
Institute of Architecture of Application Systems
University of Stuttgart, Germany

{haupt,leymann,vukojevic}@iaas.uni-stuttgart.de

API governance support through the structural
analysis of REST APIs

Florian Haupt, Frank Leymann, Karolina Vukojevic-Haupt

© 2017 Springer-Verlag.
The original publication is available at
http://dx.doi.org/10.1007/s00450-017-0384-1
See also LNCS-Homepage:
http://www.springeronline.com/lncs
Free full-text view-only version available at
http://rdcu.be/v7z4

@Article{Haupt2017,
author = {Haupt, Florian and Leymann, Frank and Vukojevic-Haupt, Karolina},
title = {API governance support through the structural analysis of REST APIs},
journal = {Computer Science - Research and Development},
year = {2017},
issn = {1865-2042},
doi = {10.1007/s00450-017-0384-1},
url = {https://doi.org/10.1007/s00450-017-0384-1}

}

:

http://dx.doi.org/10.1007/s00450-017-0384-1
http://www.springeronline.com/lncs
http://rdcu.be/v7z4

Noname manuscript No.
(will be inserted by the editor)

API Governance Support
through the Structural Analysis of REST APIs

Florian Haupt · Frank Leymann · Karolina Vukojevic-Haupt

Received: date / Accepted: date

Abstract Today, REST APIs have established as a means for
realizing distributed systems and are supposed to gain even
more importance in the context of Cloud Computing, Internet
of Things, and Microservices. Nevertheless, many existing
REST APIs are known to be not well designed, resulting in
the absence of desirable non-functional properties that truly
RESTful systems entail. Although existing analysis show,
that many REST APIs are not fully REST compliant, it is
still an open issue how to improve this deficit and where
to start. In this work, we apply structural analysis of REST
APIs in order to support API governance, resulting in a set of
basic and aggregated metrics that characterize an API set and
also guide further governance tasks. We apply the structural
analysis on a set of 286 real world APIs and then demonstrate
how to derive suitable metrics that represent the perceived
complexity of an API, complemented and validated by a
survey of developers following the AHP process. As a result,
we provide effective support for API governance, helping to
identify and remedy problems in APIs.

Keywords REST · interface description language · analysis ·
API governance

1 Introduction

The architectural style Representational State Transfer (REST)
has become a popular choice for the realization of service-
oriented architectures. Based on the core technologies of
the World Wide Web (WWW), mainly the Hypertext Trans-
fer Protocol (HTTP) together with URIs and MIME types,
it promises simplicity, standards-based interoperability and

Florian Haupt
Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany
E-mail: florian.haupt@iaas.uni-stuttgart.de

ubiquitous availability on all kind of platforms [1]. Even
more important are the implications of the REST style on
the non-functional properties of a REST-compliant software
system. Distributed software systems that follow the REST
style are assumed to support inter alia software longevity,
independent evolution of its components, scalability, and
extensibility [2]. The main challenge in achieving these desir-
able non-functional properties is the REST-compliant design
and realization of services.

It has been shown that many APIs that claim to follow
the REST style are not REST compliant at all [3] [4] [5].
A first step towards a REST compliant API is the correct
usage of the HTTP protocol, respecting its syntactical as
well as semantic specification [6]. However, being REST
compliant typically requires more effort than this [7]. One
of RESTs core constraints is called Hypertext as the Engine
of Application State (HATEOAS). It demands that clients of
a REST API are guided by the responses they receive from
the API. Each response contains metadata like hyperlinks
or forms that tell the client where it can go next and what
actions are possible in the current state of its conversation
with the API. Fulfilling this constraint has a major impact
on the structure of a REST API, as it typically results in a
graph-like structure of resources connected by hyperlinks.

In order to improve the state of the art in the design and
realization of REST APIs, it is crucial to be aware of this
state of the art. In this context, the goal of this work is to
utilize the structural analysis of REST APIs in order to pro-
vide API governance support. For that, a framework for the
structural analysis of REST APIs [8] is used to derive a set
of metrics as well as graphical representations for a given set
of APIs. These data then provides an overview and character-
ization of the set of APIs under investigation. We envision
that knowing and analyzing these data can effectively be ap-
plied for supporting API governance tasks. Advantages of
our approach are that it can already be applied at design-time

2 Florian Haupt et al.

(as it requires only API models but no implementations) and
that it is easily applicable to huge sets of APIs (as it can be
executed automatically).

The rest of the paper is structured as follows. In section 2
we give an overview about existing works on the analysis of
REST APIs, including an identification and categorization
of different analysis approaches as well as a classification of
our work. As we intend to analyze real-world APIs, section 3
gives an overview about common REST API description
languages and their spread. Our analysis is based on a meta-
model for REST APIs that we have developed in previous
work [22][23]. This metamodel is introduced in section 4,
followed by section 5 describing the transformation of the
Swagger and RAML description languages into this meta-
model. The core contribution of this paper, the application of
structural analysis of REST APIs for supporting API gover-
nance, is presented in section 6, comprising a metrics-based
API analysis as well as metrics for calculating user-perceived
API complexity. In section 7 we discuss threats to the validity
of our work and describe how we minimized them. Section 8
concludes the paper with a discussion of the main results and
a short outlook to future work.

2 Related Work

Several works already target the analysis of REST APIs. In
this section, we first give an overview about relevant related
work. Then, we categorize the existing approaches and posi-
tion our work with respect to them.

2.1 Literature Overview

A first analysis of REST APIs has been conducted in [4].
The authors investigated a set of 222 Web APIs taken from
ProgrammableWeb.com, a popular Web API directory. Web
APIs are further distinguished in “RPC-Style”, “RESTful”,
and “Hybrid”. The analysis has been conducted manually
and focuses on technical aspects of the selected APIs. The
authors present amongst other things statistics about sup-
ported representation types, authentication mechanisms, and
the availability of API documentation.

The work presented in [9] analyzes a set of 12 REST
APIs with respect to a set of five patterns and eight anti-
patterns. For each of these (anti-) patterns the authors define
a corresponding heuristics and detection algorithm. These
heuristics and detection algorithms are based on the obser-
vation and investigation of request and response messages
exchanged with an API. For the analysis, a REST API is first
called several times and all request- and response-messages
are gathered and stored. Then, the gathered messages are
processed by the (anti-) pattern detection algorithms.

The work of [9] is continued and extended in [10]. Here,
the authors focus on the analysis of the URI structure of
REST APIs using a set of five linguistic patterns and anti-
patterns that are applied to a set of 15 REST APIs. Although
the naming of URIs should not matter to the client at all (as
it is supposed to follow RESTs HATEOAS constraint, i.e.
to navigate through an API by following hyperlinks), it is
still important for the realization, operation and maintenance
of REST APIs. The general analysis approach is the same
as in [9]. Each (anti-) pattern has a corresponding heuristics
and detection algorithm, which are then applied to a set of
previously gathered request messages.

In [11] a set of three REST APIs from three well-known
cloud providers is analyzed with respect to a set of 73 best
practices compiled from literature. The analysis is based
on available API documentation and has been conducted
manually, followed by a detailed analysis of the results.

In [12] a dataset of 78GB of HTTP traffic from an Italian
mobile internet provider is analyzed with respect to REST
principles and guidelines. First, all requests targeting APIs
for machine consumption (in contrast to web pages consumed
by humans) are identified and extracted. Then, the authors
define a set of five best practices for REST APIs and a corre-
sponding set of 18 heuristics for the compliance with these
best practices. These heuristics are then implemented and
applied to a representative sample of the whole dataset. In
addition, the same heuristics are used to calculate the matu-
rity level of the investigated REST APIs with respect to the
maturity model by Richardson [13].

2.2 Summary and Categorization

The existing works on the analysis of REST APIs follow
different approaches that can be summarized and categorized
as shown in figure 1. The analyzes presented in [4] and [11]
are based on human-readable API documentation and have
been conducted manually (type 1). In contrast, the analyzes
presented in [9], [10] and [13] are based on the automated
analysis of request and response messages (type 2). Both
analysis types have their advantages and disadvantages.

The first analysis type, the manual analysis of human-
readable documentation, can in general cover more and de-
tailed aspects than any automated analysis. In addition, only
the documentation of an API is required, i.e. the analysis
may even be conducted during design time when an API is
not yet implemented. On the other hand, being conducted
manually, this type of analysis cannot be applied meaning-
fully to arbitrary large sets of REST APIs. In addition, the
quality of the results strongly depends on the qualification of
the humans conducting the analysis as well as on the quality,
completeness, and correctness of the API documentation.

The second analysis type, the automated analysis of re-
quest and response messages, can be easily applied to huge

API Governance Support through the Structural Analysis of REST APIs 3

REST API

re
q
u
e
st
/

re
sp
o
n
se

provides

Automated
Analysis

12 3

Manual
Analysis

4

Human-Readable
API Description

Machine-Readable
API Description

Client

Fig. 1 Analysis approaches

sets of APIs in a repeatable and traceable manner. However,
it requires that the API under analysis is implemented and
accessible. Another challenge is that the analysis only covers
those parts of an API that are covered by the set of messages
under investigation.

What has not been covered so far, to the best of our
knowledge, is the analysis of REST APIs based on machine-
readable API descriptions and its application for API gover-
nance. REST API description languages like Swagger [14]
and RAML [15] gain more and more importance, which
amongst other things recently resulted in the Open API Initia-
tive [16] as a standardization approach for API descriptions.
We use this potential to allow for new approaches in API
governance supported by structural API analysis approaches.

In this paper, we apply an automated analysis (type 3)
focusing on the structure of REST APIs (section 6.1) using
an analysis framework developed in previous work [8]. This
approach can already be applied at design time, as it only
requires a description (a model) of an API, but no imple-
mentation. Being an automated analysis, it can also be easily
applied to huge sets of APIs, making our API governance
support also applicable to scenarios comprising many APIs.

The last analysis type, the manual analysis of machine-
readable API descriptions (type 4), builds on a graphical
representation of the structure of REST APIs and targets
the in-depth analysis of selected APIs. This analysis type
is also supported by the analysis framework we developed
in previous work [8] and can also already applied at design
time.

3 Common REST API Description Languages

There exist many languages for the description of REST APIs
from both, academia as well as industry. For our work, we are
concentrating on description languages that are commonly
used in real world, assuming that API descriptions based on
these languages will then be available for a wide range of
real-world APIs. In the following, we will first discuss our se-
lection process and then introduce the description languages
that have been selected for further investigation, Swagger
and RAML.

Table 1 Quantitative selection criteria

Google
Search

SO by
Title

SO by
Tags

GitHub
Projects

Spec.
Star/
Fork

API
Blueprint

20,400 79 188 440 4,714/
1,344

I/O Docs 4,120 0 15 26 1,830/
430

Swagger 2,790,000 2,465 2,551 4,638 5,321/
1,583

RAML 120,000 148 181 926 2,501/
367

WADL 93,100 178 192 192 -

WSDL
2.0

20,800 23 7 0 -

Open API 143,000 48 30 662 5,321/
1,583

3.1 Selection Process

As a first step towards selecting a suitable set of REST API
description languages to be used in our analysis approach,
we conducted a Google search for the term “rest api descrip-
tion language”. In the result set of this search, the following
names appeared repeatedly: API Blueprint [17], I/O Docs
[18], Swagger [14], RAML [15], WADL [19], WSDL 2.0
[20], Open API [16].

To narrow this set further down and to get a better under-
standing of the dissemination and usage of these languages,
we applied additional quantitative criteria as shown in ta-
ble 1. For each description language, we conducted a Google
search using the search term “{description language name}”
+ “REST” and noted the total number of search results. We
also used StackOverflow.com (SO), a popular developer com-
munity, to search for questions having the name of a descrip-
tion language in their title as well as for questions that have
been tagged with the corresponding description language.
On GitHub.com, a popular service offering Git repositories
for software development, we searched for repositories hav-
ing the name of each description languages in their title. As
most of the description languages have their specification
documents hosted on GitHub, we also considered how often
these specifications have been starred (marked as favorite)
and forked.

The results of our searches shown in table 1 indicate that
Swagger seems to be the most widespread description lan-
guage used in real world projects. What has to be considered
here is that Swagger has a special relationship to the Open
API specification. The Open API Initiative is highly based on
Swagger; the current Open API specification v2.0 is identical
to the latest Swagger specification v2.0. Therefore, whenever

4 Florian Haupt et al.

Swagger Resource

+absPath*

Method

0..7

Fig. 2 Simplified Swagger metamodel

RAML

Resource

+relPath
Method* 1..7

+subResource

*

Fig. 3 Simplified RAML metamodel

we consider Swagger in the following, all statements also
apply to Open API. Following the numbers in table 1, we also
consider RAML in our work, as it also seems to have some
practical relevance. Although WADL scores high for some
of the criteria, we do not consider it in this work. The WADL
specification is rather old and, according to our experience,
continuously losing practical relevance.

3.2 Swagger and RAML

The core of the Swagger framework is the Swagger speci-
fication that defines how to describe a REST API as JSON
(or YAML) file. In the following, we will call such files that
follow the Swagger specification Swagger files. In the context
of this work, we focus on the structure of a REST API, i.e.
the resources and their relationships. When reducing Swag-
ger to this aspects, we can create a simplified metamodel for
it as shown in figure 2. A Swagger file describes an REST
API as a set of resources. Each resource is identified by an
absolute path and supports a set of HTTP methods. Although
the HTTP specification [6] defines eight methods, Swagger
only supports a subset of six HTTP methods as well as the
additional PATCH method [21].

Regarding the general structure, Swagger and RAML
files are very similar. A noteworthy difference is however,
that RAML allows the explicit modeling of resource hierar-
chies. A simplified metamodel for RAML focusing on API
structure is shown in figure 3.

Analyzing the structure of a REST API based on the
(simplified) metamodels of Swagger and RAML has some
serious drawbacks. First, the different metamodels would
require (at least in parts) different realizations for the same
analyzes, resulting in increased effort as well as an increased
probability for inconsistencies and faults. Second, Swagger
models do not explicitly model the structure of a REST API
at all. At first glance, Swagger only lists a set of resources.
Any relationship between these resources, like the formation
of a resource hierarchy, has to be extracted from the structure
of the URIs of the resources.

Domain Model

Composite

Resource Model

Atomic

Resource Model

URL Model

Java

Code

Java

Code

Java

Code

JAX-RS

Application Model

JAX-RS

Application Model

JAX-RS

Application Model

WADL

Service Description

WADL

Service Description

HTML

Service Description

model-to-model

transformation

code generation

model reference

Fig. 4 Metamodels for REST APIs [22]

Consequently, we decided that our analysis would be
based neither on the Swagger metamodel nor on the RAML
metamodel but on a metamodel for REST APIs that we
have developed in previous works [22]. In the following
section, we will introduce the relevant parts of this meta-
model and show how the Swagger and RAML metamodel
can be mapped on it.

4 A Canonical Metamodel for REST APIs

In order to get a better understanding about the structure of
REST APIs and to help designers and developers to create
better REST APIs, we have developed a set of metamodels
for REST APIs as shown in figure 4 and successfully inte-
grated them in a model-driven approach for the design and
realization of REST APIs [22] [31].

The core model is the atomic resource model, which
describes a REST API in terms of its basic elements like re-
sources, methods, representations, or query parameters. The
composite resource model provides higher level modeling el-
ements that ease the modeling task and the understanding of
complex models. A composite resource model based on the
concept of conversations has been introduced in [23]. An im-
portant feature is the URI model. The HATEOAS constraint
of REST demands that clients navigate through an API inde-
pendent of any specific URIs by following hyperlinks. The
separation of the resource model (which contains no URIs at
all) from the URI model reflects this very important aspect
of REST and intends to support API designers as well as API
clients in following the HATEOAS principle. Details about
the other models are not relevant in the context in this paper
and can be found in [22].

API Governance Support through the Structural Analysis of REST APIs 5

Resource

+name

Method

Relationship

+supports

+enables

+target

Navigation Creation

relPath

+attachedToRestAPI

+consistsOf

atomic resource model URI model

Fig. 5 Simplified metamodel for REST APIs

A simplified version of the metamodel for the atomic
resource model as well as for the URI model is shown in
figure 5. A REST API consists of a set of resources and each
resource supports a set of methods. An important distinctive
feature of our metamodel is that relationships between re-
sources are not directly attached to the resource but related
to the methods of a resource. The rationale behind this is
as follows. When submitting for example a GET request
to a resource, the response may contain hyperlinks, which
then allow navigating further to other resources. Similarly,
the submission of a POST request to a resource (e.g. a list
resource) may result in the creation of another resource. In
summary, relations between resources always depend on the
usage of the methods of the source resource of a connection
and our metamodel reflects this. An example instance of this
metamodel is presented in figure 11, showing the model of
an example REST API in a graphical editor we developed as
part of a toolchain around our REST API metamodel.

The URI model shown in figure 5 is defined separately
from the atomic resource model. It defines a set of relative
paths that are then attached (by reference) to (a subset of) the
relationships of the resource model. Regarding the analysis
of the structure of an REST API, i.e. the analysis of the
resources and their connections, the resource model contains
all necessary information and we will therefore ignore the
URI model in the following.

5 Model Transformations

As discussed in the previous section, we aim at using our
atomic resource model as base for the structural analysis of
REST APIs. Consequently, we first have to design and realize
the transformation of Swagger as well as RAML models into
our metamodel. In addition, this process already provides
some interesting findings about the characteristics of the
description languages we considered in our work (and these
characteristics may in turn influence the characteristics of the
REST APIs that are designed using them).

5.1 Transformation Design

The transformation of a Swagger model comprises two phases
as shown in figure 6. First, all resources are identified and
transformed including their entire detailed configuration like
the supported methods, representations or query parameters.
Second, the relationships between the resources are identi-
fied. Unfortunately, Swagger does not provide any means
to describe links between resources explicitly. Instead, the
structure of a REST API is usually given by the paths the API
provides. Here it is generally accepted that these paths repre-
sent hierarchical relationships. We build on this assumption
for determining the relationships between resources.

{
 "swagger": "2.0",
 …,
 "paths": {
 "/pet": {
 "post": {…}
 },
 "/pet/findByStatus": {
 "get": {…}
 }
 "/pet/{petID}": {
 “get": {…},
 “delete": {…}
 },
 },
 "definitions": {...}
}

/pet/findByStatus

• GET

/pet

• POST

/pet/{petID}

• GET
• DELETE

findByStatus

• GET pet

• POST
{petID}

• GET
• DELETE

1

2

Fig. 6 Swagger transformation process

Listing 1 Resource structure derivation algorithm for Swagger

public void deriveStructure(Swagger model) {

//<level , paths on this level >

Map <int , Set <Path >> paths;

// order paths by level (i.e. length)

for (Path p : model.getPaths ()) {

paths.get(p.getElements ()).add(p);

}

// sort levels ascending

Set <int > sorted = sortAsc(paths.keySet ());

// process paths from shortest to longest

for (int i : sorted) {

// process all paths on current level

for (Path current : paths.get(i)) {

// look at all higher levels

for (int x = i-1; x >= 0; x--) {

for (Path p : paths.get(x)) {

//if a is a prefix of b, then a is

parent of b

if (current.startsWith(p)) {

connect(p, current);

found = true;

}

6 Florian Haupt et al.

}

// stop if parent resource was found

if (found) { break; }

}}}}

The corresponding algorithm for deriving resource re-
lations from the associated paths, which is applied in the
second step of the transformation process, is sketched in List-
ing 1. The general idea is to first sort all resources by levels,
where the level of a resource is determined by the length
of its path (in terms of the number of elements of the path).
Then, the resources are processed from top level to bottom
level (i.e. shortest paths first) and each resource is connected
to all resources on higher levels whose path is a prefix of the
current resource. Consequently, the resulting resource graph
is always a tree, as Swagger is inherently limited to such
structures.

The RAML transformation is for the most parts very
similar to the Swagger transformation. The main difference is
that the derivation of the resource structure is simpler because
RAML already supports the modeling of nested resources
structures. As for Swagger, the resulting resource graph is
always a tree.

5.2 Findings

A general finding that has already been mentioned is that
Swagger as well as RAML provide no explicit means for
describing links between resources. In addition, Swagger as
well as RAML also do not support to describe the relationship
between POST requests on one resource and the resulting
creation of another resource. Such relationships are very
common (e.g. for list resources) and usually documented
in the human-readable description text, but they cannot be
included in the formal description of an API. Altogether,
these drawbacks either result in APIs that do not exploit the
full power of REST (especially the HATEOAS concept) or it
results in incomplete API description that only cover a subset
of the capabilities an API provides.

Another observation is that relationships between re-
sources sometimes go across multiple levels, i.e. the path
of a child resource extends the path of its parent resource
by more than one element. For example, an API might offer
the resource “/api” and its child resource “/api/products/pid”
but no resource with a path of “/api/products”. Although an
API with such an URI structure might still be fully REST
compliant, it is usually considered a best practice to assume
that clients might access any part of a URI and therefore to
provide at least some response at any possible URI.

Swagger

X X

REST API Models

Analysis

Metrics

RAML …

X

Fig. 7 Analysis approach [8]

6 API Governance Support

The general approach of the REST API analysis we con-
ducted is based on a framework for the structural analysis of
REST APIs we presented in [8]. An overview is depicted in
figure 7. Starting from available REST API description doc-
uments in Swagger and RAML we transform them into our
canonical metamodel and store them in a model repository.
This way, the following analysis steps are easily reusable for
other REST API description languages, they only need to be
transformed into the canonical metamodel.

The models stored in the repository can be automatically
processed by the analysis component, which in turn builds on
a repository of algorithms that are able to calculate the met-
rics we are interested in, making this part easily extendable
with new metrics as desired. The results of this analysis (i.e.
a set of metrics for each REST API) are written to CSV files,
allowing further analysis and processing by common office
tools. This kind of analysis refers to type 3 as introduced in
section 2.2.

The REST API models stored in the repository can in
addition be visualized using a graphical editor we developed
as part of a toolchain around our REST API metamodel.
The graphical representation of the resources and their rela-
tionships enables domain as well as REST experts to easily
understand and assess the structure of an API. This kind of
analysis refers to type 4 as introduced in section 2.2.

The goal of our work is to provide API governance sup-
port based on the structural analysis of REST APIs. API
governance is a task mainly applied inside an organization,
typically aiming at achieving a certain harmonization of APIs
in terms of their non-functional properties, best-practices-
support, documentation quality or rule compliance in general.
Especially when considering Microservice architectures, this
task may have to consider a considerably huge set of APIs.
Our approach assumes that API description documents are
available, and as discussed in 3 this assumption is valid in
many cases.

All analyzes discussed in the following are based on a
set of 286 API description documents retrieved from https:

https://apis.guru

API Governance Support through the Structural Analysis of REST APIs 7

//apis.guru, a web page (and API) that describes itself as
“Wikipedia for WEB APIs”. The set includes only APIs that
are publicly available (free or paid) and includes renowned
providers like Microsoft Azure, Google, BBC, GitHub, In-
stagram, NYTimes, Spotify, and Wikimedia.

6.1 Metrics-based API analysis

As a first step towards API governance support we propose
to characterize a set of APIs using metrics that are related
to the structure of an API. Based on expert knowledge and
experience we identified a set of potentially relevant metrics,
implemented them, integrated them in the analysis frame-
work, and calculated them for each API under investigation.
An overview about the aggregated values of all metrics that
were calculated during this analysis is given in table 2. The
first group of four metrics concentrates on the resources of
an API. The number of resources, i.e. the size of an API,
covers a range from a minimum of one resource to a maxi-
mum of 264 resources per API. The deviation between the
mean value and the median indicates that the distribution
is rather uneven and includes breakout values. This can in
detail be seen in figure 8, which shows the distribution of the
API size throughout the set of all APIs. The majority of APIs
(53.5%) has a size of 10 or less resources (33% APIs have
a size between 1 and 5 resources, and 20.5% APIs have a
size between 6 and 10 resources). Another 37.5% of all APIs
has a size ranging between 11 and 40 resources and the re-
maining 9% have a size between 41 and the maximum of 264
resources (the distribution between 111 and 270 resources
has been combined into one value in figure 8).

The set of APIs considered in the analysis comprises two
noteworthy subsets, a set of 39 API models from Microsoft
Azure, and a set of 105 API models from Google. As these
two sets represent a significant amount of the complete API
set, figure 8 also shows the distribution of the API size sepa-
rately for the set of Azure APIs, the set of Google APIs, and
the set of all remaining APIs. These three distributions vary
in parts. The share of APIs with a size up to five resources is
23% and 36% for the Azure and Google APIs respectively,
and nearly 45% for all remaining APIs. In contrast, the share
of APIs with a size from six up to ten resources is much
smaller for the remaining APIs than for Azure and Google.

The next metric, the number of read-only resources (#Read-
Only Resources in table 2) counts all resources that support
only the GET method but no other methods. For POST and
DELETE, we count all resources that support these methods
(and maybe others, as usually every resources is supposed to
support GET requests).

The distribution of the share of read-only resources in an
API is shown in figure 9, again for the whole API set (bars)
as well as separately for the three subsets (curves). Looking
at the whole set, it is noticeable that around 24.5% of all

Table 2 Aggregated metrics overview

MIN MAX MEAN MEDIAN

#Resources 1 264 20.3 9

#ReadOnly Resources 0 227 10.4 4

#POST 0 93 6.5 3

#DELETE 0 40 2.6 1

#Roots 1 227 8.1 4

#Links 0 248 12.2 4

MaxDepth 0 7 1.8 1

#Components 1 227 8.1 4

Smallest Component 1 165 2.4 1

Biggest Component 1 165 8.3 3.5

Avg Component Size 1 165 4.0 2

Biggest Component Cov-
erage

0.4
%

100.0
%

54.0 % 50.0 %

APIs have a share of read-only resources between 90% and
100%, i.e. these APIs focus on information retrieval rather
than on content creation and manipulation. Looking at the
three subsets, their distributions are rather different. The ma-
jority of Azure APIs (61.5%) has a read-only share between
30% and 60%, whereas the distribution for the Google APIs
is more even. For the set of all remaining APIs, 50.5% have a
read-only share of 90% or more. These differences probably
result from the fact, that the Azure and Google APIs provide
similar functionality in their APIs (both provide common
cloud services) which includes not only information retrieval
but also content creation and manipulation. The set of all
remaining APIs however covers a much broader spectrum of
services, which evidently include a significant set of informa-
tion services.

Comparing the numbers of the first four metrics in table 2
shows that read-only resources are very common in REST
APIs, in average they make up half of all resources. In ad-
dition, we can also read off that there are in general more
resources supporting the POST method than resources sup-
porting the DELETE method. This proportion can, at least
partially, be explained when we have a closer look at two
commonly used resource types, list resources and command
resources [24]. List resources are used to manage a set of
child resources. The list resource supports GET for retrieving
a list of references to all child resources and it supports POST
for adding new child resources. Child resources support GET
for retrieval, DELETE for deleting, and PUT for updating.
Examples of list resources are shown in figure 11 (labeled
1). Altogether, list resources add the same amount of POST
as well as DELETE methods to an API. The increased oc-
currence of POST resources is mostly added by so-called

https://apis.guru
https://apis.guru

8 Florian Haupt et al.

0%

10%

20%

30%

40%

#A
P

Is

#resources (API size)

complete Set Azure APIs Google APIs other APIs

Fig. 8 Distribution of API size (number of resources)

0%

10%

20%

30%

40%

50%

A
P

Is

ro = share of read-only resources

complete Set Azure APIs

Google APIs other APIs

Fig. 9 Share of read-only resources in APIs

0%

5%

10%

15%

20%

25%

30%

35%

A
P

Is

bcs = share of API the biggest component covers

complete Set Azure APIs

Google APIs other APIs

Fig. 10 Share of API covered by the biggest component

command resources. Such resources usually represent func-
tionality that cannot be mapped to one of the other methods
(GET, PUT, and DELETE). Typically, each command re-
source represents one functionality that is called using the
POST method. Examples of command resources are shown
in figure 11 (labeled 2).

The next group of three metrics in table 2 adds data
about links between resources to the analysis. We define any
resource that has no incoming links as a root resource. A
generally accepted best practice in REST API design, driven
by the HATEOAs constraint, is that an API should have only
one (or at least few) root resource [25]. However, the numbers
in table 2 show that todays REST APIs usually have quite
some root resources. Due to the fact that all APIs that we

consider in our analysis are trees, the total amount of links
per API is limited by the amount of resources. The maximum
depth of an API is given by the longest path of resources that
are connected by links. This metric shows rather small values
if we compare it to the number of resources, which indicates
that APIs are in general “more wide than deep”. Speaking
from a clients view, this means that when navigating through
an API there are comparatively little possibilities to navigate
“deeper into the API” but at each of these steps, there are in
average many alternatives to navigate further.

The last group of five metrics in table 2 adds data about
components to the analysis. In graph theory, a component of
a graph is defined as a subset of a graph where each node in
the subset (i.e. resource) is connected (directly or by a path)
to any other node in the subset, but not to any other node
outside the subset [26]. Speaking in terms of REST APIs, a
component comprises a root resource together with all re-
sources that can be accessed from this root resource. The API
shown in figure 11 consists of three components. Following
the best practice of having exactly one root resource, an API
should comprise exactly one component (in the case of trees,
the number of root resources and the number of components
are always equal). However, the numbers in table 2 show that
APIs usually comprise several components.

If we have a closer look at the size of the components
of an API, we can observe that for the average size of the
smallest component as well as for the average size of the
biggest component the mean value and the median again
clearly differ, indicating an uneven distribution of these met-
rics (similar to the API size). However, this does not apply to
the share of an API that is covered by the biggest component
(Biggest Component Coverage in table 2). The distribution
of this metric is shown in detail by the bars in figure 10. One
remarkable aspect is that the share of APIs for which the
biggest component covers at least 90% of an API is rather
high. This means that around 22% percent of the APIs we
analyzed can be viewed as well structured, as they are mostly
accessible starting from one root resource. In fact, 52 of 286
APIs (18%) comprise exactly one component.

API Governance Support through the Structural Analysis of REST APIs 9

1 1

2 2

2

3

Fig. 11 Graphical representation of the Google Blogger API

6.2 Measuring User-Perceived API Complexity

The metrics we have calculated and discussed so far can
serve as a first step towards understanding and characterizing
a (potentially huge) set of APIs. Such an analysis can then
provide hints for further actions in the context of API gov-
ernance. Considering the set of REST APIs we analyzed so
far, the metrics for example show that many APIs have (con-
siderably) more than one root resource, which violates the
HATEOAS constraint of the REST style. Also, the rather un-
even distribution of the API size can be a hint that it might be
meaningful to investigate if the API size is relevant for API
governance (and if additional governance rules are required).

All these metrics are however very low-level, and they
often require a significant amount of processing and inter-
pretation before resulting in useful information (as seen in
the previous section). We therefore propose to complement
the metrics-based analysis by the development of aggregated
metrics representing higher-level information about the APIs
under investigation. In the following, we are considering the
user-perceived complexity of an API as an exemplary use
case for such an aggregated metric.

Complexity can in general be distinguished in descrip-
tive and perceived complexity [27]. Descriptive complexity
assumes that there exists an objective truth and consequently
that such a complexity can be objectively measured. In the
context of REST APIs, the descriptive complexity may be
determined by investigating the time it takes clients to un-
derstand an API or the amount of misunderstandings and

errors that occur during its usage. Perceived complexity in
contrast is a rather subjective concept and solely based on
the perception of an observer. In the context of REST APIs,
the perceived complexity of an API describes how a user
judges the complexity of the API without objectively measur-
ing it. In the following, we are looking at the user-perceived
complexity of REST APIs. A high user-perceived complexity
may hinder the use and dissemination of an API, which is
especially relevant in case an API is offered using a market-
place or public API registry.

In a first step, we selected a random set of ten APIs from
the set of 286 APIs introduced in section 6. Then we asked a
group of nine software developers, each having at least one
year of experience in designing and realizing REST APIs,
to rank these APIs based on their complexity (as perceived
by the developer). For the ranking, we applied the Analytic
Hierarchy Process (AHP) [32] by carrying out a pairwise
comparison of all ten APIs. For each pair of APIs, graphical
representations of the APIs (as generated by the analysis
framework) were shown to the developers and they were
asked to decide, which one is more complex. They also had
to indicate how much one API is more complex than the
other using a scale (as defined by Saaty [32]) ranging from
1 (equally complex) to 9 (extremely more complex). One
advantage of applying AHP is, that it provides a quantitative
ranking of the APIs under investigation, meaning that it does
not only show which API is perceived more complex than
another but also how much more complex it is perceived. The
result of the described AHP process is depicted in figure 12,

10 Florian Haupt et al.

showing the judgments of the individual developers as bars
(D1 to D9) and the consolidated ranking as line.

In a second step, we selected (based on expert knowledge
and experience) a subset of two basic metrics (as introduced
in section 6.1) as candidates for defining an aggregated met-
ric that represents the user-perceived complexity of an API.
Then, we composed out of these basic metrics new aggre-
gated metrics, resulting in a set of five metrics candidates as
shown in equation 1:

M1 = #roots

M2 = BiggestComponentCoverage

M3 = M1 +M2

M4 = M1 +M2
2

M5 = M2
1 +M2

(1)

These five metrics have then been applied to the set of ten
APIs that have been ranked by the users before. To ensure
comparability with the AHP results, the resulting values are
normalized to a scale between 0 and 1. A graphical repre-
sentation of the result of this process is shown in figure 13.
If we consider only the order of the ranking, M1 as well as
M4 result in the same ranking order as the user ranking (their
curves are monotonously rising, same as the user ranking).
Another approach of comparing the different metrics candi-
dates is to calculate their mean square deviation from the user
ranking. The result of this calculation is shown in figure 14,
indicating M3 as the best candidate as it deviates least from
the user ranking. M3 however, as shown in figure 13, would
result in a different ranking order than the user ranking.

For the use case under investigation, the assessment of
the user-perceived complexity of an API, we were able to
derive suitable metrics based on structural API analysis. It is
obvious, that this approach gets more complex when consid-
ering more metrics and also additional metric combinations.
However, the presented process can easily be automated, in-
cluding the combination of metrics to aggregate as well as
the evaluation of their deviation from the expected result.

7 Threats to Validity

The results of our work presented in the previous sections are
subject to several threats to their validity. In the following,
we will discuss how we proceeded in our work in order to
minimize these threats.

7.1 Internal Validity

The model-to-model transformations from Swagger and RAML
into the canonical resource metamodel might distort the struc-
ture of an API description, and therefore also the analysis

results, in case they do not follow the conceptual mapping
described in section 5 correctly. We tackled this threat by
manually checking a random sample of source and target
models for their transformation being correct and coherent in
terms of content. We randomly selected a sample of 30 model
pairs out of a total of 286, and 29 of the reviewed transforma-
tions were found to be correct. The remaining transformation
showed some errors due to some very unusual URI naming
that could not be properly processed by the transformation
algorithm.

Many of the metrics used in the analysis of the resource
structure are based on graph algorithms. Errors in these graph
algorithms (or their implementation) might result in incor-
rect values for the metrics and therefore distort the analysis
results. We reduced this threat by following software engi-
neering best practices. We reused existing and mature graph
libraries (JGraphT), we implemented unit tests for all analy-
sis algorithms, and we manually validated the correctness of
the analysis for a random sample of 30 APIs.

7.2 External Validity

The general significance of the analysis results presented
in section 6 depends on the set of analyzed REST API de-
scriptions. We minimized this threat by analyzing a set of
286 descriptions, all of them describing publicly available
real-world REST APIs, including well-known ones like for
example several Google APIs, the GitHub API, or the In-
stagram API. In addition, we decided to examine Swagger
and RAML as they are among the most popular and common
REST API description languages in practice. This contributes
to the relevance of our analysis results as the set of analyzed
REST API descriptions reflects the state-of-the-art of todays
REST APIs.

Our analysis is based on the assumption that the REST
API descriptions that were transformed and analyzed de-
scribe the real APIs completely and correctly. Incomplete
and faulty descriptions might distort the analysis results, as
they would only apply to the descriptions but not to the real
APIs. We minimized this threat by manually comparing a
random sample of 64 REST API descriptions with the APIs
they describe. We found out, that all of the checked API
descriptions are correct and complete. Another indication for
the correctness and completeness of the analyzed REST API
description is given by the fact, that the Swagger files we
used are serving as the base for other API related services
like any-api.com and datafire.io.

It should however be noted that Swagger and RAML,
in contrast to our metamodel, do not support the explicit
modeling of hyperlinks between resources at all. If a REST
API provides hyperlinks that do not follow the URL structure
of an API, then these relationships between resources cannot
be explicitly represented in the corresponding Swagger or

any-api.com
datafire.io

API Governance Support through the Structural Analysis of REST APIs 11

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

D1 D2 D3 D4 D5 D6 D7 D8 D9 consolidated

Fig. 12 Perceived API complexity according to AHP results

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

M1 M2 M3 M4 M5 user ranking

Fig. 13 Perceived API complexity according to metric candidates

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

M1 M2 M3 M4 M5

Fig. 14 Mean square deviation from user ranking

RAML description document. This can then lead to analysis
results that are still correct with respect to the API description
document, but not necessarily correct with respect to the API
itself. This fact has however no or only little influence to
the results presented in this paper, as only very few APIs
provide such hyperlinks at all. Regarding the random sample
of 64 REST API descriptions that we manually compared
with their underlying APIs, we found no API that contains
this kind of hyperlinks.

All the data our analysis is based on as well as the imple-
mentation of the model-to-model transformation and the anal-

ysis are available online at http://www.iaas.uni-stuttgart.
de/rest. This enables anyone to replicate, review, validate,
and reuse our work.

8 Discussion and Outlook

Our work we presented in this paper applies structural anal-
ysis of REST APIs for supporting API governance tasks.
Advantages of this are that it can already be applied at design-
time (as it requires only API models but no implementations)
and that it is easily applicable to huge sets of APIs (as being
executable automatically).

The metrics-based analysis provided a high-level overview
and characterization of a large set of real-world REST APIs.
We discovered that the APIs under investigation are on av-
erage small with a median of nine resources per API, but
that the distribution of the API size is rather uneven and that
some APIs have more than 250 resources. Therefore, it seems
sensible that any works on the design of REST APIs should
be able to cope with such huge APIs. Another interesting
result is that read-only resources are very common and that
there is even a subset of APIs that are completely read-only.

http://www.iaas.uni-stuttgart.de/rest
http://www.iaas.uni-stuttgart.de/rest

12 Florian Haupt et al.

The measurement of user-perceived complexity, based on
the metrics-based analysis, demonstrated that aggregated
metrics can provide even further benefits for API gover-
nance tasks. We systematically derived metrics for the user-
perceived complexity of APIs and validated them by a survey
among API designers and developers. Such metrics can then
be automatically applied to APIs without requiring additional
user input.

For future work, we think of automating the detection
of reoccurring structures in REST APIs. Similar to existing
works in the context of business process models [28] we can
automatically analyze a set of REST API models for frequent
structures. In a next step, these reoccurring structures can be
analyzed by REST experts, which might finally result in the
detection of structural REST API patterns. It might also be
worth it, to investigate if existing REST API patterns [29][30]
can be validated by analyzing our set of REST API models.

Acknowledgements This work has been partially funded by the Ger-
man Research Foundation (DFG) within the Cluster of Excellence in
Simulation Technology (EXC310/2) at the University of Stuttgart.

References

1. J. Webber, S. Parastatidis, and I. Robinson, ”REST in practice: Hy-
permedia and systems architecture”, O’Reilly Media, (2010).

2. R.T. Fielding and R.N. Taylor, ”Principled design of the modern Web
architecture”, ACM Trans. Internet Technol. 2, May 2002: 115-150.

3. D. Renzel, P. Schlebusch, and R. Klamma, ”Todays top RESTful
services and why they are not RESTful”, WISE, 2012.

4. M. Maleshkova, C. Pedrinaci, and J. Domingue, ”Investigating web
APIs on the World Wide Web”, The 8th IEEE European Conference
on Web Services (ECOWS 2010), 1-3 Dec 2010, Ayia Napa, Cyprus.

5. P. Adamczyk, P.H. Smith, R.E. Johnson, and M. Hafiz, ”REST and
Web services: In theory and in practice”, REST: from Research to
Practice, Springer New York, 2011.

6. R. Fielding and J. Reschke, ”Hypertext Transfer Proto-
col (HTTP/1.1): Semantics and Content”, RFC 7231, 2014,
http://www.ietf.org/rfc/rfc7231.txt

7. F. Haupt, M. Fischer, D. Karastoyanova, F. Leymann, and K.
Vukojevic-Haupt, ”Service composition for REST”, Enterprise Dis-
tributed Object Computing Conference (EDOC), 2014 IEEE 18th
International (pp. 110-119). IEEE.

8. F. Haupt, F. Leymann, A. Scherer and K. Vukojevic-Haupt, ”A
Framework for the Structural Analysis of REST APIs”, Proceedings
of the IEEE International Conference on Software Architecture (ICSA
2017).

9. Palma, J. Dubois, N. Moha, and Y.G. Guhneuc, ”Detection of REST
patterns and antipatterns: a heuristics-based approach”, ICSOC 2014,
Springer Berlin Heidelberg, 2014.

10. F. Palma, J. Gonzalez-Huerta, N. Moha, Y.G. Guhneuc, and G.
Tremblay, ”Are restful apis well-designed? detection of their linguis-
tic (anti) patterns.” International Conference on Service-Oriented
Computing. Springer Berlin Heidelberg, 2015.

11. F. Petrillo, P. Merle, N. Moha, and Y.G. Guhneuc, ”Are REST
APIs for Cloud Computing Well-Designed? An Exploratory Study.”
ICSONC 2016, Springer International Publishing, 2016.

12. C. Rodriguez et al., ”REST APIs: A Large-Scale Analysis of Com-
pliance with Principles and Best Practices.”, International Conference
on Web Engineering, Springer, 2016.

13. M. Fowler, ”Richardson maturity model: steps toward the glory of
rest”, http://martinfowler.com/articles/richardsonMaturityModel.html,
2010.

14. Swagger, http://swagger.io/
15. RESTful API Modeling Language (RAML), http://raml.org/
16. Open API Initiative, https://www.openapis.org/
17. API Blueprint, https://apiblueprint.org/
18. I/O Docs, http://mashery.github.io/
19. M.J. Hadley, ”Web application description language (WADL).”

(2006). https://www.w3.org/Submission/wadl/
20. R. Chinnici, et al. ”Web services description language (wsdl) ver-

sion 2.0 part 1: Core language.” W3C recommendation 26 (2007)
21. L. Dusseault and J. Snell, ”PATCH Method for HTTP”, RFC 5789,

2010, https://tools.ietf.org/rfc/rfc5789.txt
22. F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth, ”A

model-driven approach for REST compliant services”, ICWS, 2014.
23. F. Haupt, F. Leymann, and C. Pautasso. ”A conversation based

approach for modeling REST APIs.” WICSA 2015 , IEEE, 2015.
24. S. Allamaraju, ”Restful web services cookbook: solutions for im-

proving scalability and simplicity”, O’Reilly Media Inc., 2010.
25. M. Nottingham, ”Home Documents for HTTP APIs”,

https://tools.ietf.org/html/draft-nottingham-json-home-05
26. J.A. Bondy, and U.S.R. Murty, ”Graph theory with applications”,

London: Macmillan, 1976.
27. S.L. Schlindwein, and R. Ison, ”Human knowing and perceived

complexity: implications for systems practice”, Emergence: Complex-
ity and Organization, 6(3) pp. 2732, 2004.

28. M. Skouradaki, V. Andrikopoulos, O. Kopp, and F. Leymann,
”RoSE: Reoccurring Structures Detection in BPMN 2.0 Process
Model Collections”, OTM 2016 , Springer International Publishing.

29. C. Pautasso, A. Ivanchikj, and S. Schreier, ”RESTalk Pattern
Language - Patterns for RESTful Conversations”, http://restalk-
patterns.org

30. C. Pautasso, A. Ivanchikj, and S. Schreier, ”A pattern language for
RESTful conversations.”, Proceedings of the 21st European Confer-
ence on Pattern Languages of Programs (PLoP), ACM, 2016.

31. K. Vukojevic-Haupt, F. Haupt, F. Leymann, and L. Reinfurt, ”Boot-
strapping Complex Workflow Middleware Systems into the Cloud.”
e-Science 2015, IEEE, 2015.

32. T.L. Saaty, ”Decision making with the analytic hierarchy process.”
International journal of services sciences 1.1 (2008): 83-98.

All links were last followed on 25.07.2017.

	cover-Springer-multi-institutes
	paper
	Introduction
	Related Work
	Common REST API Description Languages
	A Canonical Metamodel for REST APIs
	Model Transformations
	API Governance Support
	Threats to Validity
	Discussion and Outlook

