clouds and considers every modeled

component to be instantiated only once. Therefore the splitting of middleware

components across different clouds, as described by Definition 3 and Definition 4, has to

be made explicit in Cafe’s application model. Respective to the provision cluster of the

sample application shown in Fig. 13 the Apache Tomcat component is split into two

components. One contains the Input Entry component and is hosted in Cloud 1. The other

contains the Good Standing Verifier and Progress Monitor components and is hosted in

Cloud 2. Other middleware components do not have to be split up since only one single

instance is required of those. Note, that a Cafe application model can be derived from a

MOCCA deployment model by making the distribution explicit. However, the round-trip

back is not possible. Thus the Cafe application model must be extended with information

that allows split components to be reassembled again as required by the MOCCA

deployment model.

The application model is further used to map components to their implementation by

referencing deployment packages such as WAR and ZIP files or OVF Images. Access to

Variability Points is possible through the definition of XPath expressions

altering the XML files inside those packages. A screenshot of the application diagram

modeler is shown in the appendix.

In addition to the application model, a so-called component binding is needed. The

component binding is used to associate component flows with the components. These are

needed to perform the actual provisioning of components as described in Section 4.3.

They are specified by End Point References through which the flow may be accessed.

Since the application model represents the provision cluster, each component may have

an individual component flow depending on the cloud to which is it provisioned. A

screenshot of the component binding modeler is shown in the appendix.

The final task before provisioning the application is providing the necessary

deployment parameterization by specifying the Variability Points and their

dependencies. The Variability Points of the sample application consist of

addresses of the Web services offered and accessed by the components. Respecting the

dependencies of these Variability Points, the provisioning flow for the

application is computed automatically. The provisioning flow then performs the

provisioning by executing the component flows of the individual components in the right

order, respecting the dependencies of components’ Variability Points. Regarding

the variability model created using the variability modeler tool, depicted in appendix the

following flow is generated (sketched only in what follows). First middleware

components are provisioned which allow the computation of application components’

addresses. Circular dependencies are supported by the configuration of components

during runtime. Second, the Stock Management, Data Handler, and Good Standing

Verifier are provisioned in parallel since they do not depend on any other component.

Then the Variability Points of the Progress Monitor and Order Processor are

known and they can be deployed subsequently. Afterwards, the Risk Assessor and last

the Input Entry component are provisioned.

34 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

5.4. Application Management in Cafe

Cafe allows provisioning instances of different applications. To make an application

(called application template in Cafe) known to the Cafe system, it must be uploaded to

the Cafe system via the Cafe portal. Before uploading, all generated artifacts (code,

application model, variability model and component bindings) must be packaged into a

Cafe Application Archive (CAR) file. This file can then be uploaded to a Cafe

environment. To provision a new instance of an application, a customer selects one of the

available templates in the Cafe portal. Then the customer must bind all Variability

Points that require decisions by the customer. During the binding of the

Variability Points the customer is guided by the customization flows generated

from the Variability Point. Once all customer-related Variability Points

have been bound, the corresponding provisioning flow is executed that makes use of the

component flows and the customization flows that bind provisioning-related

Variability Points, to setup the whole application.

6. Related Work

Given the focus of this paper, related work can be clustered into two main categories:

infrastructure topologies and composite application approaches as well as resource

optimization approaches in Grids and Clouds.

6.1. Infrastructure Topologies and Composite Applications

Several approaches that aim at describing and provisioning complex infrastructure

topologies exist. Virtual images as basic building blocks for deploying complex

middleware topologies on top of IaaS clouds (Infrastructure as a Service) are investigated

in Ref. 19: the conclusion is that individual virtual images are not powerful enough to

capture complex infrastructure requirements such as multiple application servers that

communicate with authentication servers and databases, for example. Thus, Ref. 19

introduces a so-called “virtual appliance model” that allows defining solutions that are

composed of multiple configurable virtual images that can be automatically deployed and

run in separate IaaS clouds such as Amazon EC2.
20

 The approach presented in Ref. 19

differs from our approach presented in this paper: while Ref. 19 focuses solely on

reusable virtual images and their composition, our approach focuses on existing

applications and shows how they can be split (in an optimal manner) and moved to

(multiple) clouds. Furthermore, virtual images in our approach are optional, i.e., we can

also move applications to the cloud without assuming virtual images but deploy

applications on top of middleware already available in the cloud. The approach

presented in Ref. 19 is based on the approach presented in Ref. 21 which offers a

semantically rich metamodel to model complex deployment models similar to those, that

we allow to model in MOCCA. However, the difference is, that their approach employs a

very rich metamodel while we employ a simple, generic metamodel. While their focus is

to capture existing middleware in templates, which requires the complex definition of the

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 35

template before applications can be modeled. Our model allows to only define those

variabilities that are absolutely needed to configure and deploy an application. However,

in case complex component types are needed and offered by providers, application

modelers can import the variability models of the component types and can integrate

them in the application variability model, thus reusing the work of the provider and

having the same effect as the approach in Ref. 21.

Elastra
22

 and Rightscale
23

 offer cloud management services on top of IaaS clouds.

Elastra for example provides special languages (ECML, EDML) to describe the

infrastructure components of an application such as application servers, databases and

their connections. However, concrete resources must be manually assigned to these

components, and application modules must be manually installed on top of the

components. 3tera
30

 offers modeling and deployment of applications based on pre-

defined virtual images that can then be deployed in a data center. All of these approaches

focus on the management of resources and applications assuming that both are modeled

for and managed within a particular target environment. In contrast, our approach is

focused on rearranging existing composite applications such that they can be moved to

the cloud and can be automatically provisioned across different providers; especially, our

approach is independent from particular target environments.

The application packaging standard (APS)
24

 focuses on the description of Web

applications including, for example, UI components, databases and configuration of Web

servers. APS is limited to Web applications and does not allow the annotation of

parameters to individual components that would allow the partitioning of the application

across multiple Web servers and thus is unsuitable for the purpose of MOCCA. Several

approaches exist such as described in Refs. 25, 26, and 27 that deal with the description

of composite service-oriented applications in terms of composite services that consist of a

set of other services. However, all these approaches do not allow the modeling of

infrastructure components and thus are unsuitable to describe the infrastructure

components of different clouds on which different parts of an application must be

deployed.

6.2. Resource Optimization Approaches in Grids and Clouds

In MOCCA we treat the distribution of application and infrastructure components across

different clouds as an optimization problem that solves the task of finding an optimal

distribution of components given a set of parameters.

In the Grid
28

 the optimization of the distribution and scheduling of jobs across the

available resources is an important problem. The component to deal with this

optimization is the resource broker or resource scheduler (see Refs. 28, 29, and 30). Grid

users can send, for instance, job submissions to the broker. The broker then decides

which resources will perform the job based on various criteria such as resource

utilization, cost of non-functional properties of different resources. Different algorithms

exist that optimize the scheduling of the required resources. In Ref. 31 an overview and

comparison of these optimization algorithms is given. The problem of job scheduling in a

36 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Grid is different from the MOCCA approach, as in MOCCA the distribution across

different infrastructure resources is done pre-deployment and not when a request for

computation is submitted to an application. Thus the algorithms commonly used in

resource brokers focus on the optimization of the distribution of all jobs submitted to a

Grid over the available infrastructure. The framework presented in Ref. 32 can act as

such a resource broker for application resources in a cloud as it allows to plug-in several

algorithms to optimize the distribution of tenants in a cloud application. An approach

based on game theory is taken by Lee et al.
34

 to optimize the allocation of resources for

distributed applications in a single cloud given a constrained set of available resources. In

Ref. 35 the OpenNebula virtual infrastructure management framework is introduced that

includes the Haizea resource scheduling manager to schedule workload across different

virtual machines. The Eucalyptus cloud management framework
36

 contains similar

resource allocation algorithms that allow users of the framework to start and stop virtual

machines without having to deal with the concrete resource allocation and scheduling.

All these approaches operate at a lower level than the MOCCA approach as they focus on

single clouds and Grids and how to optimize the resource allocation in a single cloud or

Grid, whereas MOCCA helps architects with the decision how to split applications across

different clouds and thus has a different focus. The resource allocation algorithms

researched for Grids and clouds can then be used by the individual cloud providers to

optimize the resource allocation for the components they have been given to host by the

application architects as a result of applying the MOCCA method.

7. Conclusion

In this paper we proposed a method (the MOCCA method) for solving the move-to-cloud

problem. This method has been described in terms of the various steps to be performed

and artifacts to be created in order to move an application to the cloud. A metamodel has

been presented that formally describes these artifacts and their relations. The artifacts are

mainly application models that are enriched by deployment information and labels. The

move-to-cloud problem especially subsumes the problem of rearranging the components

of an application into groups that might be provisioned into different clouds: this problem

has been formalized as an optimization problem (cloud distribution problem) and a

solution for solving this problem has been worked out.

We presented the architecture of a tool suite that supports the modeling of the

artifacts of the MOCCA method. Also, it supports the automatic derivation of cloud

distributions and provision clusters, i.e., it solves the cloud distribution problem. Finally,

the provision clusters are automatically provisioned into their target clouds. Thus, the

MOCCA method and accompanying tool suite solves the move-to-cloud problem in

practical situations. A sample application has been implemented and moved to the cloud

to verify the viability of the MOCCA method and tools.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 37

Appendix A. Screenshots

The tool architecture shown in Fig. 12 has been realized based on both, graphical tools as

well as tree-based tools (or tree-based tools, respectively). The graphical tools lean more

towards domain experts while the tree-based tools are more geared towards supporting

expert development personnel. The following subsections show some screenshots of both

kinds of tools.

A.1. Graphical Tools

The graphical tools have been realized based on the Cafe framework
7
, which in turn is

based on EMF and GMF. These Eclipse-based technologies support the development of

editors for arbitrary metamodels and graphical representations of these. The Cafe

metamodel is defined in EMF while GMF is used to specify the graphical representation

of metamodel elements.

Fig. 14 shows the implemented editor for specifying application models. On the

upper left an Eclipse project containing the models and other artifacts, such as code, of

the sample application is shown. The representation of the application model is opened in

the main view. On the top the JBoss middleware component is modeled. It contains the

Stock Manager and Order Manager components. The implementation of the JBoss

component is specified as ProviderSupplied. The contained components reference the

WAR files which hold their implementation artifacts. These files are also visible in the

project explorer on the left side.

Fig. 14 - Modeling the Cafe Application Diagram

38 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Variability Points of the components and their dependencies are modeled in the

variability diagram shown in Fig. 15. The Variability Point of the Apache

Tomcat component (TomcatEPR) representing the end point reference of the Apache

Tomcat servlet container is visible on the top left in the main view. It has one free

Alternative as described in Section 2.2. which is the hostname of the Apache

Tomcat instance. It is filled during the provisioning process. Since the Good Standing

Verifier is hosted on the Apache Tomcat component as seen in Fig. 14 the URL of the

offered service (represented by the Variability Point GSERP) depends on the

TomcatEPR Variability Point. It is filled once the TomcatEPR Variability

Point is known. The Variability Point of the Input Entry (InputEntryGSEPR)

depends on the URL of the Good Standing Verifier since it uses this component. From

the variability points depicted in this diagram the customization flows can be generated

as described in Section 4.3. Additionally these dependencies serve as input to the

provisioning flow’s decision in which order to provision the individual components.

Fig. 15 - Modeling the Variability Diagram of the Sample Application

The provisioning flow initiates the component flows of application components to

provision an application instance. These component flows are associated with an

application component through component bindings. In Fig. 16 the component binding

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 39

for the JBoss component is selected in the main view of Eclipse. In the properties view

on the lower side the properties of this component are displayed. This is where the

component JBoss modeled in the application diagram is referenced. The element

currently selected in the properties view shows the End Point Reference of the

component flow for that referenced component. The action element specifies the purpose

for which the component flow is used. In this case it is for provisioning. Additional

component bindings may also be specified to reference component flows implementing

other actions. Those include adding other components after provisioning the referenced

component or deprovisioning it.

Fig. 16 - Specifying Component Bindings

Having packaged the sample application using the CAR export file wizard of the

application modeler, the application can be uploaded to the Cafe Portal. Having uploaded

the application it becomes available under the templates tab (as shown in Fig. 17) and

customers can subscribe to that application.

40 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Fig. 17 - The Sample Application in the Cafe Portal

A.2. Tree-Based Tools

The tree-based tools have been realized by using VBMF
11

, which is an Eclipse-based tool

supporting model driven development of applications. Especially, it supports an easy way

to specify metamodels and generates corresponding tree-based modeling tools. Based on

Fig. 2, the metamodels denoted as “model types” in that figure have been specified in

VBMF and the corresponding modeling tools for tree-based specification of architecture

models, deployment topology etc result.

Fig. 18 - Modeling Components

Fig. 18 shows the tool allowing to model components of an architecture model (the

“boxes”) and also of deployment models. The WebSphere component is high-lighted in

the left part of the screen and the right part shows the properties of that component, e.g.

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 41

its name and its type (in this case “AppServer”). The subcomponents of WebSphere

application server are the Risk Assessor as well as the Order Processor components

(see Fig. 4).

The “arrows” of an architecture model are specified as component relations as shown

in Fig. 19. The left side of the screenshot high-lights the component relation

InputEntry_GoodStandingVerifier and the right side show its properties especially that it

begins at the Input Entry component and ends at the Good Standing Verifier component

(as shown in Fig. 3).

Fig. 19 - Modeling Relations

The fact, that the MWStack component encompasses (amongst others) the WebSphere

component and the DB2 component (see Fig. 5) has been specified in Fig. 20.

Fig. 20 - Modeling Composite Components

The information from Fig. 5 that WebSphere is realized by an implementation of type

OVF and that this OVF file is a BLOB Artifact having a certain FileRef attribute

is given in Fig. 21 and Fig. 22, respectively.

42 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

Fig. 21 - Specifying Implementations

Fig. 23 gives an example of modeling labels. The label AMOUNT_OF_DATA high-

lighted and got the value 200 assigned. This label has been associated to the component

relation InputEntry_GoodStandingVerifier in Fig. 24. The other label called TRUST has

been associated with the DB2 component in Fig. 25.

Fig. 22 - Specifying Artifacts

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 43

Fig. 23 - Modeling Labels

Fig. 24 - Labeling Relations

Fig. 25 - Labeling Components

44 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

The specification of properties is depicted in Fig. 26: the property hostname has been

shown that has no value assigned (according to the situation modeled in Fig. 5). Fig. 27

specifies hostname also as a visible property now having the value franksDB2 (see Fig.

5).

Fig. 26 - Modeling Properties

Fig. 27 -Modeling Visible Properties

References

All links followed on 18.03.2010

1. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,

A. Rabkin, I.Stoica, M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing.

Technical Report (2009).

Moving Applications to the Cloud: an Approach based on Application Model Enrichment 45

2. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud Computing and Emerging IT

Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility, Future

Generation Computer Systems 25 (2009) 599-616.

3. S. Jha, A. Merzky, G. Fox, Using Clouds to Provide Grids Higher-Levels of Abstraction and

Explicit Support for Usage Modes, Concurrency and Computation: Practice and Experience,

Special Issue of the OGF (2009).

4. National Institute of Standards and Technology, Draft NIST Working Definition of Cloud

Computing, (2009), http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v12.doc.

5. Open Cloud Manifesto, (2009)

http://www.opencloudmanifesto.org/Open%20Cloud%20Manifesto.pdf.

6. F. Leymann, Cloud Computing: The Next Revolution in IT, in Proc. of the 52th

Photogrammetric Week (Stuttgart, Germany, 2009).

7. R. Mietzner, T. Unger, F. Leymann, Cafe: A Generic Configurable Customizable Composite

Cloud Application Framework, in Proc. of the 17th Intl. Conf. on Cooperative Information

Systems, CoopIS (Springer-Verlag, Berlin, Heidelberg, 2009).

8. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D.F. Ferguson, Web Services Platform

Architecture (Prentice Hall, 2005).

9. DMFT Standard: Open Virtualization Format Specification, Document Number: DSP0243

(2009), http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf.

10. The ACME Project, http://www.cs.cmu.edu/~acme/.

11. H. Tran, U. Zdun, S. Dustdar, View-based and Model-driven Approach for Reducing the

Development Complexity in Process-Driven SOA, in Proc. of the Intl. Conf. on Business

Processes and Services Computing (Leipzig, Germany 2007).

12. BPMN 1.1, http://www.bpmn.org/Documents/BPMN_1-1_Specification.pdf.

13. L. Hohmann, Beyond Software Architecture (Addison-Wesley 2003).

14. M.R. Garey, D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-

Completeness (W.H. Freeman & Co. 1990).

15. S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by Simlated Annealing, Science 220 (1983).

16. O. Danylevych, D. Karastoyanova, F. Leymann, Optimal Stratification of Transactions, in

Proc. Of the 4th Intl. Conf. on Internet and Web Applications and Services (2009), pp. 493 -

498.

17. R. Mietzner, F. Leymann, Generation of BPEL Customization Processes for SaaS Applications

from Variability Descriptors, in Proc. of the Intl. Conf. on Services Computing (Washington,

DC, USA 2008).

18. BPEL, www.oasis-open.org/committees/wsbpel/.

19. A. Konstantinou, T. Eilam, M. Kalantar, A. Totok, W. Arnold, E. Snible, An Architecture for

Virtual Solution Composition and Deployment in Infrastructure Clouds, in Proc. of the 3rd

Intl. Workshop on Virtualization Technologies in Distributed Computing (VTDC 2009).

20. Amazon EC2, http://aws.amazon.com/ec2/.

21. K. El Maghraoui, A. Meghranjani, T. Eilam, M. H. Kalantar, A. V. Konstantinou: Model

Driven Provisioning, Bridging the Gap Between Declarative Object Models and Procedural

Provisioning Tools, in Proc. of the 7th Intl. Middleware Conference (2006), pp. 404-423.

22. ELASTRA, http://www.elastra.com/.

23. RightScale, http://www.rightscale.com/.

24. SWSoft Inc. Application Packaging Standard (APS) (2007),

http://apsstandard.com/r/doc/package-format-specification-1.0.pdf.

25. B. Benatallah, M. Dumas, and Q.Z. Sheng, Facilitating the rapid development and scalable

orchestration of composite web services, Distributed and Parallel Databases 17(1) (2005) 5–

37.

http://www.buyya.com/papers/Cloud-FGCS2009.pdf
http://www.buyya.com/papers/Cloud-FGCS2009.pdf
http://www.opencloudmanifesto.org/Open%20Cloud%20Manifesto.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/View-based%20and%20Model-driven_Dustdar_BPSC2007.pdf
http://www.infosys.tuwien.ac.at/Staff/sd/papers/View-based%20and%20Model-driven_Dustdar_BPSC2007.pdf
http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-19&mod=0&engl=0&inst=IAAS

46 F. Leymann, S. Dustdar, C. Fehling, R. Mietzner, A. Nowak

26. Open SOA Collaboration (OSOA), SCA Service Component Architecture, Assembly Model

Specification Version 1.00 (2007),

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf.

27. F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar, Towards composition as

a service - a quality of service driven approach, in Proc. of the Intl. Conf. on Data Engineering

(Shanghai, China, 2009), pp.1733–1740.

28. I. Foster and C. Kesselman, The grid: blueprint for a new computing infrastructure (Morgan

Kaufmann, 2004).

29. R. Buyya, D. Abramson, and J. Giddy, Nimrod-G Resource Broker for Service-Oriented Grid

Computing, IEEE Distributed Systems Online 2(7) (2001).

30. 3tera, http://www.3tera.com/.

31. C. Yang, P. Shih, and K. Li, A high-performance computational resource broker for grid

computing environments, in Proc. of the 19th Intl. Conf. on Advanced Information Networking

and Applications, Vol. 2., IEEE Computer Society (Washington, DC, USA), pp. 333-336.

32. K. Li, Job scheduling and processor allocation for grid computing on metacomputers, Journal

of Parallel and Distributed Computing 65(11) (2005), pp. 1406-1418.

33. C. Fehling, F. Leymann, R. Mietzner, A Framework for Optimized Distribution of Tenants in

Cloud Applications, in Proc. of the 3rd International Conference on Cloud Computing (Miami,

USA 2010), pp. 252-259.

34. C. Lee, J. Suzuki, A.Vasilakos, Y. Yamamoto, and K. Oba, An evolutionary game theoretic

approach to adaptive and stable application deployment in clouds, In Proc. of the 2nd

Workshop on Bio-inspired Algorithms For Distributed Systems (ACM, New York, NY, 2010),

pp. 29-38.

35. B. Sotomayor, R.S. Montero, I.M. Llorente, and I. Foster, Virtual Infrastructure Management

in Private and Hybrid Clouds, IEEE Internet Computing 13(5) (2009) 14–22.

36. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov,

The eucalyptus opensource cloud-computing system, in Proc. of the 9th IEEE/ACM Intl.

Symposium on Cluster Computing and the Grid-Volume (IEEE Computer Society, 2009), pp.

124–131.

