
ISSN: 1804-2724

This work is licensed under a
Creative Commons Attribution-Noncommercial 3.0 Czech Republic License.
For more information, visit the homepage of the SI journal: http://www.si-journal.org/

1Institute of Architecture of Application Systems, University of Stuttgart, Germany
{wieland, goerlach, schumm, leymann}@iaas.uni-stuttgart.de

2IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

rkhalaf@us.ibm.com

A Classification of BPEL Extensions

Oliver Kopp1, Katharina Görlach1, Dimka Karastoyanova1, Frank Leymann1,
Michael Reiter1, David Schumm1, Mirko Sonntag1, Steve Strauch1, Tobias Unger1,

Matthias Wieland1, Rania Khalaf2

@article{KoppGK+2011,
 author = {Oliver Kopp and Katharina G\"{o}rlach and Dimka Karastoyanova
 and Frank Leymann and Michael Reiter and David Schumm and
 Mirko Sonntag and Steve Strauch and Tobias Unger and
 Matthias Wieland and Rania Khalaf},
 title = {A Classification of {BPEL} Extensions},
 journal = {Journal of Systems Integration},
 year = {2011},
 volume = {4},
 number = {2},
 pages = {3--28},
 issn = {1804-2724},
 publisher = {Czech Society for Systems Integration (CSSI)}
}

:

Institute of Architecture of Application Systems

This is the author’s version. The references are formatted using

the name-year format. In the edited version, the references are

formatted according to ISO-619. The edited version is available at

http://www.si-journal.org/index.php/JSI/article/view/103

http://creativecommons.org/licenses/by-nc/3.0/cz/deed.en
http://creativecommons.org/licenses/by-nc/3.0/cz/deed.en
http://creativecommons.org/licenses/by-nc/3.0/cz/deed.en
http://creativecommons.org/licenses/by-nc/3.0/cz/deed.en
http://www.si-journal.org/
http://www.si-journal.org/
http://www.si-journal.org/
http://creativecommons.org/licenses/by-nc/3.0/cz/deed.en
http://www.si-journal.org/index.php/JSI/article/view/103
http://www.si-journal.org/index.php/JSI/article/view/103
http://www.si-journal.org/index.php/JSI/article/view/103

JOURNAL OF SYSTEMS INTEGRATION 2011/4 1

A Classification of BPEL Extensions

Oliver Kopp, Katharina Görlach, Dimka Karastoyanova, Frank Leymann, Michael Reiter,
David Schumm, Mirko Sonntag, Steve Strauch, Tobias Unger, Matthias Wieland

Institute of Architecture of Application Systems, University of Stuttgart

{lastname}@iaas.uni-stuttgart.de

Rania Khalaf
IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA

rkhalaf@us.ibm.com

Abstract: The Business Process Execution Language (BPEL) has emerged as de-facto standard for
business processes implementation. This language is designed to be extensible for including
additional valuable features in a standardized manner. There are a number of BPEL extensions
available. They are, however, neither classified nor evaluated with respect to their compliance to the
BPEL standard. This article fills this gap by providing a framework for classifying BPEL extensions, a
classification of existing extensions, and a guideline for designing BPEL extensions.

Key words: BPEL Extension, Classification of Extensions, Extension Guidelines

1. Introduction

Originally, the Business Process Execution Language (BPEL) has been designed for the
implementation of business processes using Web service technology. The Web service technology is
the de-facto standard used to implement a service-oriented architecture (SOA, Weerawarana et al.,
2005). Nowadays, BPEL is used for implementing business processes in numerous different
scenarios: for automating scientific simulations, for provisioning software as a service (SaaS)
applications and as exchange format for business processes (i.e., BPEL as description language for
business protocols). The requirements of the usage scenarios differ and the desired functionality is not
always shipped out of the box, i.e., it is not supported using standard language constructs. For
instance, sub-processes are a demand that the BPEL specification (OASIS, 2007) and consequently
standard-conform implementations do not cover. As a result, BPEL is frequently extended for
supporting desired functionality that is not available in standard BPEL. Depending on the particular
purpose, an extension may improve efficiency, increase flexibility, ensure better performance, or add
more functionality. However, an extension also has disadvantages. Firstly, the whole toolset that is
used for business process management (BPM) needs to support the extension. Common components
of this toolset are applications for modeling, adapting, executing, monitoring, and analyzing the
processes. Secondly, if business partners exchange (parts of) their processes, their toolsets need to
understand and support the extensions as well.

In this paper, we provide a classification of existing BPEL extensions and provide guidelines to

develop extensions. This might support a developer to search for existing extensions and to develop a

new extension in case a new one is necessary. Consequently, the paper is structured as follows: Sect.

2 provides the technical background that describes the typical environment for BPEL processes as

well as the associated components and technologies. Sect. 3 introduces a classification framework for

extensions including standard-conformity, distinction between modeling and runtime extensions, as

well as different purposes. Building on this, Sect. 4 presents requirements on extensions to be

standard-conformant to BPEL. Sect. 5 presents approaches to realize a BPEL extension and the

related BPEL environment. Sect. 6 introduces an extension development guideline that helps in the

course of implementing an extension. The classification is applied to 62 existing BPEL extensions in

Sect. 7. The paper finishes with a conclusion in Sect. 6.

A CLASSIFICATION OF BPEL EXTENSIONS

2 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

2. Background

In the following we describe the environment that is common for using workflows (cf. Fig. 1).
Workflows are the implementation of business processes (Leymann & Roller, 2005). The environment
also applies to environments for BPEL processes.

The components in the upper part of the figure represent the modeling part of the environment. It

consists of three components. The process modeling tool is used for the (typically graphical)

specification of process models. The process analysis tool refers to static verification, deadlock

analysis and other checks that can be performed at design time. It is often already integrated in the

process modeling tool. Finally, the process repository serves as a means for efficient storage and

retrieval of process models.

The components in the lower part of Fig. 1 represent the runtime environment. The central

component for runtime is the process engine. At process deployment time, a process model is passed

to this component, which compiles the process model into an internal format and offers the deployed

process as a service to the outside. A so-called navigator, a subcomponent of the process engine,

manages the status of process instances, traverses workflow graphs, triggers activity implementation

execution, and takes care of directing incoming messages to the intended recipients, i.e., to particular

process instances using correlation (Barros et al., 2007). The process engine communicates with

services via the enterprise service bus (ESB; Chappell, 2004). The ESB allows for abstracting from

communication details, such as the used transport protocol and message format. Note that an ESB is

an abstract concept which may be implemented using a specific component (which is generally

referred to as ESB, too) or in other ways, such as embedded into the process engine (cf. Leymann,

2005). The services represent the actual functions that are orchestrated in the workflow. The

monitoring component registers, receives, and analyses execution events that are emitted by the

process engine and the orchestrated services. For example, this component allows tracking the status

of a particular instance of a process.

Process Modeling Workspace

Process
Deployment

Process
Modeling

Tool

Process
Engine

Enterprise Service Bus

Communication

Process
Analysis

Tool

Process
Repository

MonitoringServices

Design Time

Runtime

Fig. 1: Common Environment for Workflows

BPEL is a workflow language for specifying business process behavior based on Web Services

(OASIS, 2007). It provides activities to exchange messages with Web Services and provides control-

flow constructs to order these activities. BPEL requires the interfaces to be specified in WSDL 1.1

(Christensen et al., 2001). It is important that WSDL does not require the messages being exchanged

using SOAP/http. Other bindings, such as SOAP over Java Messaging Service are available, too

(Adams et al, 2010). In BPEL, the connection to partner services is formed by a partner link, which

specifies the port type required, offered, or both. An invoke activity is used to send a message to a

specific operation of a Web Service. In its two-way form, it awaits a reply message back. A receive

activity is used to receive a message by a given operation. A pick activity realizes a one-out-of-many

choice of mutual exclusive incoming messages. A wait activity waits for a specified time or until a

given date is reached. An empty activity does nothing. The scope activity enables fault-correcting

behavior and event-handling. Faults are catched by fault handlers. A completed scope may be

compensated. The compensation behavior is specified by a compensation handler. Event-handlers

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 3

run in parallel to the activities in the scope and handle additional incoming messages and timeouts.

The control-flow itself may be specified using block-structured and graph-based construct, which

makes BPEL a hybrid workflow language (Kopp et al., 2009). The block-based constructs are

sequence, if, while, repeatUntil, forEach, and flow without links. A flow with links enables

modeling of a graph, where control-flow follows the specified links. A detailed summary is provided .by

Leymann & Roller (2006).

The first version of BPEL has been proposed in 2002 as “Business Process Execution Language

for Web Services 1.0” (BPEL4WS). Subsequently, version 1.1 has been released in 2003. Here, minor

corrections and clarifications have been made. This version has been submitted to the Organization

for the Advancement of Structured Information Standards (OASIS). In 2007, OASIS has completed the

standardization process and has published the revised version as WS-BPEL 2.0. Important changes

have been made with respect to the extensibility of the language. For example, designated concepts

such as an extensionActivity element or extensionAttributes have been added (cf. Sect.

4). A detailed comparison of the BPEL versions 1.1 and 2.0 is provided by Schumm (2007). The work

we present in the following focuses on the current language specification WS-BPEL 2.0 (BPEL), and

the extensibility mechanisms specified therein. Where appropriate, we point out properties of

BPEL 1.1.

In order to refer to the components affected by an extension, we present an exemplary architecture

of a BPEL engine. We implemented a prototype of a BPEL engine (called Stuttgart’s Workflow

Machine, SWoM) at our institute
1
. The architecture of SWoM distinguishes all major components

existing in a BPEL engine and thus can be used to illustrate them. The internal architecture of the

SWoM is illustrated in Fig. 2. It consists of four main modules namely Gateway, Process Execution,

Persistence, and Administration. The Gateway deals with Web Service invocations and handles

incoming messages. The Process Execution is responsible for process instance creation and

execution. The Persistence consists of databases for storing auditing events (Audit Database), data

about deployed BPEL process models with appropriate WSDLs and deployment descriptors (Buildtime

Database), and information about process instances (Runtime Database). The Administration contains

an interface and functionality for human users to supervise process execution. The arrows in the figure

indicate communication dependencies. Message queues and topics are used to decouple modules.

Components with a black box at the top expose their functionality as Web service. After giving a short

overview regarding the main modules in the following, we describe their inner structure.

The Administration Interface enables human access to core functionality of the engine. The Import

Export Handler is used to import process models into the engine, to statically validate process models,

and to delete and export uploaded process models. The Process Deployment Manager is responsible

for deployment and undeployment of imported process models. With the help of the Supervision an

administrator can activate or deactivate the auditing of process models. Furthermore, audited events

of process models can be inspected. The Systems Management allows viewing and deleting errors

occurred in the SWoM, forced termination of running process instances and their deletion from the

SWoM as well as user management. The Administration Infrastructure Provider is an interface to

access the databases and to put messages into the Manager topic (indicated by an “MT”).

The Service Provider component exposes deployed process models as Web services. Web service

clients can invoke processes by sending a SOAP message to the engine. In case of a synchronous

request/response operation the Service Provider additionally sends the reply back to the client. The

Invocation Handler is responsible for the invocation of Web services following the blocking

request/response pattern or the unblocking one-way pattern.

The Navigator interprets process model logic, supervises control and data flow, and executes

activity implementations. It makes use of the navigation queue (indicated by an “N”) to send and

receive navigation events. For each invoke activity it puts a Web service invocation message into the

invocation queue (indicated by an “I”) to be performed by the Invocation Handler. In case of a reply

activity it inserts a reply message into the reply queue (indicated by an “R”) to be sent back to the

invoking client by the Service Provider. The Data Manager provides Runtime database access to the

Navigator and caches process models to prevent from extensive Buildtime database accesses during

process execution. Steering of Data Managers can be done over the Manager topic, e.g., to force

process model state changes. The Auditing persistently stores information about the life of a process

for analysis or legal reasons. The Process Instance Creator is used by the Navigator to build new

1 Institute of Architecture of Application Systems (IAAS), http://www.iaas.uni-stuttgart.de/institut/

A CLASSIFICATION OF BPEL EXTENSIONS

4 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

process model instances in the Runtime database. The Correlation Manager correlates incoming and

outgoing messages to corresponding process instances.

Invocation Handler

A
u

d
it

in
g

Correlation
Manager

Process Instance
Creator

Administrator Interface

P
ro

ce
ss

D

ep
lo

ym
en

t M
gr

.

Im
p

o
rt

 E
xp

o
rt

H

an
d

le
r

Sy
st

em
s

M
an

ag
em

en
t

Su
p

er
vi

si
o

n

Audit Database Runtime Database Buildtime Database

MT

R IN

NavigatorNavigatorNavigator

Administration
Infrastructure Provider

Web Service Clients Web Services Administrators
G

at
ew

ay

M
o

d
u

le
P

ro
ce

ss
 E

xe
cu

ti
o

n

M
o

d
u

le

A
d

m
in

is
tr

at
io

n
M

o
d

ul
e

Pe
rs

is
te

n
ce

La

ye
r

Service Provider

Data ManagerData ManagerData Manager

Fig. 2: Architecture of the BPEL Engine SWoM

Extending a process language has profound impact on all components of its supporting

infrastructure, most important on the modeling tool and the process engine. Furthermore, the other

components involved, such as tools for process analysis and monitoring, have to be adapted

accordingly. Our evaluation of current approaches for extending BPEL in Sect. 7 shows that most

extensions cover modeling tool and runtime extensions only.

3. Classification Framework

The follwoing definition defines the term “BPEL extension” and is referred to throughout the paper.

The definition follows the definition of a software extension in the field of computer science (Laemmel

and Ostermann, 2006).

Definition 1: A standard-conform BPEL extension is an enhancement of functionality of the

Web Services Business Process Execution Language specified in the OASIS WSBPEL 2.0

standard by following the extension proceedings defined in the standard. On its own, the

BPEL extension is not useful or functional.

To be standard-conformant, extensions must not contradict the semantics of any element or attribute

defined by the WS-BPEL specification. The concrete guidelines defined in the WS-BPEL 2.0 standard

(OASIS, 2007) are summarized in Sect. 4. The essence of these guidelines is presented in Tab. 1. In

this table we provide a checklist for classifying a given extension with respect to its standard

conformity. The table shows a characteristic, its standard conformity, and an identifier as a shortcut.

The shortcut is used in Sect. 7 as reference for a classification. BPEL 1.1 does not explicitly define an

extension mechanism, but allows for adding elements of other namespaces into the process model.

BPEL 2.0 explicitly specifies the extension mechanism of BPEL. This has impact on the standard-

conformity of an extension. As a consequence, we show the BPEL version in the column “Standard-

conform Language Extension”. In case several characteristics are applicable to an extension, an

extension has to be standard-conformant regarding all characteristics. Tab. 2 provides a classification

into design time and runtime extensions. The runtime components listed in Tab. 2 are components

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 5

illustrated in Fig. 2 which were extended by the extensions presented in Sect. 4. Note that an

extension can be both a design time extension and a runtime extension. “n/a” denotes “not

applicable”. This is the case if an extension is not a BPEL extension the sense of Definition 1. For

instance, in case an extension changes the behavior of an invocation handler only, it is not an

extension in the sense of Definition 1. For a standard-conform runtime extension at least the navigator

has to be extended.
Tab. 1: Standard Conformity

Characteristic
Standard-conformant

Language Extension
Shortcut

New activity without nesting in an extension activity No (2.0) / Yes (1.1) s 1

New construct/element in BPEL namespace No (1.1/2.0) s 2

New attribute in BPEL namespace No (1.1/2.0) s 3

Contradiction with BPEL semantics No (1.1/2.0) s 4

Defining something out of scope of the BPEL specification
(not using <process> as root element, …)

No (1.1/2.0) s 5

No extension declaration specified No (2.0) / Yes (1.1) s 6

New extension activity Yes (2.0) s7

New extension attribute Yes (1.1/2.0) s8

New extension construct/element Yes (2.0) s9

New extension assign operation Yes (2.0) s10

Tab. 2: Extension Type

Extension Type Shortcut

Modeling tool extension

BPEL Extension can be transformed to standard BPEL Modeling M

BPEL Extension cannot be transformed to standard BPEL Modeling M

Modeling tool offers different rendering n/a

Process engine extension

Deployment mechanism extension n/a

Invocation handler extension n/a

Correlation manager extension n/a

Navigator extension Runtime R

Auditing extension n/a

Extensions can be further characterized, independent of their standard-conformity and particular

type. We use the extension purpose, the extension subject, the workflow dimension, and the

placement in the business process management (BPM) life cycle as additional characterizations. The

extension purpose criterion lists different intentions of an extension, such as the improvement of

reusability of processes. The extension subject addresses the language constructs and mechanisms

which are affected by an extension. According to Leymann and Roller (2000) a workflow has three

independent dimensions (IT infrastructure, process logic, and organization). We use these workflow

dimensions as one criterion to characterize an extension. Finally, we use the placement in the BPM

life cycle as criterion. The life cycle starts with modeling a business process. This business process

has then to be refined to an executable process model (IT refinement). Static analysis and verification

makes sure that the process model conforms to given constraints (e.g., freeness of deadlocks).

Subsequently, the process model is deployed on a process engine, where the process is executed. In

the monitoring phase the execution of single processes or process groups is observed. The results of

monitoring are analyzed and may lead to redesign and optimization, which is again conducted in the

modeling phase closing the loop.

These extension characteristics are listed in Tab. 3. We have derived the criteria and appropriate

characteristics from the evaluated extensions (see Sect. 4). This list may be further extended when

discussing novel extensions. The characteristics are sorted alphabetically, except the life cycle

characteristics, which are sorted according to the order in the life cycle. “Occurrence” shows the total

number of extensions matching the respective characteristic

A CLASSIFICATION OF BPEL EXTENSIONS

6 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

Tab. 3: Extension characteristics

Criterion Characteristic Shortcut Occurrence

Purpose Ability to outsource C1.1 3

 Flexibility C1.2 13

 Functionality C1.3 28

 Maintainability C1.4 13

 Performance C1.5 6

 Reusability C1.6 9

 Robustness C1.7 11

 Usability C1.8 12

Subject Control flow C2.1 25

 Data integration C2.2 10

 Expressions/assign statements C2.3 3

 Handling of large data C2.4 2

 Other C2.5 9

 Service binding C2.6 5

 Service invocation C2.7 22

 Variable access C2.8 3

Workflow dimension IT infrastructure C3.1 29

 Process logic C3.2 36

 Organization C3.3 2

Placement in the BPM life cycle Modeling C4.1 47

 IT refinement C4.2 2

 Static analysis/verification C4.3 0

 Deployment C4.4 10

 Execution C4.5 45

 Monitoring C4.6 3

Based on Definition 1, we can exclude particular changes on the BPEL language and give a list of

approaches, which are not a BPEL extension. BPEL offers the possibility to model abstract processes,

which need not to be executable but address different use cases. An abstract process profile specifies

the semantics of an abstract process. It furthermore describes how to get an executable process

starting from the abstract one, called “executable completion”. The BPEL specification itself provides

two profiles: A profile for observable behavior and a profile for process templates. Abstract processes

following the abstract process profile for observable behavior describe the public visible behavior of a

process. Abstract processes following the template profile serve as process templates, where

activities required for execution have to be put in at fixed places. König et al. (2008) introduce the

Abstract Process Profile for Globally Observable Behavior, which enhances the profile for observable

behavior by providing more flexibility for the executable completion. Describing a new Abstract BPEL

process profile is not an extension as it is just a restriction that defines, which constructs are allowed

in a process model.

Approaches that redefine the semantics of existing BPEL constructs are not standard-conform and

thus not an extension in the meaning of Definition 1. The specification does not provide information

about the event model a process engine should support. Hence, a modification or extension of an

existing event model, such as defined by Karastoyanova et al. (2006), is out of scope of the

specification and thus not a BPEL extension.

BPEL itself does not specify any rendering of the process model. Since the rendering is not

standardized, any specific rendering is not a BPEL extension. This includes graphical renderings in

BPMN (Schumm et al., 2009; Weidlich et al., 2008) or a script syntax such as BPELscript (Bischof et

al., 2009).

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 7

4. Requirements for Standard-conform Extensions

In BPEL 2.0, the extensibility of BPEL is standardized. Extensions are declared in the extensions

element. Each extension is associated with a namespace and takes a Boolean attribute

mustUnderstand (OASIS, 2007, Sect. 14). In case the value is set to “yes”, a process engine has to

reject the process model if it does not support the extension. The specification does not state anything

about the modeling tool. A value of “no” denotes that the extension is optional. In case an engine is

not aware of the extension, the each respective extensionActivity is replaced by an empty

activity, extension assignments are ignored, and all other XML attributes and XML elements are

ignored.

The BPEL standard offers following possibilities to extend the language:

- Introduce new activity types, called extensionActivity (OASIS, 2007, Sect. 10.9)

- Include new data manipulation operations (OASIS, 2007, Sect. 8.4)

- Specify individual query and expression languages (OASIS, 2007, Sect. 8.2)

- Allow namespace-qualified attributes and elements from other namespaces (OASIS, 2007,

Sect. 5.3) and apply extension semantics for all BPEL constructs in the syntax sub-tree

(OASIS, 2007, Chapter 14)

The standard requires that an extension does not cause any change to the semantics of a BPEL

process (OASIS, 2007, Sect. 5.3). If an extensionActivity is a start activity or contains a start

activity, the namespace of the extensionActivity child element must be declared as

mustUnderstand="yes" (OASIS, 2007, Sect. 10.4). In the old version of BPEL, namely BPEL 1.1,

an extension is simply made by adding XML attributes and XML elements in another namespace into

the BPEL process. In case a workflow engine is not aware of the namespace, the behavior is not

specified by the BPEL 1.1 specification. This version of the specification does not impose any

restrictions on extensions. The fact that the execution semantics of the extension has to be described

is implicitly required by all versions of the specification.

5. Possibilities to Realize an Extension

We distinguish between two different options for the realization of an extension in terms of Definition 1:

(A1) Extended modeling tool and extended engine and (A2) extended modeling tool and model

transformation.

Extended
Process

Modeling Tool

Extended
Process
Engine

prepare

deploy

BPEL Language Transformation

BPEL Run-time Extension

Additional
Functionality

BPEL Language
Extension

Extended BPEL

Process
Transformation

Tool

Standard
Process
Engine Externalized

Additional
Functionality

deploy invoke

Standard BPEL

A1

A2

A3

Fig. 3: Runtime Extension versus Model Transformation

The first option A1 “BPEL Runtime Extension” is represented by the upper branch in Fig. 3.

Extended BPEL code is created in a modeling tool which supports this kind of extension. The BPEL

code and its extension are deployed onto a process engine that supports the additional functionality.

That means, the process engine has to be modified for this option.

The second option A2 “BPEL Language Transformation” is represented by the lower branch in Fig.

3. Extended BPEL code is created in an extended modeling tool as well. The significant difference to

A1 is the employment of model transformations (Stahl et al., 2006). This technique translates the

extension constructs into standard BPEL language constructs. Standard BPEL code is thereby

A CLASSIFICATION OF BPEL EXTENSIONS

8 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

generated that can be deployed on a process engine that is not aware of any extension. Note that this

paper does not discuss transformations of other business process modeling languages to BPEL. A

discussion of that aspect is given by Stein et al. (2009).

In addition to these two options, there is the possibility to separate the desired functionality in an

external service. In case an extension uses this approach, it is not a valid extension according to

Definition 1. This option A3 “Dedicated Service” is shown in the lower right corner in Fig. 3. The

external service can be invoked from the process engine with standard language constructs. That

means, a language extension is not required per se, but typically provides more comfort. In this

setting, the modeling tool may be extended to support different renderings of the dedicated services or

may be kept as is.

The runtime extension approach (A1) envisages extending both the language (including the

modeling tool) and the execution engine that supports the execution of the new constructs. This may

also require an adaption of the monitoring components, as they may need to distinguish standard and

extended activities and monitor them differently. The consequential changes may reach up to the

dashboard. A prominent example for the runtime approach is the extension BPELJ (Blow et al., 2004),

which extends BPEL with the possibility to use Java code snippets as an activity. The BPEL language

is extended with an according extensionActivity, the modeling tool is extended for support of

entering Java code, and also the process engine is extended for actually executing the Java code.

In the model transformation approach (A2) basically higher level constructs are introduced. This is,

however, only possible if an extension is expressible with a set of standard constructs. For illustrating

this approach we take a fictive BPEL extension, which we call “Delayed Execution”. Listing 1 shows

the code for an invoke activity that uses the “Delayed Execution”, which delays the execution for 3

days and 10 hours counted from the point of the activation of the invoke.

<invoke name="refreshValue" ext:delay="P3DT10H" .../>

Listing 1: Invoke Activity Extended for Delayed Execution

A model transformation tool has to processes all constructs that carry an extension attribute for the

delay. Each identified construct is split up into a wait activity and the actual activity (here: an invoke

activity) that should be executed (cf. Listing 2).

<sequence …>

 <wait name="refreshValueDelay" for="P3DT10H" />

 <invoke name="refreshValue" …/>

</sequence>

Listing 2: Extended Invoke Activity Transformed to Standard Constructs

For some cases, functionality can be externalized as a service (A3). This approach is easy to

implement, offers high reusability (even outside of BPEL processes), and does not hamper portability

of the processes. A major issue is that the require functionality may need the current state of a

process instance such as the state of activities and variable content, which is difficult to pass to the

externalized service. This limits the applicability of this approach. The approach may, for instance, be

applied for extending BPEL with business rules, discussed in Sect. 7.2.1.

When comparing the different extension options A1 and A2, the model transformation approach

(A2) has one significant advantage: Compatibility and thus portability of the process models to another

toolset is preserved. It also has a significant disadvantage: The original activity is replaced by a set of

new activities, variable definitions, and other constructs that do not represent the work that was

actually intended. This circumstance impacts monitoring and debugging instruments that will register

the execution of activities that are not contained in the original process model. To ease monitoring, an

additional transformation step of monitoring information into the former process model format is

required. The transformation approach is, however, not applicable in all cases. If an extension cannot

be expressed with standard constructs, an extension of the engine is inevitable. The advantage of the

runtime extension approach is the holistic and consistent integration of the extension in the modeling

tool and workflow engine. The user gets what he modeled. Moreover, this solution promises the

highest engine performance due to an optimized workflow model (as no additional elements are

generated) and a reduced communication overhead. The disadvantage of the runtime extension

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 9

approach is that it requires a huge development effort. Note that the approaches can be combined: In

case a process engine supports the extension, it can be executed natively. If it does not support the

extension, then a model transformation step needs to take place in advance. The option to externalize

the new functionality into a distinct service that offers the functionality is only possible if the new

functionality does not affect actual engine components, such as the navigator.

6. Extension Development Guideline

If new functionality is required for the development of business processes, one has to balance how

and where to integrate this functionality. This section provides the reader a means at hand to decide

whether a BPEL extension is an adequate solution. For supporting the decision making, we present in

Sect. 6.1 different aspects that should be considered when planning BPEL extensions and give

recommendations how to achieve the planned goal. Due to its high development effort, the runtime

extension approach (A1) should be avoided if possible. If no reason is found for an A1 extension, the

enhanced functionality should be implemented in other ways as described in Sect. 5. For instance, the

enhanced functionality may be realized as Web service called by a workflow, as functionality in the

ESB-infrastructure, as design time extension in the modeling tool, or as transformation. If it turns out

that the A1 approach is needed, there are different possibilities how to implement it. Sect. 6.2

discusses three possibilities: As a commercial solution, as a self-implemented solution based on open

source software, or as a hosted solution.

6.1. Recommendations for the Choice of Extensions

When deciding about the need for an extension, different aspects of the extension have to be thought

of, which we present in the following. We discuss the aspects and give recommendations for design

and implementation of extensions. Note that the considered aspects are arranged in an unordered list.

Implementation of the functionality in other components of the infrastructure The infrastructure

offers components such as an enterprise service bus or application server (cf. Sect. 2). It may be

possible to implement the needed functionality in a component other than the engine. For example,

retrying service invocation or replacing a service with an equivalent service is a typical task for an ESB

(Chappell, 2004; Leymann, 2005). Thus, this functionality is not implemented in the BPEL engine but

in the integration layer. If the functionality can be realized by modifying infrastructure components

other than the engine (e.g., the ESB), we recommend this approach. In case the planned extension

needs to be reflected in the workflow logic, it should be implemented in the workflow engine.

Visibility of the extension in the workflow model required A BPEL extension is visible in the

workflow model if it is explicitly declared as extension and either embedded in an

extensionActivity/extensionAssignOperation element or implemented as an extension

attribute or extension element. This allows identifying usage of the extension easily. In case visibility of

the extension is necessary for process users and/or developers, the extension should be designed

according to the standard mechanism (cf. Sect. 5) using the A1 or A2 approach. If visibility can be

neglected, we recommend the dedicated service solution (A3), which is easier to implement.

Visibility of the extension in the audit trail required Typically, a BPEL engine logs state changes

of activities in the audit trail. The planned extension may need to be accounted for in the audit trail.

When realizing the extension with approach A2, the process model is transformed into a standard

BPEL process model where the extension is not visible anymore. We recommend solving this problem

with a two-directional mapping between the modeling tool extension and the representing standard

BPEL elements. The mapping can be used to conciliate the displayed auditing information and the

process model. It may happen that the backward mapping (transformed model to extended design

time model) is complex or even ambiguous, e.g., in the case a service is used by multiple extensions.

In this case we recommend realizing the extension in the workflow engine (A1).

Detailed internal execution information of the extension in the audit trail required It may be

required to add information beyond standard state changes of an extension activity to the audit trail,

which may be the progress of execution or the selected user for instance. In this case an engine

A CLASSIFICATION OF BPEL EXTENSIONS

10 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

extension is inevitable (A1). Furthermore, the audit trail has to be capable of storing this additional

information and may also need to be extended.

Execution performance importance If the runtime of the extended functionality is a major issue, we

recommend implementing the extension directly in the workflow engine (A1). This solution is

characterized by the possibility of optimized code (compared to A2) and by a reduced communication

overhead (compared to A3).

Based on the decision taken at each aspect, it can be decided whether a BPEL extension is needed.

The decision depends on the concrete problem statement. Thus, a general answer cannot be given

and has to be made on a per-case basis. The different alternatives, their advantages and

shortcomings are presented in Sect. 5. In case the decision is to create a BPEL extension, the next

step is to decide how to realize the extension.

6.2. Solution Possibilities for Implementing a BPEL Extension in a BPEL Engine

After deciding for realizing an extension in the modeling tool and the engine (approach A1 from Sect.5,

the extension has to be implemented both in the modeling tool and in the engine. In case the

approaches A2 or A3, the modeling tool has to be changed to support the extension. The BPEL

engine stays unchanged.

In this section, we describe how extensions can be added to existing systems by providing

concrete examples. The discussion is structured around several key considerations: The level of

extension support in the system and the ability to modify the system itself. Subsequently, we address

the additional issues arising from implementing extensions in hosted BPM systems, e.g., “BPM as a

service”, which is an emerging trend.

The first consideration is whether the system (modeling tool and engine) has some or full support

for extensibility. In the case that it does have support, the developer simply uses the extension support

– provided that it can handle the requirements of the target extension. Examples for this case are the

Eclipse BPEL designer
2
 and the Apache ODE engine, where plug points for extensions are available.

The “Pluggable Framework for Enabling the Execution of Extended BPEL Behavior” (described in

Sect. 7.3.2) also allows for changing the behavior of BPEL and thus offers an alternative way to

extend BPEL engines.

In the case that the system does not have adequate support, one must first enable it. This can only

be done if the source code is accessible and can be modified, which is the case with the Eclipse BPEL

designer and the Apache ODE engine, for instance. Consider a developer having an extension that

introduces data references in BPEL during runtime execution (Wieland et al., 2009). The Eclipse

BPEL Designer nor the Apache ODE engine supports this out of the box. Thus, the support has to be

added to them by a programmer.

In all cases, commercial products are always a solution. Thus, the first decision to make is a make-

or-buy decision (Jäger et al, 2008).

Commercial Solution: With most commercial workflow systems it is not possible to implement BPEL

extensions, because their source code is not available and they do not provide an extension interface.

Thus, only the usage of extensions provided by the vendor is possible. Nevertheless, a custom

development of an extension by the vendor may be triggered.

Open Source Solution: The alternative is to implement a BPEL extension using an open source

workflow engine. Compared to the hosted solution, this approach has the advantage that the

developer has the full control over the development of the extension. Extensions are not restricted to

defined extension points. If the system is running on a private server, execution of the extension can

be observed and the data that is used in the workflow is secure (as long as critical data is not sent to

external services). There are open source workflow engines available that can be used as

development basis. As described in Sections 2 and 5, a modeling tool is also an essential part of the

system and therefore has to be extended accordingly.

One of the goals of the standardization of BPEL has been the removal of all dependencies

between process definition files, their process modeling tool, and the engines running those

2 http://www.eclipse.org/bpel/

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 11

workflows. The modeling tool and the engine can be regarded as loosely coupled as they are

replaceable by other systems that are implementing the BPEL 2.0 standard. This interchangeability

breaks when a new extension activity is introduced. An extension activity typically enhances the set of

BPEL activities and adds dependencies between the process engine and process modeling tool, as

both have to understand how to handle these extension activities. Both systems (engine and modeling

tool) have to care about the syntax of the extensions and the developer has to ensure that both

systems rely on the same version of the extension activity. The engine needs to know what to do

when it reaches the extension activity within a workflow model (semantics) and the modeling tool

needs to know how to visualize, serialize and deserialize the activity to and from XML. Thus, both

systems are not loosely coupled anymore. When creating a new extension activity, the workflow

engine has to be extended via its extension API (if available). In addition, the modeling tool with its

(mostly different) extension API has to be extended independently which leads to two extension

implementations: one for the engine and one for the modeling tool. The developers have to take care

that both versions do not differ in syntax and semantics.

For avoiding double implementation we developed a system design that allows using the same

data model for the Eclipse BPEL Designer and Apache ODE (Fonden, 2009). This approach allows for

implementing an extension by using a single shared Java class. The modeling tool and the engine use

the corresponding parts of this class relevant for them: the modeling tool uses the layouting and XML

serialization parts; the engine uses the execution code and the serialization code. This has the

advantage that less inconsistencies, e.g., in the serialization or naming of the developed extensions,

occur.

Hosted Solution: There is a current trend towards hosted “BPM as a service” systems, which are

“Software as a Service” solutions targeting Business Process Management. As such, they provide a

hosted system (accessible simply with a Web browser) for the end-to-end BPM lifecycle including

design, execution, and monitoring. Additionally, such systems can enable collaboration between

developers and designers. With nothing to install, this lowers the barrier to entry but does require a

continuous connection to the Internet while working. In such systems, additional concerns arise for

providing extensions. Referring back to the previous concerns, a developer has no access to modify

the source and thus one must rely on supported extensibility. Thus, we focus on a concrete BPM as a

service system presented by Curbera et al. (2007). It consists of a visual modeling tool backed by the

Bite workflow runtime (Khalaf et al., 2009) and an extension catalog (Silva-Lepe et al., 2008). This

system supports extensions and also enables collaboration around extension activities: Developers

and designers can use the catalog to download, use, comment on, and rate extensions. The extension

considerations highlighted in this section are the same for Bite and BPEL, because Bite’s control flow

semantics are a subset of BPEL’s.

First, consider how the Bite runtime identifies and executes an extension activity: An extension is

recognized upon encountering an unknown XML element in the process. The engine looks up a

corresponding extension implementation module in an extension registry and associates it with the

parsed activity. An extension implementation module may be written either in Java or in any of a set of

supported scripting languages. When the extension activity is reached and activated in a process

instance, the implementation module is called and handed the XML definition of the activity and

required process instance data. The extension activity may only write data to the activity’s output

variable. It does not have the ability to read or modify process navigational state. Once the

implementation module completes, its output is stored in the output variable of the extension activity

and the activity completes.

The extension enablement considerations for a hosted system include ensuring that the

implementation artifact can reach the runtime, be registered in a catalog for use and looked up by the

runtime and by other designers, and be able to be rendered by the design tool. In the system, a

developer wanting to create an extension must provide basic activity metadata along with code

implementing the extension. The meta-data is used by (a) the modeling tool, in order to provide the

user with a meaningful display of the desired inputs for the extension and (b) the catalog, in order to

provide a description and tags for users browsing the catalog. The implementation module is placed in

a shared repository.

Developers upload the extensions either via a plug-in to their development environment or via a

simple Web form. The extensions become immediately available to logged-in users. Once a user

selects to use an extension activity in a workflow, its implementation module is pulled from the

A CLASSIFICATION OF BPEL EXTENSIONS

12 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

repository, the extension is registered with the engine and the module is bundled with the workflow

application.

One key concern around extensions in a BPM as a service system is that it requires strong policing

of the quality and integrity of the extension implementation code due to the fact that the environment is

shared among many users and that the hosting entity may be liable for malicious extension code and

potentially missed Service Level Agreements. This concern may be addressed by applying trust and

reputation systems such as rating and ranking, third-party certification, and the ability to upload only

by those with explicitly granted privileges.

7. Extensions in Practice

This section lists 62 commercially available extensions and scientifically published extensions. We

apply the classification provided in Sect. 3. An extension may cover only the design time, the design

time and the runtime, or only the runtime environment. The following is structured accordingly and

additionally subdivided into vendor and research extensions.

7.1. Design Time only Extensions

This section presents approaches that make use of the transformation approach (A2) or that invoke

dedicated services in order to integrate additional features (A3). It is also possible to combine both

ways, as shown by Oracle’s extensions presented in the following section.

7.1.1. Design Time only Extensions by Vendors

Oracle’s Human Task (Oracle, 2007) activity is used to integrate human behavior into business

processes (C1.8, C2.7). There are several configuration options, for example to route a task to a

second approver or to execute a number of human tasks in parallel. Tasks can be assigned to

humans by specifying concrete users or user groups. Depending on the chosen configuration human

task activities are realized by scope, assign, invoke, receive, and switch activities. Oracle’s

Process Manager provides a dedicated human task Web service that is called by the invoke activity

(C3.1, A3). A GUI enables the assigned user to handle the task (C4.1). The outcome of the task is

sent back to the process. The extension mechanism used is an extension element that annotates the

activities realizing the human task (s9).

Oracle’s notification service (Oracle, 2007) is a collective term for five different notification

mechanisms, namely email, fax, pager, SMS, and voice messages (C1.8, C2.7). Each is reflected by a

single activity on a component palette in the process modeling tool (C4.1). Configuration of the

activities is type-dependent. For example, the email activity provides parameters for target email

addresses, a subject, and email body. The code underlying a notification activity is BPEL compliant:

the activity is transformed into a scope with input, output, and fault variables, an assign to copy the

user’s parameter values to the input variable, an invoke activity to call a dedicated notification

service, and a fault handler to deal with possibly occurring failures. An extension element annotates

the scope to mark it as notification activity (s9). The appropriate notification service is provided by

Oracle’s Process Manager (C3.1, A3) that routes notifications to particular servers (email server, SMS

server, etc.).

7.1.2. Design Time only Extensions by Research

BPEL4Chor is extending BPEL with a unique ID which is used for identifying message activities and

onMessage branches. Decker et al. (2009) present BPEL4Chor as an extension of BPEL for modeling

choreographies. A choreography describes the message exchange between multiple participants

(Peltz, 2003; C1.1, C4.1). BPEL4Chor uses BPEL to describe the behavior of each participant in a

choreography (C2.1, C3.2). The BPEL4Chor topology lists the participants and the connection

between them in the form of message links. A unique ID is used to identify the activities and

onMessage branches, which are referenced in a message link. The ID is stored in the attribute

wsu:id (s8). The name attribute is not used since it is not possible to put a name attribute on an

onMessage construct. Each participant behavior description is transformed to an abstract BPEL

process following the abstract process profile for observable behavior. This model does not contain

any extensions any more. The model is then manually refined to an executable BPEL process without

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 13

addition of any BPEL4Chor related extensions (C4.2). This makes BPEL4Chor a design time only

extension.

The ID attribute is a general extension where a unique identifier may be put to each element in the

BPEL processes (s8). The identifier is mainly used in modeling, such as for referencing particular

constructs (C1.4, C2.5, C3.2, C4.1). The modeling extension does not need to be understood by the

engine (mustUnderstand="no") since there is no runtime behavior of the identifiers.

BPEL process templates (Karastoyanova, 2006) are abstract, reusable units of BPEL code stored

in a separate XML file (*.template). Usually, a template solves a general, recurring problem that

can be used to avoid process modeling from scratch and reinventing the wheel (C1.2, C1.6).

Templates are abstracted with the help of parameters that hide certain details (e.g., variables, partner

links, port types). At buildtime, parameters can be mapped on concrete values provided by the

process modeler. Templates can be referenced from within BPEL processes by a tRef element in

BPEL namespace (C2.5, s 2). Using such references in templates allows recursive template definition

(C3.2, C4.1). Since processes pointing to templates are not executable, transformation steps need to

be performed in order to make them executable. Template parameters are thereby substituted by

concrete values, template references by the actual template code (A2, C4.4).

“SWRL for BPEL” (Wu et al., 2008) defines how constraints between BPEL activities can be

encoded in the BPEL process using the Semantic Web Rule Language (SWRL). This enables another

way of modeling process models (C1.4, C2.1, C3.2, C4.1). The extended BPEL process is

transformed to a standard-conform process following the given constraints (A2). The extension

declares new extensions elements (s9).

BPEL fragments (Ma et al., 2007) are introduced as modeling construct to enable reuse of process

parts across different processes (C1.6, C2.1, C3.2, C4.1). The approach does not use BPEL’s

extension mechanisms, but declares a new namespace and uses fragment instead of process as

root element (s 5).

BPEL-D (Khalaf and Leymann, 2006) replaces variables by explicit data links in BPEL 1.1 (C2.8,

C3.2, C4.1). In general, there are two ways to propagate data between activities in business

processes: the blackboard approach and explicit data flow (Alonso et al. 2003, p. 266). In the case of

the blackboard approach, variables are used to share data. BPEL implements the blackboard

approach, whereas BPEL-D realizes explicit data flow. Thus, BPEL-D contradicts with the BPEL

semantics (s 4). The motivation of BPEL-D is enabling business process outsourcing (C1.1): A BPEL-

D process is used as input for an algorithm splitting the process into several standards-conform BPEL

processes, which maintain the operational semantics of the intended BPEL-D process (Khalaf, 2008).

Thus, BPEL-D is only used at design time. It is possible to transform one BPEL-D process into one

standard BPEL process reassembling BPEL-D semantics by standard BPEL constructs.

BPEL data transitions (BPEL-DT) extend the BPEL language with data transitions for handling

large amounts of data (Habich et al., 2007; C2.4). This is, for instance, required in ETL (extract,

transform, load data) flows that are based on Web service orchestrations which are realized with

BPEL. Such data intensive service applications can make only limited use of the “by value” semantics

in BPEL, as otherwise massive data sets have to be transferred forth and back to the process engine.

Other ways of specifying data flow are therefore necessary. In standard BPEL, data flow is implicitly

contained by the access of activities to variables and their values, respectively. BPEL-DT seeks to

make data flow explicit by extending the BPEL metamodel with data transitions (i.e.,data links; C1.3,

C1.5, C1.8, C4.1). These links are transformed into an XML mapping specification (A2; MSL, IBM,

2007), which needs to be manually refined (C4.2). The engine then calls additional services to realize

the given mapping specification (A3, C3.1, C4.5). This extension is not implemented in a standard-

conform manner and contradicts the BPEL semantics, since a new kind of links is added (s 4). In

BPEL-D, data-flow is still internal to the process, whereas BPEL-DT externalizes the data flow.

References in BPEL (Wieland et al., 2009) also address handling large amounts of data by

extending BPEL’s data handling mechanism with pointers on data (C1.8, C2.2, C2.4). A BPEL

referenceVariable element in BPEL namespace (s 2) is introduced that specifies variables

containing a reference to externally stored data (C3.2). The attribute referenceType indicates

whether a reference is resolved at scope activation, before each usage, periodically, or on behalf of

an external partner (C2.8). Actual reference resolution is made by an external Reference Resolution

Service (RRS) (C3.1, A3). Since “References in BPEL” is proposed as build time extension, a pre-

deployment step needs to transform extended BPEL files into standard BPEL by replacing reference

A CLASSIFICATION OF BPEL EXTENSIONS

14 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

variables with BPEL variables, inserting partner links and interaction activities (depending on the

reference type) (C4.1, C4.4, A2).

“Activity failure and recovery” is a BPEL extension proposed by Liu et al. (2007) which is intended

to increase the reliability of processes and to relieve process modelers from the complexity of defining

BPEL fault handlers. They therefore introduce four fault tolerance patterns (ignore fault, skip scope,

retry scope, and alternative scope) that can be exploited during modeling of processes to express

reactions on faults (C4.1). The specified patterns are not included in the designed process but are

mapped on scopes by name. Each pattern consists of rules to transform a given process definition

into a process that implements the particular fault tolerance mechanism (e.g., retry a scope a specified

number of times) (C1.7, C2.1, C3.2).

“Activity failure and recovery” is also proposed by Modafferi and Conforti. (2006). Here, an

annotated BPEL process is used as starting point. The annotations include setting variables by

external messages (C1.2, C2.2, C3.2), specifying timeouts for service invocations (C1.7, C2.7, C3.2)

and enabling redoing of an activity (C1.2, C1.3, C3.2). The annotated process is then transformed to a

standard BPEL process (C4.1, A2). The extensions are put in the BPEL namespace (s 2).

xBPEL (Chakraborty et al., 2004) is a BPEL extension for modeling mobile participants in

workflows (C1.2, C1.3). Chakraborty et al. introduce the PerCollab system which executes xBPEL and

allows mobile integration of people into BPEL workflows without constraining the users to their

desktop PC. xBPEL allows modeling communication between people and between a process and

people (C2.1, C3.3, C4.1, C4.5). The extensions are put into the BPEL namespace (s 2). An xBPEL

process is transformed to standard BPEL process (A2) and services of the PerCollab environment

(A3).

7.2. Design Time and Runtime Extensions

This section lists extensions, where the BPEL modeling tool and the BPEL runtime are extended.

7.2.1. Design Time and Runtime Extensions by Vendors

WS-BPEL Extension for People (BPEL4People) enables integration of human-based activities in

BPEL (Agrawal et al., 2007a). This includes the possibility to define people’s activities, people groups,

tasks and notifications (C1.3, C2.1, C3.1, C3.2, C3.3, C4.1, C4.5). BPEL4People is building on WS-

HumanTask (cf. Agrawal, 2007b). WS-HumanTask is used in BPEL4People for the actual

implementation of a people activity. BPEL4People defines the peopleActivity as a basic activity

type which uses human tasks as an implementation (C2.7, s7). The peopleActivity allows

specifying tasks local to a process or use tasks defined outside of the process definition. To use

BPEL4People the modelling tool and the process engine must be extended (A1, A3).

BPEL for Java (BPELJ) combines the programming languages BPEL and Java (Blow et al., 2004).

The intention is to provide a way for integrating pieces of Java code into a BPEL process definition.

The main effect of this extension is a higher convenience when programming a BPEL process (C1.3,

C1.5, C1.8). BPELJ allows using Java code to be included in BPEL process definitions. The according

activity in BPELJ is named snippet. In a snippet, BPEL variables can be manipulated and those

snippets can be used for instance in loop conditions, branching conditions (C2.1) and for variable

initialization as well as variable manipulation (C2.2, C2.3, C2.8). To use BPELJ extended modeling

tools and process engines must be implemented (A1). Since BPELJ allows the modification of

variables in a transition condition, it is not conform to the BPEL execution semantics (s 4).

BPEL-SPE (Kloppmann et al., 2005) is a BPEL 2.0 extension for sub-processes that aims at

increasing legibility and reusability of processes (C1.4, C1.6, C1.8). Sub-processes are BPEL

processes implementing a single request-response operation and are called using a call activity in

BPEL namespace from within the parent process (C2.5, C2.7, C4.1, s 2). The life cycle of sub-

processes is tied to the respective parent process (C1.3, C3.2). For instance, a fault in a sub-process

needs to be propagated to the parent process. This is enforced by coordination messages employed

BPEL engines need to understand (A1, C4.4, C4.5, C4.6). Sub-processes can be defined as

standalone process (C1.1) and inline within a parent process (C3.2). An inline sub-process can access

visible data (i.e.,data of the scope it is defined in) of its parent process and thus omit implementation

details.

The Execution as Subprocess extension (IBM, 2009) is a variant of BPEL-SPE. The goal is to

enable an execution as a subprocess in a declarative way instead of a call activity (C1.3, C2.1,

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 15

C2.7, C3.1, C3.2, C4.1, C4.5). The partner link declaration is extended by the attribute

processTemplate (s8). Here, the name of a BPEL process may be specified. If the execution

engine finds that process at the runtime, the process is directly called by the BPEL engine and the life

cycle of the process is tied to the caller (A1). That means, for example, that a fault on process level of

the called process is communicated to the calling process.

The Collaborative Scopes approach (IBM, 2009) adds support for case handling (van der Aalst et

al., 2004) to BPEL processes (C1.3, C2.1, C3.1, C3.2, C4.5). A new collaborativeScope activity

is introduced (C4.1, s7). Each activity in a collaborative scope may have an exit condition. It is

possible to evaluate the exit condition on start or on completion of an activity, or both. In case the

condition is evaluated at the start, the activity is skipped if the exit condition is met. In case the exit

condition is evaluated at the completion of an activity and the exit condition evaluates to false, the

activity is started again. The extension is included in the modeling tool and realized in the engine (A1).

The Generalized Flow (IBM, 2009) enables control links to connect activities arbitrarily (C1.3, C1.8,

C2.1, C3.2, C4.1, C4.5, s 4). Standard BPEL allows links to form an acyclic graph only. In addition to

arbitrary connections, fault links between two activities are introduced. If the source activity faults, the

target activity is executed. The generalized flow has to consist of one start activity only and only one

control link may be followed at each execution step. The approach requires an engine extension (A1).

ii4BPEL (IBM, 2006) integrates SQL statements into BPEL, connects processes directly to

relational databases, and supports advanced ways of data exchange (C1.3, C1.5, C2.2). IBM

implements ii4BPEL in the WebSphere Integration Developer as a Plugin. Based on BPEL 2.0 IBM

extended the BPEL language and the tooling, e.g., the process engine, the deployment mechanism,

the modeling tool (A1, A2, C3.1, C3.2, C4.1, C4.4, C4.5). Furthermore, a special data middleware is

required (A3). ii4BPEL defines four new activities for data management (s7): SQLSnippet runs an

SQL statement against database tables. retrieveSet load referenced data sets into BPEL-

variables. atomicSQLSequence join SQL snippets and retrieve sets in one activity.

informationServer interacts with the IBM InfoSphere Information Server.

Non-compensatable scopes (IBM, 2009) introduces the attribute compensatable to a scope. In

case the attribute is set to yes, a compensation of the scope leads to a fault (A1, s 4). The feature is

used to improve performance of process execution: In case a scope is marked as non-compensateble,

no snapshots of variables after the completion of the scope are needed (A1, C1.3, C2.5, C3.1, C4.1,

C4.5).

Dedicated Administrator (IBM, 2009) enables the assignment of an administrator to a scope at the

beginning of its life cycle. The administrator may do corrective changes to variables and has full

control over the life cycle of the scope to ensure proper process execution (A1, C1.7, C2.5, C3.1,

C4.1, C4.5, s8).

A microflow (IBM, 2009) is a new execution mode for business processes indicated by

wpc:executionMode="microflow". A microflow is a micro script which is executed in one

transaction to speed up processing (Leymann & Roller, 2000; C1.5, C2.5). Due to the single

transaction, the starting receive is the only receive allowed. Asynchronous invokes are always

allowed, whereas synchronous invokes only in the case of synchronous bindings (C3.1, C4.1, C4.5).

Transaction boundaries (IBM, 2009) enable configuration of the internal behavior of the BPEL

engine with respect to its internal atomic transactions (A1, s 4). The navigator of a BPEL engine

usually starts a new transaction at the beginning of an activity and commits it at the end of the activity.

This execution causes an overhead at the transaction manager. By configuring the transactions to

span multiple activities, this overhead and hence the process execution time can be reduced (C1.5,

C2.5, C3.1, C4.1, C4.5).

The Apache ODE group (2009) proposes eight extensions to facilitate execution of BPEL

processes. The specification of these extensions does not require declaration of the extensions.

Besides adding new activities and attributes, the Apache ODE engine
3
 offers support for XPath 2.0 as

query language and adds new XPath functions reducing the coding effort. For instance, the function

insert-before inserts a node as a sibling before a given node (C1.3, C2.5, C3.2, C4.1, C4.5).

Implicit correlations remove the need to add correlation sets in the case the BPEL process starts

the interaction with a service (Apache ODE group, 2009). By using implicit correlation, a unique

session identifier is generated and put into the message (C1.3, C2.7, C3.1, C4.1, C4.5, s 4). The

response of the service contains the same session identifier. The message router of the engine uses

3 http://ode.apache.org/

A CLASSIFICATION OF BPEL EXTENSIONS

16 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

this identifier to route the message to the correct process instance. A concrete implementation is

available for the SOAP/HTTP binding (A1).

Activity failure and recovery enables configuration of failure handling in the case of an invoke

activity (Apache ODE group, 2009). An example for a failure is an HTTP timeout. Default failure

handling shows faults in the process instance management of Apache ODE and requires manual

intervention. This behavior can be changed by a failureHandling element (s 4). It can be

configured as follows: retryFor specifies the number of retries; retryDelay denotes the time

between each retry; faultOnFailure causes the invoke activity to throw an activityFailure

fault as BPEL standard fault in the case of a failure (A1, C1.7, C2.7, C3.1, C4.1, C4.5).

Headers handling enables the access to header fields in SOAP messages (Apache ODE group,

2009; A1). For that purpose, the attribute header is introduced into the BPEL namespace at the from

and to elements of a copy statement in an assign activity (s 3). In case the attribute is present, the

context node of the XPath statement is set to the specified header element (C1.8, C2.1, C3.2, C4.1,

C4.5). There is no explicit possibility to check for presence or absence of header fields.

The iterable forEach adds the element sequenceValue to the BPEL namespace below a BPEL

forEach (Apache ODE group, 2009; A1, s 3). If the element is present, the forEach iterates on all

elements contained in the given xsd:sequence element instead of using start and final counter value

(C1.3, C2.1, C3.2, C4.1, C4.5, s 4).

The auto complete copy destination enables the attribute insertMissingToData in a to

statement copy statement in an assign activity (Apache ODE group, 2009; s 3). If set to yes, the

path to the element given in to element of a copy statement is automatically generated (C1.3, C1.4,

C2.1, C3.2, C4.1, C4.5). For example, if New York is assigned to $customer/address/city, but

the variable $customer is empty, the parent elements address and city are automatically

generated.

To enable ignoring unavailable data the two attributes ignoreMissingFromData and

ignoreUninitializedFromVariable are introduced to the copy statement of the assign

activity (Apache ODE group, 2009; s 3). In the case of ignoreMissingFromData and a from-spec

returning no XML information items, the selectionFailure fault is suppressed and no assignment

done. In case of ignoreUninitializedFromVariable and the usage of an uninitialized variable

in the from-spec, the uninitializedVariable fault is suppressed and no assignment is done (A1,

C1.3, C1.4, C2.1, C3.2, C4.1, C4.5).

Process contexts are key value pairs allowing metadata in sent and received messages to be

stored and accessed in processes (C1.3, C1.4, C2.1, C2.2, C3.2, C4.1). The contexts can be used in

assign activities and in invoke activities (A1, s 4). Developers have to provide Java code to copy

SOAP header information from and to context objects in Apache ODE. The Java code compiled and

stored in the engine. The functionality is activated using properties-files and deploy.xml.

Resource-oriented BPEL is an approach to add support for providing and using REST services in

BPEL. The Apache ODE group and Overdick (2003) propose to add special REST attributes to the

invoke activity, the receive activity and the event handler (C1.3, C1.4, C1.8, C2.1). That way,

RESTful services are directly supported by BPEL instead of using a special HTTP binding in WSDL.

BPEL for REST is an approach shown in Pautasso (2008). Four activities (get, put, post, and

delete) are used to invoke REST services (s 2, s 4). RESTful resources can be offered via onGet,

onPut, onPost, and onDelete handler (A1, C1.3, C2.1, C2.6, C3.1, C4.1, C4.5).

Continue on error (IBM, 2009) offers a similar behavior as activity failure and recovery. Each invoke

activity gets the attribute continueOnError (s8). A human task for an administrator is generated in

the case the invoke activity encounters a communication failure and the value of the attribute is yes.

The assigned administrator is then privileged to do corrective actions. In the case of a no, the failure is

converted into a fault and thrown into the BPEL process (C1.7, C2.7, C3.1, C4.1, C4.5).

7.2.2. Design Time and Runtime Extensions by Research

Retry scopes (Eberle et al., 2009) extend BPEL with scope retrying behavior (C1.3, C1.7, C2.1, C3.2,

C4.1, C4.5). The idea is similar to the idea presented by Liu et al. (2007). In Eberle et al. (2009), the

issue of retrying is solved with an explicit restart activity and without an à priori rewriting step (A1,

s 4). The restart activity may only be used in a fault handler and restarts the respective scope. By

using an explicit activity, explicit repair behavior may be executed before restarting the scope.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 17

BPEL/SQL (Vrhovnik et al, 2007) is a generic term for approaches to integrate SQL statements into

BPEL with the aim to connect workflow engines directly to relational databases. Vrhovnik et al. (2008)

have presented an overview of BPEL/SQL implementations, which all share the properties of ii4BPEL

described in Sect. 4.2.1: A1, A2, A3, C1.3, C1.5, C2.2, C3.1, C3.2, C4.1, C4.4, C4.5, s7.

Parameterized processes (Karastoyanova, 2006) is an extension that decouples BPEL’s interaction

activities from concrete port types and operations to improve reusability of (parts of) workflows (C1.6)

and flexibility of selecting arbitrary services at runtime (C1.2). The new element evaluate is inserted

under BPEL namespace into message sending activities to override the specified port type/operation

pairs (C3.2, C4.1, s 2). The “evaluate” concept enables several strategies to provide an activity with a

concrete port type/operation (static, prompt the user, query, and from variable) (C4.5, C4.6). The

approach allows determining the interface of the service to invoke at runtime, taking different

interfaces for different process instances, or handling faulty Web service invocations by default port

type/operation pairs (C1.7, C2.7). In conjunction with the “evaluate” extension the find_bind

element is introduced (in BPEL namespace) which can be used in message sending activities (C3.2,

C4.1 s 2). It enables a deployment-independent specification of service selection policies even at

runtime (C4.4), the runtime modification of such policies even for single process instances (C132) as

well as a process instance repair if the service selection fails (C2.6). The parameterized processes

approach extends both design time and runtime environments (A1).

Cross-process fault handling and transaction handling (Kopp et al., 2009) enables grouping

arbitrary activities of different participating processes together to form a logical transaction unit called

choreography sphere (C1.3, C1.7, C2.1, C4.1). The grouping and additional handlers are specified

outside the BPEL processes in the choreography. To execute the choreography sphere, an additional

coordination infrastructure is needed (C3.1). Thus, the runtime semantics of BPEL is changed (C3.2,

C4.5, s 4).

The E4X extension for BPEL (van Lessen et al., 2009) enables the usage of ECMAScript for XML

(E4X; International Organization for Standardization, 2006) instead of XSLT and XPath in the case of

variable manipulation. E4X extends JavaScript with support for XML-based data manipulation (C1.4,

C2.3, C3.2, C4.1, C4.5). The extension defines an extensionAssignOperation and an

extensionActivity, where JavaScript code may be used (s7, s10).

Context4BPEL (Wieland et al., 2007) allows the definition of context-aware workflows (C1.3). Such

workflows may be used to create context-aware applications or to apply workflow technology in

manufacturing production processes, for example (C4.6). Context4BPEL provides several extensions

in a c4b namespace to implement three concepts for explicitly making use of context information from

within workflows. First, the workflow can handle context events by particular activities that register

(c4b:registerSpatialEvent), deregister (c4b:deregisterSpatialEvent) and update

(c4b:updateSpatialEvent) events (C2.1, C2.7, C3.2, s9). Context events can be received by any

incoming message activity with certain message types. Second, context data can be queried by a

c4b:queryContext activity that stores the result of the request in a variable with well-defined type.

Third, transition conditions can be evaluated based on workflow internal or external context data

(C2.2, C2.3). New XPath functions are specified that facilitate dealing with context information, e.g.,

the c4b:within(area, location) function. Context4BPEL extends both design and runtime

environment (C4.1, C4.5, A1).

BPEL4Grid (Dörnemann et al., 2007) combines workflow and grid technology. The extensions help

to invoke stateful Grid services (C1.3, C1.4, C2.2, C2.7, C3.1, C3.2, C4.1, C4.5). BPEL4Grid defines

three new activities: GridInvoke, GridCreateResourceInvoke,

GridDestroyResourceInvoke. Since BPEL4Grid introduces an additional way to communicate

with services, it is not standards compliant (s 2). BPEL4Grid includes an extended modeling tool and

an extended process engine (A1). A similar approach is presented by Zhang et al. (2008) where a

GrsService activity is used to call a stateful Grid service.

BPEL
light

 (Nitzsche et al., 2007a) is an extension of BPEL 2.0 that decouples process logic from

WSDL 1.1 interface definitions to improve reusability of process models and to enable workflow

modeling without WSDL knowledge (C1.2, C1.6, C1.8, C4.1). BPEL
light

 introduces a novel interaction

model with the help of BPEL’s extension activity mechanism (C1.3, C3.2, C4.5): The WSDL-less

bl:interactionActivity emulates the behavior of receive, reply, and invoke activities

(C2.7). WSDL-less bl:pick and bl:eventHandlers replace their BPEL counterparts. BPEL’s

partner link concept is split to BPEL
light

 bl:partners, containers for partner endpoint references

(EPRs), and bl:conversations, message exchanges that can involve several messages and

A CLASSIFICATION OF BPEL EXTENSIONS

18 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

partners (s 4 – contradicts BPEL’s communication paradigm). Interaction activities can be arbitrarily

bound to synchronous or asynchronous services (C1.2, C2.6, C4.4). BPEL
light

 results in an extension

of design time and runtime environment (A1).

BPEL for Semantic Web Services (BPEL4SWS) by Nitzsche et al. (2007b) proposes WSDL-less

BPEL by removing these artifacts and thereby increasing the flexibility of business processes. In

contrast to BPEL
light

, BPEL4SWS uses semantic web technology, whereas BPEL
light

 uses straight-

forward communication paradigms. BPEL4SWS uses a set of composable standards and

specifications and is independent of any Semantic Web Service framework. It can be used to

compose Semantic Web Services, traditional Web Services and a mix of them (A1, s 4, C1.2, C1.3,

C1.6, C1.8, C2.6, C2.7, C3.2, C4.1, C4.4, C4.5).

OWL for BPEL integrates semantics in the form of OWL to BPEL (Le et al., 2009). Messaging

activities are replaced by generic ontcaf:service element, which directly specifies its input and

output data formats (s 4). The integrated OWL information is used to find a matching service for each

specified service (A1, C1.2, C2.1, C3.1, C4.1, C4.5).

WS-BPEL Extensions for Versioning (Juric et al., 2009) addresses the problem of versioning BPEL

processes and partner links (C1.4, C2.5, C3.1). The extension introduces new activities such as

versionHandlers and adds attributes to existing activities such as invoke, receive, import, or

onMessage in the BPEL namespace (s 2). It also extends the partner links concept at different levels

of versioning. To use BPEL for Versioning the modeling tool, the process engine and the deployment

mechanism must be upgraded (A1, C4.4).

“BPEL for pervasive computing” (Hackmann et al., 2007) introduces a multicast and

publish/subscribe mechanism in BPEL 1.1 (C1.3). The aim is to make BPEL usable in pervasive and

mobile computing scenarios where peers can enter or leave the network at any time and hence the

number of message recipients is unknown at design time (C1.8). A new ext:partnerGroup

construct works as list of endpoint references (EPRs). Management of this list is realized by ext:add

and ext:remove activities to insert or delete EPRs, respectively. The ext:reply activity can exploit

a partner group to send messages to all contained partners, eventually realizing a multicast (C2.7,

C3.2, C4.1, C4.5). Since several partners communicate with the process over one and the same

partner link, there is a need to explicitly unbind a partner link (ext:unbind activity) and close its

connection (ext:close activity) (s 4 – contradicts BPEL’s communication paradigm). The approach

requires a design time and runtime extension (A1).

T-BPEL (Tai et al, 2004) stands for “Transactional BPEL” and allows for attaching transaction

requirements to a BPEL process and transaction capabilities to Web services. This enables a BPEL

process to initiate distributed atomic transactions as well as compensation based transactions

(C1.3,C2.7,C3.1,C4.1,C4.5). The extension is fully BPEL 1.1 compliant as it uses a separate

namespace for its attributes (s8) and does not change the behavior of the BPEL engine.

7.3. Runtime only Extensions

In the case of a runtime only extension, the process model itself stays unchanged but other artifacts

are touched, e.g., the deployment descriptor is modified. Runtime only approaches are not an

extension in terms of Definition 1. We show them to emphasize the difference between a language

extension and other forms of modifications and use the term “extension” for consistency with the

terminology of the workflow community.

Runtime only extensions involve particular new components, but they have no impact on the

modeling tool. It is possible, however, that such an extension offers other modeling tools for their

particular purpose, different from BPEL modeling tools.

7.3.1. Runtime only Extensions by Vendors

“Business rules integration” is presented in Oracle (2006). Here, a business rule engine can be used

within a BPEL process by using the invoke activity which calls a dedicated service (A3) for

processing business rules (C1.2, C1.4, C1.6, C2.1, C3.2, C4.1, C4.5). This service interacts with a

rules engine, which again is integrated with a rule authoring tool and a rules repository. For evaluation

of a rule all required parameters are passed in the actual service call. The result of the business rule

service invocation can then be used in further processing, e.g., as transitionCondition on a

control link.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 19

7.3.2. Runtime only Extensions by Research

BPEL’n’Aspects (Karastoyanova and Leymann, 2009) is an approach of applying the aspect-oriented

programming (AOP) paradigm (Kiczales, 1997) to BPEL processes to facilitate adaptations of running

service compositions (C1.2). It enables to insert (or weave) aspects into processes without touching

these processes themselves. Aspects are described by WS-Policy (Vedamuthu et. al, 2007a). They

contain a pointcut (i.e.,the place in the process to weave the aspect in) and an advice (i.e.,the

functionality to weave in). Possible pointcuts are described by joinpoints that can currently be activities

and transition conditions. In BPEL’n’Aspects, an advice is always a Web service invocation (C2.7).

There are three advice types that denote whether the invocation ought to be carried out before,

instead, or after a BPEL construct. Aspects are weaved into processes with the help of the WS-Policy

Attachment mechanism (Vedamuthu et al., 2007b). BPEL’n’Aspects enables to insert aspects into

single process instances, process instance groups, or all process instances of a process model (C1.4,

C1.6, C3.2). The actual weaving can be done at runtime by the BPEL engine itself or by an external

component (i.e.,the weaver) on basis of appropriate events created during workflow execution (C4.5).

Since the engine itself is not aware of the executed aspects, the auditing needs to be extended in

order to provide compensation capabilities.

AO4BPEL (Charfi and Mezini, 2004) is an approach similar to BPEL’n’Aspects, but enables BPEL

snippets to be weaved into (running) processes (C1.2, C1.4, C1.6). Aspects are expressed as BPEL

extension in BPEL namespace with an aspect element (s 2, s 4). Pointcuts are XPath expressions

contained in a pointcut element. Each BPEL activity is thereby a possible joinpoint (C3.2). Advices

are BPEL snippets nested in an advice element (C2.1, C2.7). An AO4BPEL implementation foresees

an extended aspect-aware BPEL process engine and an aspect manager which execute activated

aspects (C4.5).

A variant of activity failure and recovery is presented in Juhnke et al. (2009) and Wen et al. (2006).

They propose to change the way of service invocation to support handling of unavailable services by

retrying invocation or replacing the called service (C1.7, C2.7, C3.1, C4.5). Both assume that the

service is idempotent and that each operation implements an in/out operation. Both add a new

deployment artifact which specifies a policy for handling a network fault.

A second variant of activity and failure recovery is presented in Kareliotis et al. (2007). There, a

transformation of a BPEL process is proposed. Each invoke in the input BPEL process is surrounded

by a fault handler. In the case of a transportation fault, a service registry is invoked. The registry

returns compatible services (C1.7, C2.7, C3.1, C4.5). Each service of the list is tried to be invoked

subsequently until an invocation succeeds. The original BPEL process does not need to be modified.

The generated BPEL process requires a service registry. Thus, we treat the extension as a runtime

only extension, although the behavior of the transformed BPEL process does not rely on an extended

BPEL engine.

SH-BPEL is a variant of “activity failure and recovery” (Modafferi, Mussi, Pernici, 2006) shows an

enhancement of the invocation handler of a BPEL engine to support failure handling in the engine.

Such failure handling includes replacing a service or to trigger human involvement. This extension is

not an extension in our sense, since the runtime of BPEL is changed without any change of the BPEL

process (C1.7, C2.7, C3.1, C4.5).

“Extended WS-RM” (Charfi et al., 2009) also deals with reliability. In their case, they extend WS-

Reliable Messaging (WS-RM; OASIS, 2004) to support multi-party conversations specified in BPEL

(C1.3, C2.7, C3.1, C4.5). WS-RM is a standard used to realize reliable messaging requirements on a

SOAP level (Weerawarana, 2005). The extension is implemented in the invocation handler. The

behavior of the invocation handler is configured by the deployment descriptor.

The “Pluggable Framework for Enabling the Execution of Extended BPEL Behavior” (Khalaf et al.,

2008) offers a systematic mechanism to instrument BPEL engines so that behavior can be injected

into a process (C1.2, C2.1, C2.2). The framework is based on a generic event model which can be

mapped to lifecycle events of particular BPEL engine. These events are forwarded to a custom

controller (C3.1), which can execute arbitrary behavior (e.g., require by an extension). The event may

be a ‘blocking event’, in which case navigation is suspended on the respective path in the process

until it receives an unblocking notification from the controller. Data in this notification may potentially

affect how the navigation in the process proceeds. The additional behavior is effective during the

execution of a process (C4.5).

A CLASSIFICATION OF BPEL EXTENSIONS

20 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

“A Management Framework for WS-BPEL” (van Lessen et al., 2008) has the same aim as the

pluggable framework (C1.2, C2.1, C2.2, C3.1, C4.5). In contrast to rely on events, it renders the

activities of the BPEL process as resources and thus offers a uniform access scheme.

“Business Rules Integration in BPEL” (Rosenberg and Dustdar, 2005) makes use of interceptors to

trigger business rule checks. Interceptors can be attached before or after message sending/receiving

activities. This mapping of interceptors on BPEL activities is provided by the person who models the

process. That way, business rule definitions are separated from process logic (C1.2, C1.4, C1.8). An

extended enterprise service bus (ESB) interprets the mapping and executes the business rules (C4.5).

Negative evaluated rules cause the respective activity to be skipped (C2.1, C3.2). A transformation

engine for message mediation and a rule broker allow the integration of different rule engines.

7.4. Summary

We discussed a huge variety of extensions addressing different aspects of the BPEL environment

(Figures 1 and 2). Tab. 4 presents an overview of the extensions discussed including a

characterization in terms of the criteria introduced in Sect. 3. The table has six columns: The column

extension lists the name of the extension; Extd (Language Extended) states whether the BPEL

language has been extended with any new construct; Conform states whether the extension is

conform to Definition 1 using the standard conformity shortcuts of Tab. 1; A (Approach) lists the

approaches that were applied (cf. Sect. 5); Type lists D or R denoting the type of the extension: D

stands for a design time extension, R stands for a runtime extension; Characteristics lists the

characteristics of the extension (referring to Tab. 3).

Our classification is based on a literature study. We did not interview the extensions authors to find

out the thoughts behind their extension design. We assume that all the authors fulfilled their goals as

their extensions are available. When the authors followed our extension development guidelines

presented in Sect. 6, they would have possible chosen another way. For instance, for enabling a retry

of failed calls, the invocation handler could be modified.

Tab. 4: Extension Overview

Extension Extd Conform A Type Characteristics

A Management Framework for WS-
BPEL (van Lessen et al., 2008)

No n/a n/a R C1.2, C2.1, C2.2, C3.1,
C4.5

Activity failure and recovery
(Apache ODE group, 2009)

Yes No (s 4) A1 D, R C1.7, C2.7, C3.1, C4.1,
C4.5

“Activity failure and recovery”
(Juhnke et al., 2009; Wen et al.,
2006)

No n/a n/a R C1.7, C2.7, C3.1, C4.5

“Activity failure and recovery”
(Kareliotis et al., 2007)

No n/a n/a R C1.7, C2.7, C3.1, C4.5

“Activity failure and recovery” (Liu et
al., 2007)

No n/a n/a D C1.7, C2.1, C3.2, C4.1

“Activity failure and recovery”
(Modafferi & Conforti, 2006)

Yes No (s 2) A2 D C1.2, C1.3, C2.2, C3.2,
C4.1

AO4BPEL
(Charfi and Mezini, 2004)

Yes No (s 2,

s 4)

n/a R C1.2, C1.4, C1.6, C2.1,
C2.7, C3.2, C4.5

Auto complete copy destination
(Apache ODE group, 2009)

Yes No (s 3,

s 4)

A1 D, R C1.3, C1.4, C2.1, C3.2,
C4.1, C4.5

“BPEL for Pervasive Computing”
(Hackmann et al., 2007)

Yes No (s 4) D, R C1.3, C1.8, C2.7, C3.2,
C4.1, C4.5

BPEL for REST (Pautasso, 2008) Yes No (s 2,

s 4)

A1 D, R C1.3, C2.1, C2.6, C3.1,
C4.1, C4.5

BPEL fragments
(Ma et al. 2009)

Yes No (s 5) D C1.6, C2.1, C3.2, C4.1

BPEL process templates
(Karastoyanova, 2006)

Yes No (s 2) n/a D C1.2, C1.6, C2.5, C3.2,
C4.1, C4.4

BPEL/SQL (Vrhovnik et al, 2007) Yes Yes (s7) A1,
A2, A3

D, R C1.3, C1.5, C2.2, C3.1,
C3.2, C4.1, C4.4, C4.5

BPEL’n’Aspects
(Karastoyanova and Leymann,
2009)

No n/a n/a R C1.2, C1.4, C1.6, C2.7,
C3.2, C4.5

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 21

Extension Extd Conform A Type Characteristics

BPEL4Chor (Decker et al., 2009) Yes Yes (s8) A2 D C1.1, C2.1, C3.2, C4.1,
C4.2

BPEL4Grid (Dörnemann et al., 2007
and Zhang et al., 2008)

Yes No (s 2) A1 D, R C1.3, C1.4, C2.2, C2.7,
C3.1, C3.2, C4.1, C4.5

BPEL4People (Agrawal et al.,
2007a)

Yes Yes (s7) A1, A3 D, R C1.3, C2.1, C2.7, C3.1,
C3.2, C3.3, C4.1, C4.5

BPEL4SWS (Nitzsche et al., 2007b) Yes No (s 4) A1 D, R C1.2, C1.3, C1.6, C1.8,
C2.6, C2.7, C3.2, C4.1,
C4.4, C4.5

BPEL-D (Khalaf and Leymann,
2006)

Yes No (s 4) n/a D C1.1, C2.8, C3.2, C4.1

BPEL data transitions (BPEL-DT;
Habich et al., 2007)

Yes No (s 4) A2, A3 D, R C1.3, C1.5, C1.8, C2.4,
C3.1, C4.1, C4.2, C4.5

BPELJ (Blow et al., 2004) Yes No (s 4) A1 D, R C1.3, C1.5, C1.8, C2.1,
C2.2, C2.3, C2.8, C3.2,
C4.1, C4.5

BPEL
light

(Nitzsche et al., 2007a)
Yes No (s 4) A1 D, R C1.2, C1.3, C1.6, C1.8,

C2.6, C2.7, C3.2, C4.1,
C4.4, C4.5

BPEL-SPE
(Kloppmann et al., 2005)

Yes No (s 2) A1 D, R C1.1, C1.3, C1.4, C1.6,
C1.8, C2.5, C2.7, C3.2,
C4.1, C4.4, C4.5, C4.6

Business Rules Integration in BPEL
(Rosenberg and Dustdar, 2005)

No n/a n/a R C1.2, C1.4, C1.8, C2.1,
C3.2, C4.4, C4.5

Business Rules Integration (Oracle,
2006)

No n/a A3 R C1.2, C1.4, C1.6, C2.1,
C3.2, C4.1, C4.5

Collaborative Scopes (IBM, 2009) Yes Yes A1 D, R C1.3, C2.1, C3.1, C3.2,
C4.1, C4.5

Continue on error (IBM, 2009) Yes Yes (s8) A1 D,R C1.7, C2.7, C3.1, C4.1,
C4.5

Context4BPEL
(Wieland et al., 2007)

Yes Yes (s9) A1 D, R C1.3, C2.1, C2.2, C2.3,
C2.7, C3.2, C4.1, C4.5,
C4.6

Cross-process fault handling (Kopp
et al., 2009)

No No (s 4) n/a D, R C1.3, C1.7, C2.1, C3.1,
C3.2, C4.1, C4.5

Dedicated Administrator (IBM,
2009)

Yes Yes (s8) A1 D, R C1.7, C2.5, C3.1, C4.1,
C4.5

E4X extension for BPEL (van
Lessen et al., 2009)

Yes Yes (s7,
s10)

A1 D, R C1.4, C2.3, C3.2, C4.1,
C4.5

Execution as Subprocess (IBM,
2009)

Yes Yes (s8) A1 D, R C1.3, C2.1, C2.7, C3.1,
C3.2, C4.1, C4.5

Extended WS-RM” (Charfi et al.,
2009)

No n/a n/a n/a C1.3, C2.7, C3.1, C4.5

Generalized Flow (IBM, 2009) Yes No (s 4) A1 D, R C1.3, C1.8, C2.1, C3.2,
C4.1, C4.5

Headers handling (Apache ODE
group, 2009)

Yes No (s 3) A1 D, R C1.8, C2.1, C3.2, C4.1,
C4.5

id attribute Yes Yes n/a D C1.4, C2.5, C3.2, C4.1

Ignore unavailable data (Apache
ODE group, 2009)

Yes No (s 3,

s 4)

A1 D, R C1.3, C1.4, C2.1, C3.2,
C4.1, C4.5

ii4BPEL (IBM, 2006) Yes Yes (s7) A1,
A2, A3

D, R C1.3, C1.5, C2.2, C3.1,
C3.2, C4.1, C4.4, C4.5

Implicit correlations (Apache ODE
group, 2009)

Yes No (s 4) A1 D, R C1.3, C2.7, C3.1, C4.1,
C4.5

Iterable forEach (Apache ODE
group, 2009)

Yes No (s 3,

s 4)

A1 D, R C1.3, C2.1, C3.2, C4.1,
C4.5

Java Snippets (IBM, 2009) Yes Yes A1 D, R

 “Retry or alternative service”
(Juhnke et al., 2009 and Wen et al.,
2006)

No n/a R C1.7, C2.6, C2.7, C3.1,
C4.4, C4.5

Microflows (IBM, 2009) Yes Yes A1 D, R C1.5, C2.5, C3.1, C4.1,
C4.5

New XPath functions, e.g., Apache
ODE group (2009)

No Yes D, R C1.3, C2.5, C3.2, C4.1,
C4.5

A CLASSIFICATION OF BPEL EXTENSIONS

22 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

Extension Extd Conform A Type Characteristics

Non-compensatable scopes (IBM,
2009)

Yes No (s 4) A1 D, R C1.3, C2.5, C3.1, C4.1,
C4.5

Oracle Human Task
(Oracle, 2007)

Yes Yes (s9) A3 D C1.8, C2.7, C3.1, C4.1

Oracle Notification Service
(Oracle, 2007)

Yes Yes (s9) A3 D C1.8, C2.7, C3.1, C4.1

“OWL for BPEL”
(Le et al., 2009)

Yes No (s 4) A1 D, R C1.2, C2.1, C3.1, C4.1,
C4.5

Parameterized Processes
(Karastoyanova, 2006)

Yes No (s 2) A1 D, R C1.2, C1.6, C1.7, C2.6,
C2.7, C3.2, C4.1, C4.4,
C4.5, C4.6

Pluggable Framwork for Enabling
the Execution of Extended BPEL
Behavior (Khalaf et al., 2007)

No n/a n/a R C1.2, C2.1, C2.2, C3.1,
C4.5

Process context (Apache ODE
group, 2009)

Yes No (s 4) A1 D, R C1.3, C1.4, C2.1, C2.2,
C3.2, C4.1

References in BPEL
(Wieland et al., 2009)

Yes No (s 2) A2, A3 D C1.8, C2.2, C2.8, C2.4,
C3.1, C3.2, C4.1, C4.4

Resource-oriented BPEL (Apache
ODE group, 2009; Overdick, 2003)

Yes No (s 4) A1 D,R

Retry Scopes (Eberle et al., 2009) Yes No (s 4) A1 D, R C1.3, C1.7, C2.1, C3.2,
C4.1, C4.5

SH-BPEL (Modafferi & Mussi &
Pernici, 2006)

No n/a n/a R C1.7, C2.7, C3.1, C4.5

SWRL for BPEL (Wu et al., 2008) Yes Yes (s9) A2 D C1.4, C2.1, C3.2, C4.1

T-BPEL (Tai et al, 2004) Yes Yes (s8) A2 D, R C1.3,C2.7,C3.1,C4.1,C4.
5

Transaction boundaries (IBM, 2009) Yes No (s 4) A1 D, R C1.5, C2.5, C3.1, C4.1,
C4.5

WS-BPEL extension for versioning
(Juric et al., 2009)

Yes No (s 2) A1 D, R C1.4, C2.5, C3.1

xBPEL (Chakraborty et al, 2004)

Yes No (s 2) A2, A3 D C1.2, C1.3, C2.1, C3.3,
C4.1, C4.5

8. Conclusions

BPEL extensions are omnipresent in research and industry, but no comparison or classification was

available, neither there are best practices and recommendations for design and implementation of

extensions. The only related research is a solution for architectural decision points (Zimmermann et

al., 2009), but there are no decision points defined specially for BPEL extensions, yet. Balko et al.

(2009) regard extensibility as a property of a process model to be adaptable. This is in contrast to our

definition, which regards the extensibility of the modeling language itself.

The main contribution of this paper is a comprehensive framework for understanding and

classifying BPEL extensions, and a recommendation for developing BPEL extensions properly. For

providing that knowledge, first the classification for BPEL extensions is given and based on that an

overview of the state of the art of BPEL extensions is given. Furthermore as practical advice we give a

design guideline that raises different questions for deciding wether a BPEL extension has to be

implemented or the functionality can be realized in another way.

Interesting to note is that only around half of the discussed extensions are standard-conform BPEL

extensions in terms of Definition 1. Standard-conform extensions have their advantage in being

portable and re-usable across different BPEL environments. Needless to say, non-conforming

extensions also have their justification. Thus, if an extension is not conforming to the BPEL standard, it

does not imply that it is of no use or that it is realized in a wrong way. As we have shown, valid

extensions to BPEL can include anything ranging from new attributes to new elements, to extended

assign operations up to completely new activities. We have also shown that missing functionality can

be implemented in different ways, for instance using standard language constructs or introducing

extension attributes or extension activities. However, when talking about extensions, one has to be

aware that the ways of extending BPEL foreseen in the specification are limited.

The presented discussion on possibilities to realize an extension remains valid in context of the

Business Process Model and Notation (BPMN) language. As part of our future work, we will classify

BPMN extensions according to the presented classification framework.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 23

Acknowledgements

The work published in this paper was partially funded by the COMPAS project (contract no. FP7-
215175) and the ALLOW project (contract no. FP7-213339) under the EU 7

th
 Framework Programme

Information and Communication Technologies Objective, the DFG Cluster of Excellence Simulation
Technology (EXC310), the DFG project Nexus (SFB627), and the S-Cube project under the Network
of Excellence (contract no. FP7-215483).

References

van der Aalst, W.M.P. & Weske, M. & Grünbauer, D. (2004), Case handling: a new paradigm for
business process support, 53(2), Data & Knowledge Engineering, Elsevier.

Adams, P. & Easton, P. & Johnson, Eric & Merrick, R. & Phillips, M. (2010). SOAP over Java Message
Service 1.0, W3C Working Draft 26 October 2010.

Agrawal, A. & Amend, M. & Das, M. & Ford, M. & Keller, C. & Kloppmann, M. & König, D. & Leymann,
F. & Müller, R. & Pfau, G. & Plösser, K. & Rangaswamy, R. & Rickayzen, A. & Rowley, M. & Schmidt,
P. & Trickovic, I. & Yiu, A. & Zeller M. (2007a). WS-BPEL Extension for People (BPEL4People),
Version 1.0, White Paper.

Agrawal, A. & Amend, M. & Das, M. & Ford, M. & Keller, C. & Kloppmann, M. & König, D. & Leymann,
F. & Müller, R. & Pfau, G. & Plösser, K. & Rangaswamy, R. & Rickayzen, A. & Rowley, M. & Schmidt,
P. & Trickovic, I. & Yiu, A. & Zeller M. (2007b). Web Services Human Task (WS-HumanTask), Version
1.0, White Paper.

Alonso, G. & Casati F. & Kuno, H. & Machiraju, V. (2004), Web Services, Springer.

Apache ODE group (2009). BPEL Extensions. URL: http://ode.apache.org/bpel-
extensions.html

Balko, S. & ter Hofstede, A. H. M. & Barros, A. P. & Rosa, M. (2009). Controlled Flexibility and
Lifecycle Management of Business Processes through Extensibility. 3rd International Workshop on
Enterprise Modelling and Information Systems Architectures, GI.

Barros, A. & Decker, G. & Dumas, M. & Weber, F. (2007). Correlation Patterns in Service-Oriented
Architectures. Proceedings of the 9th International Conference on Fundamental Approaches to
Software Engineering (FASE), Springer Verlag.

Bischof, M & Kopp, O. & van Lessen, T. & Leymann, F. (2009). BPELscript: A Simplified Script Syntax
for WS-BPEL 2.0. 35th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA 2009).

Blow, M. & Goland, Y. & Kloppmann, M. & Leymann, F. & Pfau, G. & Roller, D. & Rowley, M. (2004).
BPELJ: BPEL for Java, White Paper.

Chakraborty, D. & Lei, H. (2004) Pervasive Enablement of Business Processes, Proc. of the Second
IEEE Intl. Conf. on Pervasive Computing and Communications (PerCom 2004).

Chappell, D. (2004). Enterprise Service Bus: Theory in Practice, O’Reilly Media.

Charfi, A. & Mezini, M. (2004). Aspect-Oriented Web Service Composition with AO4BPEL. In:
European Conference on Web Services (ECOWS).

Charfi, A. & Schmeling, B. & Mezini, M. (2006). Reliable Messaging for BPEL Processes. International
Conference on Web Services (ICWS). IEEE.

Christensen, E. & Curbera, F. & Meredith, G. & Weerawarana, S. (2001). Web Services Description
Language (WSDL) 1.1.

Curbera, F. & Duftler, M. & Khalaf, R. & Lovell, D. Bite: Workflow Composition for the Web.
International Conference on Service Oriented Computing (ICSOC), Springer

Decker, G. & Kopp, O. & Leymann, F. & Weske, M. (2009). Interacting services: from specification to
execution, Data & Knowledge Engineering, doi:10.1016/j.datak.2009.04.003.

Dörnemann, T. & Friese, T. & Herdt, S. & Juhnke, E. & Freisleben B. (2007). Grid Workflow Modelling
Using Grid-Specific BPEL Extensions, Proceedings of German e-Science Conference 2007, pp. 1-9.

A CLASSIFICATION OF BPEL EXTENSIONS

24 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

Eberle, H. & Kopp, O. & Unger, T. & Leymann. (2009). F. Retry Scopes to Enable Robust Workflow
Execution in Pervasive Environments, 2nd Workshop on Monitoring, Adaptation and Beyond
(MONA+).

Fonden, C. (2009): Konzeption und Entwicklung von Kontexterweiterungen für Workflows, Diploma
Thesis 2901, Institute of Architecture of Application Systems, University of Stuttgart.

Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A. (2007) BPEL-DT - Data-aware
Extension of BPEL to Support Data-Intensive Service Applications. In C. Pautasso and T.
Gschwind, editors, WEWST, volume 313 of CEUR Workshop Proceedings. CEUR-WS.org.

Hackmann, G. & Gill, C. & Roman, G.-C. (2007). Extending BPEL for Interoperable Pervasive
Computing. IEEE International Conference on Pervasive Computing.

IBM (2006). Adding an information service activity to a business process, URL:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/c

om.ibm.is.bpel.help.doc/topics/accessdata.htm

IBM (2007). Mapping Specification Language. http://www.research.ibm.com/journal/sj/452/roth.html

IBM (2009). Working with BPEL extensions, URL:
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/c

om.ibm.wbit.620.help.bpel.ui.doc/concepts/cextent.html.

International Organization for Standardization (2006). Information Technology — ECMAScript for XML
(E4X) Specification. ISO/IEC 22537:2006

Jäger, C. & Wolke, C. (2008) Make-or-Buy Decisions - A Transaction Cost Theoretical Approach to
the Assessment of Outsourcing Activities, Books on Demand GmbH.

Juhnke, E. & Dörnemann, T. & Freisleben, B. (2009). Fault-Tolerant BPEL Workflow Execution via
Cloud-Aware Recovery Policies. Proceedings of the 35

th
 EUROMICRO Conference on Software

Engineering and Advanced Applications.

Juric, M. & Sasa, A. & Rozman I. (2009). WS-BPEL Extensions for Versioning, Information and
Software Technology 51, pp. 1261–1274.

Karastoyanova, D. (2006). Enhancing Flexibility and Reusability of Web Service Flows through
Parameterization, PhD thesis, TU Darmstadt and Universität Stuttgart.

Karastoyanova, D. & Khalaf, R. & Schroth, R. & Paluszek, M. & Leymann, F. (2006). BPEL Event
Model. University of Stuttgart, Technical Report Computer Science No. 2006/10.

Karastoyanova, D. & Leymann, F. (2009). BPEL'n'Aspects: Adapting Service Orchestration Logic,
Proceedings of 7th IEEE International Conference on Web Services (ICWS).

Kareliotis, C. & Vassilakis, C. & Georgiadis, P. (2007). Enhancing BPEL scenarios with Dynamic
Relevance-Based Exception Handling. In: ICWS, 751-758

Khalaf, R. (2008). Supporting business process fragmentation while maintaining operational
semantics: a BPEL perspective, Dissertation, University of Stuttgart, Germany.

Khalaf, R. & Karastoyanova, D. & Leymann, F. (2007). Pluggable Framework for Enabling the
Execution of Extended BPEL Behavior. Proceedings of the 3rd International Workshop on Engineering
Service-Oriented Application (WESOA'2007).

Khalaf, R. & Leymann, F. (2006). Role-based Decomposition of Business Processes using BPEL.
International Conference on Web Services (ICWS) (pp. 770-780).

Khalaf, R. & Subramanian, R. & Mikalsen, T. & Duftler, M. & Diament, J. & Silva-Lepe, I. Enabling
Community Participation for Workflows through Extensibility and Sharing, Workshop on Business
Process Management and Social Software (BPMS2’09), Springer.

Kiczales, G. (1997). Aspect-Oriented Programming, Proceedings of ECOOP’97.

Kloppmann, M. & Koenig, D. & Leymann, F. & Pfau, G. & Rickayzen, A. & Riegen, C. & Schmidt, P. &
Trickovic, I. (2005). WS-BPEL Extension for Sub-processes - BPEL-SPE, White Paper.

Kloppmann, M. & König, D. & Leymann, F. & Pfau, G. & Rickayzen, A. & von Riegen, C. & Schmidt, P.
& Trickovic, I. (2005). WS-BPEL Extension for People – BPEL4People, White Paper.

A CLASSIFICATION OF BPEL EXTENSIONS

JOURNAL OF SYSTEMS INTEGRATION 2011/4 NON-EDITED VERSION 25

König, D. & Lohmann, N. & Moser, S. & Stahl, C. & Wolf, K. (2008): Extending the compatibility notion
for abstract WS-BPEL processes. WWW 2008, 785-794

Kopp, O. & Martin, D. & Wutke, D. & Leymann, F. (2009). The Difference Between Graph-Based and
Block-Structured Business Process Modelling Languages. Enterprise Modelling and Information
Systems. Vol. 4(1), pp.3-13.

Kopp, O. & Wieland, M. & Leymann, F. (2009). Towards Choreography Transactions. 1
st
 Central-

European Workshop on Services and their Composition (ZEUS).

Laemmel, R. & Ostermann, K. (2006). Software Extension and Integration with Type Classes,
Proceedings of the 5th international conference on Generative Programming and Component
Engineering (GPCE '06).

Lau, C., Beaton, M. (2004) Architecting on demand solutions, Part 3: Use BPEL to create business

processes, IBM developerWorks. URL: http://www.ibm.com/developerworks/library/i-
odoebp3/

Le, Duy Ngan & Nguen, Ngoc Son & Mous, Karel & Ko, Ryan Kok Leong & Goh, Angela Eck Soong.
(2009). Generating Request Web Services from Annotated BPEL. RIVF International Conference on
Computing and Communication Technologies.

van Lessen, T. & Leymann, F. & Mietzner, R. & Nitzsche, J. & Schleicher, D. (2009). A Management
Framework for WS-BPEL. Proceedings of the 6th IEEE European Conference on Web Services.

van Lessen, T. & Nitzsche, J. & Karastoyanova, D. (2009). Facilitating Rich Data Manipulation in
BPEL using E4X. . 1

st
 Central-European Workshop on Services and their Composition (ZEUS).

Leymann, F. (2005). The (Service) Bus: Services Penetrate Everyday Life. International Conference
on Service-Oriented Computing (ICSOC).

Leymann, F. & Roller, D. (2000). Production workflow: concepts and techniques, Prentice Hall PTR.

Leymann, F. & Roller, D. (2006). Modeling business processes with BPEL4WS. Information Systems
and e-Business Management (ISeB), Springer. 265-284.

Liu, A. & Li, Q. & Huang, L. & Xiao, M. (2007). A Declarative Approach to Enhancing the Reliability of
BPEL Processes, IEEE International Conference on Web Services (ICWS).

Ma, Z. & Leymann, F. (2009), BPEL Fragments for Modularized Reuse in Modeling BPEL Process. 5
th

International Conference on Networking and Services (ICNS).

Modafferi, S. & Conforti, E. (2006). Methods for enabling recovery actions in ws-bpel. In Proc. of Int.
Conf. on Cooperative Information Systems (CoopIS).

Modafferi, S. & Mussi, E. & Pernici, B. (2006). SH-BPEL: a self-healing plug-in for Ws-BPEL engines.
Proceedings of the 1

st
 Workshop on Middleware for Service Oriented Computing, MW4SOC, ACM.

Nitzsche, J. & van Lessen, T. & Karastoyanova, D. & Leymann, F. (2007a). BPEL
light

, Proceedings of
the 5th Interational Conference on Business Process Management (BPM).

Nitzsche, J. & van Lessen, T. & Karastoyanova, D. & Leymann, F. (2007b). BPEL for Semantic Web
Services (BPEL4SWS). In: Proceedings of the 3

rd
 International Workshop on Agents and Web

Services in Distributed Environments (AWeSome'07) - On the Move to Meaningful Internet Systems
2007: OTM 2007 Workshops. Lecture Notes in Computer Science; 4805/2007, Springer.

OASIS (2004). Web Services Reliable Messaging TC: WS-Reliability 1.1, OASIS Standard.
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1.

OASIS (2007). Web Services Business Process Execution Language Version 2.0, OASIS Standard.

Oracle (2006). BPEL Process Manager: BPEL + Business Rules. URL:
http://www.oracle.com/technology/products/ias/bpel/pdf/bpelandbusinessrules

.pdf

Oracle (2007). BPEL Process Manager Developer’s Guide. Version 10g (10.1.3.1.0) B28981-03. URL:
http://download.oracle.com/docs/cd/B31017_01/integrate.1013/b28981.pdf

Overdick, H. (2003). Towards resource-oriented BPEL. 2nd ECOWS Workshop on Emerging Web
Services Technology.

A CLASSIFICATION OF BPEL EXTENSIONS

26 NON-EDITED VERSION JOURNAL OF SYSTEMS INTEGRATION 2011/4

Pautasso, C. (2008). BPEL for REST. 7
th
 International Conference on Business Process Management.

Peltz, C. (2003). Web Services Orchestration and Choreography, IEEE Computer, 36, 46-52.

Rosenberg, F. & Dustdar, S. (2005). Business Rule Integration in BPEL – A Service-Oriented
Approach, Proceedings of the 7th International IEEE Conference on E-Commerce Technology.

Schumm, D. (2007) A Graphical Tool for Modeling BPEL 2.0 Processes, Universität Stuttgart, Fakultät
Informatik, Studienarbeit Nr. 2124.

Schumm, D. & Karastoyanova, D. & Leymann, F. & Nitzsche, J. (2009). On Visualizing and Modelling
BPEL with BPMN, Proceedings of the 4th International Workshop on Workflow Management (ICWM).

Silva-Lepe, I. & Subramanian, R. & Rouvellou, I. & Mikalsen, T. & Diament, J. & Iyen-gar, A. (2008).
SOAlive Service Catalog:ASimplied Approach to Describing, Discovering and Composing Situational
Enterprise Services. Proceedings of the International Conference on Service-Oriented Computing
(ICSOC).

Stahl, T. & Völter, M. & Czarnecki, K. (2006). Model-driven Software Development: technology,
engineering, management. John Wiley & Sons.

Stein, S. & Kühne, S. & Ivanov, K. (2009). Business to IT Transformations Revisited. Springer-Verlag

Tai, S. & Mikalsen, T. A. & Wohlstadter, E. & Desai, N. & Rouvellou, I. (2004). Transaction policies for
service-oriented computing, Data Knowl. Eng, 51, 59-79.

Vedamuthu et. al (2007a). Web Services Policy 1.5 – Framework, W3C Recommendation 04

September 2007, URL: http://www.w3.org/TR/ws-policy/.

Vedamuthu et al. (2007b). Web Services Policy 1.5 – Attachment, W3C Recommendation 04

September 2007, URL: http://www.w3.org/TR/ws-policy-attach/.

Vrhovnik, M. & Schwarz, H. & Suhre, O. & Mitschang, B. & Markl, V. & Maier, A. & Kraft T. (2007). An
approach to optimize data processing in business processes, Proceedings of the 33rd international
conference on Very large data bases 2007, pp. 615-626.

Vrhovnik, M. & Schwarz, H. & Radeschiitz, S. & Mitschang B. (2008). An Overview of SQL Support in
Workflow Products, IEEE 24th International Conference on Data Engineering.

Weidlich, M. & Decker, G. & Großkopf, A. & Weske. M. (2008). BPEL to BPMN: The Myth of a
Straight-Forward Mapping. International Conference on Cooperative Information Systems (CoopIS).

Weerawarana, S. & Curbera, F. & Leymann, F. & Storey, T. & Ferguson, D.F. (2005). Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More, Prentice Hall PTR.

Wen, Jiajia & Chen, Junlinag & Peng, Yong & Xu, Meng. (2006). A Multi-Policy Exception Handling
System for BPEL Processes. First International Conference on Communications and Networking in
China.

Wieland, M. & Görlach, K. & Schumm, D. & Leymann, F. (2009). Towards Reference Passing in Web
Service and Workflow-based Applications, Proceedings of the 13th IEEE Enterprise Distributed Object
Conference (EDOC 2009).

Wieland, M. & Kopp, O. & Nicklas, D. & Leymann, F. (2007). Towards Context-aware Workflows,
CAiSE’07 Proceedings of the Workshops and Doctoral Consortium Vol 2.

Wu, Yunzhou & Dohsi, Prashant. (2008). Making BPEL Flexible – Adapting in the Context of
Coordination Constraints Using WS-BPEL, International Conference on Services Computing (SCC
2008).

Zhang, Huajian & Fan, Xiaoliang & Zhang, Ruisheng & Lin, Jiazao & Zhao, Zhili & Li, Lian (2008).
Extending BPEL2.0 for Grid-Based Scientific Workflow Systems, Asia-Pacific Services Computing
Conference (APSCC '08).

Zimmermann, O. & Koehler, J. & Leymann, F. & Polley, R. & Schuster N. (2009). Managing
Architectural Decision Models with Dependency Relations, Integrity Constraints, and Production
Rules. Journal of Systems and Software, Elsevier. 82(8), pages 1249-1267.

