
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Portable Cloud Services Using TOSCA

Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier

© 2012 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@article {ART-2012-09,
 author = {Tobias Binz and Gerd Breiter and Frank Leymann and Thomas Spatzier},
 title = {{Portable Cloud Services Using TOSCA}},
 journal = {IEEE Internet Computing},
 address = {Los Alamitos, CA, USA},
 publisher = {IEEE Computer Society},
 volume = {16},
 number = {03},
 pages = {80--85},
 month = {May},
 year = {2012},
 doi = {http://doi.ieeecomputersociety.org/10.1109/MIC.2012.43},
 issn = {1089-7801}
 }

:

Institute of Architecture of Application Systems

Web-Scale Workflow
Editor: Schahram Dustdar • dustdar@infosys.tuwien.ac.at

80 Published by the IEEE Computer Society 1089-7801/12/$31.00 © 2012 IEEE IEEE INTERNET COMPUTING

U nderneath all the hype, the essence of
cloud computing is the industrialization
of IT. Similar to mass production lines

in other industries (such as the auto industry),
cloud computing standardizes offered services
and thus increases automation significantly.
Consequently, enterprises are increasingly uti-
lizing cloud technology; however, major chal-
lenges such as portability, standardization of
service definitions, and security remain inade-
quately addressed. The ability to move cloud ser-
vices and their components between providers
ensures an adequate and cost-efficient IT envi-
ronment and avoids vendor lock-in.

Research has already addressed movability
and migration on a functional level.1,2 However,
no one has yet examined cloud service portability
with regard to management and operational
tasks, which are a significant and increasing
cost factor. One reason is the lack of an industry
standard for defining composite applications
and their management. Without an appropriate
standardized format, ensuring compliance, trust,
and security — the biggest area of critique pre-
venting the cloud’s wider adoption — is difficult.
Dealing with these challenges in industry and
research has the potential to bring cloud com-
puting to the next level.

Here, we present how the portable and stan-
dardized management of cloud services is
enabled through the Topology and Orchestration
Specification for Cloud Applications (TOSCA),3
a recently initiated standardization effort from
OASIS. We show how TOSCA plans — which
capture the management aspects of cloud ser-
vices in a reusable way — use existing workflow
technologies and research results to facilitate
the portable, automated, and reusable man-
agement of cloud services throughout their
life cycle.

Cloud Services Life Cycle
Before examining the cloud services life cycle
(see Figure A in the Web appendix at http://doi.
ieeecomputersociety.org/10.1109/MIC.2012.43),
let’s look at the fundamental roles and concepts
involved. IBM’s Cloud Computing Reference
Architecture (CCRA)4 defines three main roles
typically encountered in any cloud computing
environment: the cloud service creator, cloud ser-
vice provider, and cloud service consumer. Each
role can be fulfilled by a single person, a group
of people, or an organization. Following the
CCRA definitions, the service creator develops
cloud services; the service provider runs
those services, and provides them to service

Portable Cloud
Services Using TOSCA

Tobias Binz • University of Stuttgart

Gerd Breiter • IBM Boeblingen Laboratory

Frank Leymann • University of Stuttgart

Thomas Spatzier • IBM Boeblingen Laboratory

For cloud services to be portable, their management must also be portable

to the targeted environment, as must the application components themselves.

Here, the authors show how plans in the Topology and Orchestration Specifi-

cation for Cloud Applications (TOSCA) can enable portability of these opera-

tional aspects.

IC-16-03-WSWF.indd 80 4/5/12 3:22 PM

Portable Cloud Services Using TOSCA

MAY/JUNE 2012 81

consumers, which can also be IT
systems. Consumers can be billed for
all (or a subset of) their interactions
with cloud services and the provi-
sioned service instances.

According to the CCRA defini-
tion, a cloud service represents any
type of (IT) capability that the ser-
vice provider offers to service con-
sumers. In contrast to traditional IT
services, cloud services have attri-
butes that are typically associated
with cloud computing, such as a
pay-per-use model, self-service usage,
scalability, and resource sharing.

Let’s now examine a cloud ser-
vice’s life cycle, as defined in prior
work.5 In the definition phase, all
management knowledge required
for the specific cloud service — in
particular, how to instantiate it —
is captured in a service template.
This knowledge includes information
about the cloud service’s internal
structure (that is, its topology) along
with operational and management
aspects to build, manage, and termi-
nate cloud services.

In the offering phase, the cloud
service provider creates a cloud
service offering based on a service
template, adding all provider- and
offering-specific information. This
includes aspects such as pricing and
specific technical information such
as IP address range and application
configurations. Finally, the offering
is published in a service catalog.

In the subscription and instan-
tiation phase, the cloud service
consumer browsing the service cata-
log can select and subscribe to the
respective offering. The consumer
customizes the service through points
of variability (for example, select-
ing “small,” “medium,” or “large” for
the service’s size), signs a contract,
and accepts the offering’s terms and
conditions. This subscription pro-
cess triggers the instantiation of the
cloud service instance. The cloud
management platform aggregates
all the required resources from the

common resource pools, for exam-
ple infrastructure components, and
automatically deploys, installs, and
configures the service’s necessary
pieces.

In the life cycle’s production
phase, the cloud management plat-
form uses management plans to
manage the service instance for
compliance with the service-level
agreements (SLAs) negotiated at
subscription time. For example, the
management platform assigns addi-
tional resources to the instance when
the number of users increases, and
removes them when users are no lon-
ger using the service. The cloud ser-
vice provider or consumer can also
trigger management plans manually —
for example, to back up or upgrade
the service.

Finally, when the cloud service
consumer decides to get rid of the
service or the subscription expires,
the service instance terminates, and
all the resources go back into the
resource pool.

Topology and Orchestration
Specification
TOSCA describes composite appli-
cations and their management in a
modular and portable fashion. It thus
defines service templates that con-
tain a cloud service’s topology (for
instance, an application is hosted on
an application server, which is in turn
hosted on an operating system) and
its operational aspects (such as how
to deploy, terminate, and manage
this service). Service templates are
interpreted by a TOSCA-compliant
environment, which operates the
cloud services and manages their
instances. Figure 1 depicts a service
template’s main elements.

The creator of a cloud service
captures its structure in a service
topology — a graph with nodes and
relationships. Nodes represent the
service’s components, and relation-
ships connect and structure nodes
into the topology. Both nodes and
relationships are typed and hold a set
of type-specific properties, bringing

Figure 1. The TOSCA service template. Nodes represent the service’s
components, whereas relationships connect and structure nodes into the
topology. Plans capture the operational aspects of the cloud service. (Figure
adapted from the OASIS Topology and Orchestration Specification for Cloud
Applications.3)

Service template

Relationship
template

Plans

type for

type for

Topology template Node types

Relationship types

Node
template

Relationship type

Pr
op

er
tie

s

Node type

Pr
op

er
tie

s

In
te

rf
ac

e

IC-16-03-WSWF.indd 81 4/5/12 3:22 PM

Web-Scale Workflow

82 www.computer.org/internet/ IEEE INTERNET COMPUTING

meaning and variability to these
generic TOSCA elements. We posi-
tion these elements into three levels:
types define reusable entities and
their properties, templates form the
cloud service’s topology using these
types, which are then instantiated
as instances of the described cloud
service (see Figure 2). TOSCA speci-
fies the metamodel for types and
templates — that is, the language for
defining them. Concrete types aren’t
part of the specification and must
be standardized by the respective
domain expert groups. Furthermore,
TOSCA is independent of concrete
providers and defines a model to
describe all kinds of services and their
ingredients.

Nodes in particular define a range
of information to deploy, terminate,
and manage the cloud service: instance
states represent the node’s internal
state during production as part of the
topology. Deployment artifacts repre-
sent the artifacts needed to actually
deploy the defined service — that is,
application files providing the ser-
vice’s functionality. One key to sup-
port interoperability and reusability is
that nodes expose their management
operations explicitly as part of the
topology. Moreover, nodes can provide
the implementations of these manage-
ment operations as implementation
artifacts. This enables plans to orches-
trate the node’s fine-grained manage-
ment functionalities into higher-level
management functionalities of the
service, as we discuss next.

The Concept of Plans
Managing services requires exten-
sive, mostly manual effort by the
customers. Each organization using
an application learns on its own how
to operate that application, acquires
management knowledge, and auto-
mates certain aspects in scripts.
TOSCA enables application develop-
ers and operators to model manage-
ment best practices and reoccurring
tasks explicitly into so-called plans.
If these plans were portable between
different environments and provid-
ers, the achieved reusability and

automation of service management
would significantly reduce the total
cost of ownership. Everyone using the
service could benefit from the accu-
mulated knowledge by executing the
respective plan without needing to
understand all the technical details.
In particular, self-service and rapid
elasticity, two important cloud ser-
vice properties, can be realized only
if service management is automated
to a large degree. Figure 3 depicts a
(simplified) management plan that
sets up an IBM WebSphere cluster. We
next look at plans in detail and illus-
trate why TOSCA plans are portable.

Plans Are Workflows
Instead of introducing a new way to
define workflows, plans use existing
workflow languages such as Business
Process Model and Notation (BPMN)6
or the Business Process Execution
Language (BPEL).7 Moreover, plans
can use any workflow language sup-
ported by a management environ-
ment. There are many reasons to
introduce workflow technology into
service management. In the manual
or scripting-based approaches used
today, managing data and properly
handling errors is a pain, especially
if the tasks are frequently executed
or long-running. In addition to plans’
ability to explicitly define actions
to handle exceptional cases, com-
pensation is a powerful concept. In
contrast to databases, which are able
to roll back changes, plans — which
initiate changes in the physical
world and external systems — often
can’t roll back what they’ve done.
Thus, plans realize compensation by
explicitly modeling for each activity
how to undo it, in the same language
the plan is written. For example, if
a plan starts a server, a straight-
forward compensation would be to
shut it down. Much more complex is the
compensation of a software upgrade,
which might require going back to
a certain snapshot of the system.
In automated cloud environments,

Figure 3. Simplified plan for the initial provisioning of a WebSphere cluster.
The plan exemplarily depicts the steps required to facilitate this task.

Provision
dmgr

Enable
admin

security

Start
dmgr

Create
cluster

Deploy
monitoring

agent (dmgr)

Provision
managed node

III

Federate
node

Deploy
monitoring

agent III

Create
cluster

members

Provision
IHS node

Deploy
monitoring
agent (IHS)

Start IHS Con�gure
Web server

Start
cluster

III
Figure 2. Nodes and relationships
in TOSCA. Types define reusable
entities and their properties,
and templates form the cloud
service’s topology using these
types, which are then instantiated
as instances of the described
cloud service.

Node
type

Relationship
type

Types

Templates

Instances

Node
template

Relationship
template

Node
instance

Relationship
instance

M
et

am
od

el
 s

ta
nd

ar
di

ze
d

in
 T

O
SC

A

IC-16-03-WSWF.indd 82 4/5/12 3:22 PM

Portable Cloud Services Using TOSCA

MAY/JUNE 2012 83

error handling is crucial because
immediate human intervention isn’t
possible. Furthermore, using workflow
technology ties people into a plan. This
enables manual interactions required
during cloud services management,
such as determining and passing
parameters to management actions or
kicking off manual activities.

How Plans Benefit
from the Topology Model
Plans use the cloud service topology
in three ways: First, plans orches-
trate the management interfaces
and operations defined in TOSCA
nodes. Operations are described in
the Web Services Description Lan-
guage (WSDL), Representational State
Transfer (REST), or scripts that
implement particular management
operations on the respective node.
These operations might be external
services, or their implementation
might be included in the service
template as an implementation arti-
fact. In the latter case, the manage-
ment environment ensures that these
implementations are in place before
the service template is instantiated.

Second, plans can inspect the
topology model to access a service’s
nodes and relationships. This enables
flexible plans whose behavior is based
on the topology and changes therein.
For example, a plan installing an
operating system patch could iterate
over the topology to dynamically find
the respective nodes.

Finally, plans read and write a
service’s instance information — that
is, the node’s instance state, such as
properties containing credentials, IP
addresses, and so on. The workflow
engine manages the state inside a
plan and delivers it to the different
activities. Between plans, the man-
agement environment stores instance
information externally. Plans must
ensure that changes they did to the
service instance are reflected in the
instance information so other plans
can use them.

Figure 4 provides an overview
of these concepts. The plan first
retrieves information about the
topology and the respective service
instance, namely deployment arti-
facts, properties, state, policies, and
so on. The plan then processes this
data and invokes an operation that
the node provides. Additionally, the
plan can invoke external Web ser-
vices and APIs using the standard
mechanisms of the workflow lan-
guage, as when using a cloud pro-
vider’s offering. Finally, the plan
updates the node’s instance infor-
mation to reflect the changes made.
This example shows how the differ-
ent concepts are connected through
plans. Note that a plan can modify
any number of nodes — that is, it can
execute management operations on a
set of nodes or the whole topology.

If enough semantic information is
included in the topology, some types
of plans can be generated automati-
cally. This shifts the burden from the
plan to the topology modeler to enrich
the topology with sufficient semantic
information. TOSCA supports both
approaches, and compliant manage-
ment environments can interpret the
resulting service template.

What Makes Plans Portable?
TOSCA plans’ portability is inher-
ited from the workf low language
and engines used. With the excep-
tion of extension activities, work-
flow languages such as BPMN and
BPEL are portable between different
engines. Workflow portability isn’t
enough because the orchestrated
services must also be available. In
TOSCA, these services are explicitly
described in the nodes as operations.
For operations referencing external
services, portability isn’t a problem.
If the operation represents a service
that’s delivered as part of the service
template (as an implementation arti-
fact), TOSCA uses an approach simi-
lar to plans. Implementation artifacts
are implemented in standardized

languages, such as Java, Perl, PHP,
and shell scripts. For these languages,
runtimes are available for different
environments. Either the manage-
ment environment or the cloud ser-
vice provider deploys them before
the c loud management platform
instantiates the service template for
the first time.

Thus, TOSCA can operate a ser-
vice template in management envi-
ronments that support the required
plan and implementation artifact
languages. To increase portability,
TOSCA enables a cloud service cre-
ator to provide the same plan or
implementation artifact in differ-
ent languages. For example, a cloud
service creator can include a plan
with the same functionality twice:
in BPEL and BPMN. A transforma-
tion into another language might
even be possible automatically. This
increases the number of manage-
ment environments in which the ser-
vice template can operate.

T OSCA allows service creators to
gather into plans those activities

necessary to deploy, manage, and
terminate the described cloud ser-
vice. Due to the portability of plans
and the operations they use, TOSCA
services can be operated in different
management environments. However,
these environments must support
the set of workflow languages and
implementation artifacts included in

Figure 4. Relationship between
plans and the service topology. The
plan retrieves information from the
node instance, processes it using
operations, and updates the data
stored for the node instance.

• Properties
• Instance state
• Operations

Node instance

Operation

Plan
A B C D

IC-16-03-WSWF.indd 83 4/5/12 3:22 PM

Web-Scale Workflow

84 www.computer.org/internet/ IEEE INTERNET COMPUTING

the service template. Furthermore,
access to the topology model and
instance information management
should be provided by the manage-
ment platform.

As part of the CloudCycle project
(www.cloudcycle.org/en), funded by
the German Federal Ministry of Eco-
nomics and Technology, we’re imple-
menting a prototypical, open source
TOSCA management environment.
To address the third major challenge
of cloud computing we identified in
the introduction, we’re researching
how to ensure compliance and secu-
rity throughout the entire service life
cycle. Security experts are enabled to
annotate policies to TOSCA elements.
Policy-specific plug-ins will then
enforce these policies in the manage-
ment environment during the cloud
service’s whole life cycle. TOSCA pro-
vides an exchange format for policies
but no guarantee that the manage-
ment environment and providers

also enforce these policies. This must
be ensured by a trustworthy entity
through certification of management
environments, providers, and services.

TOSCA models contain myriad
references to files, such as those with
additional TOSCA definitions, plans,
and other artifacts. Consequently,
future work must be invested toward
a TOSCA archive, a self-contained
package of these artifacts, similar
to Java EAR files. This cloud service
could then be offered in the mar-
ketplace and, due to its portability,
operated in different management
environments.

References
1. F. Leymann et al., “Moving Applications

to the Cloud: An Approach Based on

Application Model Enrichment,” Int’l J.

Cooperative Information Systems, vol. 20,

no. 3, 2011, pp. 307–356.

2. T. Binz, F. Leymann, and D. Schumm

“CMotion: A Framework for Migration of

Applications into and between Clouds,”

Proc. Int’l Conf. Service-Oriented Comput-

ing and Applications, IEEE Press, 2012,

pp. 1–4.

3. Topology and Orchestration Specifica-

tion for Cloud Applications (TOSCA),

OASIS specif ication, Oct. 2011; www.

oasis-open.org/commit tees/tc_home.

php?wg_abbrev=tosca.

4. M. Behrendt et al., “IBM Cloud Comput-

ing Reference Architecture,” Open Group

submission, Feb. 2011; www.opengroup.

org/cloudcomputing/uploads/40/23840/

CCRA.IBMSubmission.02282011.doc.

5. G. Breiter and M. Behrendt, “Lifecycle

and Characteristics of Services in the

World of Cloud Computing,” IBM J.

Research and Development, vol. 53, no. 4,

2009, pp. 3:1–3:8.

6. Business Process Model and Notation

(BPMN) Version 2.0, Object Management

Group specification, Jan. 2011.

7. Web Services Business Process Execution

Language (BPEL) Version 2.0., OASIS

specification, 2007.

Tobias Binz is a researcher and coordina-

tor of the CloudCycle project in the

Institute of Architecture of Application

Systems at the University of Stuttgart,

Germany. His research focuses on the

migration of applications to cloud envi-

ronments while ensuring their security

and compliance. Binz is an architect

for OpenTOSCA, an open source cloud

service management platform support-

ing the Topology and Orchestration

Specif ication for Cloud Applications

(TOSCA). Contact him at tobias.binz@

iaas.uni-stuttgart.de.

Gerd Breiter is an IBM Distinguished Engi-

neer and Tivoli Chief Architect for

Cloud Computing in the IBM Research

and Development Laboratory, Boeblingen,

Germany, where he’s one of the key

technicians defining IBM’s cloud com-

puting architecture and strategy. His

research areas include uti lity, on-

demand, and cloud computing, as well

as the architecture for the build-out of

hybrid clouds. Breiter coleads the defini-

tion of the IBM Cloud Computing Refer-

ence Architecture (CCRA). Contact him at

gbreiter@de.ibm.com.

Frank Leymann is a professor of computer

science and the director in the Insti-

tute of Architecture of Applicat ion

Systems at the University of Stut t-

gar t , Germany. His current research

focuses on many aspects of cloud, ser-

vice, and business-process technology.

Formerly at IBM, Leymann was chief

architect of IBM’s workf low/process

management technology, coleader of

the Web Services Architecture team,

and architect of IBM’s Ser v ice Bus.

Contact him at frank.leymann@iaas.

uni-stuttgart.de.

Thomas Spatzier works at the IBM Research

and Development Lab in Boeblingen,

Germany. His current research includes

architecture and design in IBM’s cloud

management product family. Spatzier

is actively involved in cloud computing

standardization activities, including as a

co-editor of the OASIS TOSCA specifica-

tion. Contact him at thomas.spatzier@

de.ibm.com.

IC-16-03-WSWF.indd 84 4/5/12 3:22 PM

