
Modeling and Execution of Data-aware Choreographies:
An Overview

Michael Hahn, Uwe Breitenbücher, Oliver Kopp, Frank Leymann

@Article{Hahn2017,
author = {Hahn, Michael and Breitenb{\"u}cher, Uwe and Kopp, Oliver and

Leymann, Frank},
title = {Modeling and execution of data-aware choreographies:

an overview},
journal = {Computer Science - Research and Development},
year = {2017},
month = {Sep},
doi = {10.1007/s00450-017-0387-y},
issn = {1865-2042},
publisher = {Springer Berlin Heidelberg}

}

:

Institute of Architecture of Application Systems

© Springer-Verlag GmbH Germany 2017
The original publication is available at http://dx.doi.org/10.1007/s00450-
017-0387-y and on https://link.springer.com/ .
See also CSRD-Homepage: https://link.springer.com/journal/450

1Institute of Architecture of Application Systems, University of Stuttgart, Germany
{hahnml,breitenbuecher,leymann}@iaas.uni-stuttgart.de

2Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
kopp@ipvs.uni-stuttgart.de

Noname manuscript No.
(will be inserted by the editor)

Modeling and Execution of Data-aware Choreographies
An Overview

Michael Hahn · Uwe Breitenbücher · Oliver Kopp · Frank Leymann

Received: date / Accepted: date

Abstract Due to recent advances in data science and

Big Data the importance of data is increasing. Although

service choreographies provide means to specify com-

plex conversations between multiple interacting parties

from a global perspective and in a technology-agnostic

manner, they do not fully reflect the paradigm shift

towards data-awareness at the moment. In this paper,

we discuss current shortcomings such as missing support

for data flow across services and a choreography data

contract all interacting parties agree on. This results in

more complex and rigid choreography models, making

them also less flexible regarding their data perspective

during run time. The main contribution is our approach

for modeling and execution of data-aware service chore-
ographies towards increasing the level of data awareness

in choreographies.

Keywords Service Choreographies · Data-awareness ·
Cross-Partner Data Flow · Transparent Data Exchange

M. Hahn
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany
E-mail: michael.hahn@iaas.uni-stuttgart.de

U. Breitenbücher
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany
E-mail: uwe.breitenbuecher@iaas.uni-stuttgart.de

O. Kopp
Institute for Parallel and Distributed Systems (IPVS)
University of Stuttgart, Germany
E-mail: oliver.kopp@ipvs.uni-stuttgart.de

F. Leymann
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany
E-mail: frank.leymann@iaas.uni-stuttgart.de

1 Introduction

Service-oriented architectures (SOA) have seen wide

spread adoption. The concept of composing small, self-

contained units of functionality, services, over the net-

work has found application in many research areas and

application domains [26]. For example, in Business Pro-

cess Management (BPM), Cloud Computing, the Inter-

net of Things (IoT), eScience and in particular scientific

workflows. To compose multiple existing services into ser-

vice compositions multiple modeling languages evolved.

These languages can be divided into two general groups

each following a different paradigm: service orchestra-

tions and service choreographies. Service orchestrations,

also known as workflows or processes, are modeled from

the viewpoint of one party that acts as a central co-

ordinator [5]. The most prominent orchestration mod-

eling languages are the Business Process Management

Notation (BPMN 2.0) [20] and the Business Process

Execution Language (BPEL) [19] which provide means

to specify orchestration-based service compositions. In

contrast, service choreographies provide a global perspec-

tive of the potentially complex conversations between

multiple interacting services without relying on a central

coordinator. Each party that takes part in the collab-

oration, as a so-called participant, is able to model its

conversations with other involved parties by specify-

ing corresponding message exchanges with them [5]. To

model service choreographies modeling languages such

as BPMN 2.0 or BPEL4Chor [12] can be used.

With advances in the fields of Big Data and IoT

the importance and value of data is increasing signif-

icantly [17, 23]. However, current state of the art in

service choreographies, despite some promising works

trying to improve data-awareness [9, 13, 16], fails to

provide an overall solution that allows data to assume

2 Michael Hahn et al.

its deserved primary role for both modeling and execu-

tion of service choreographies. To tackle this problem

and account for the crucial importance of data in ser-

vice choreographies the traditional BPM life cycle was

extended by data management capabilities [8]. The in-

herent goal is to introduce data already on the level of

the choreography to enable the decoupling of data flow,

data exchange and data management from the control

flow in service choreographies and orchestrations.

In this work, we want to have a closer look at the

proposed modeling extensions and discuss challenges

regarding the data-awareness of current service choreog-

raphy modeling languages as well as potential solutions

and their implications towards the run time perspec-

tive of service choreographies. Therefore, in Sect. 2, we

motivate our work followed by a discussion on short-

comings of current choreography modeling languages

and run time environments. Based on that, in Sect. 3,

we introduce our Transparent Data Exchange (TraDE)

approach to tackle the identified shortcomings by in-

troducing new modeling capabilities and a middleware

towards our goal of supporting data-aware service chore-

ographies. To exemplify the application of our concepts,

we introduce a corresponding case study from the do-

main of eScience in Sect. 4. Furthermore, we outline the

underlying architecture of a modeling and run time en-

vironment capable of supporting the proposed modeling

extensions and their execution in Sect. 5 and our pro-

totypical implementation in Sect. 6. Finally, the paper

concludes with related work in Sect. 7, and a summary

of our contributions together with an outlook on future

work in Sect. 8.

2 Motivation and Discussion

To further illustrate and motivate the need to improve

data-awareness in service choreographies we first present

a motivation example followed by a discussion on short-

comings regarding the modeling and execution of service

choreographies.

Figure 1 shows a choreography model with two in-

teracting participants. The conversations between the

participants are modeled by message intermediate events

and message flows. Data is modeled by data objects and

the reading and writing of data objects from tasks and

events is specified through data associations. Using this

example, we discuss shortcomings of the current state

of the art in choreography modeling.

We use BPMN 2.0 as a basis for the following dis-

cussion and also to illustrate our concepts. However,

our concepts are not bound to BPMN 2.0 and can be

applied to other choreography modeling languages such

as BPEL4Chor. The only assumption is, that the un-

derlying choreography modeling language follows the

interconnected interface behavior modeling approach [5].

This means, that the choreography model specifies con-

trol flow per participant and the interactions between

participants through message links. Figure 1 shows an

example of such a interconnected interface behavior

model illustrated as BPMN 2.0 collaboration model. A

choreography model specifies a public model of a col-

laboration which is then transformed into a collection

of private process models specifying internal logic of

each participant while implementing the conversations

defined on the level of the choreography model [6].

As a result, not only the data-awareness and data

modeling capabilities of the used choreography mod-

eling languages are important, we also have to take

process modeling languages into account. Exactly for

this purpose, Meyer et al. [15] already evaluated busi-

ness process modeling languages with respect to their

level of data-awareness and data modeling capabilities.

Therefore, in the context of this work, we reuse their

results as a basis to discuss and identify further issues

based on the introduced motivation example depicted

in Fig. 1 with focus on the level of choreographies.

One of the major shortcomings, is that data flow

across participants (inter-participant data flow) has to

be modeled differently compared to the data flow inside

a participant (intra-participant data flow). For exam-

ple, in BPMN 2.0 inter-participant data flow can be

expressed intuitively by drawing data associations be-

tween data objects and tasks as shown in Fig. 1 between

the message start event s1 and data object D of par-

ticipant P1. However, to model the exchange of data

between two or more participants, data associations are

not allowed anymore and message flow has to be intro-

duced (e. g., x1 in Fig. 1). While from an execution point

of view it is clear that data exchange across participant

boundaries needs to be handled differently than local

data exchange, the question is if this has to be explicitly

specified in choreography models. Introducing message

flow to exchange data between participants requires

the specification of a whole set of additional modeling

constructs and unnecessarily couples the data flow to

the control flow in choreographies. First, a message has

to be specified that will transport the data between

the participants during run time. Second, the modeler

has to add a corresponding message send task or event

(e. g., t1 in Fig. 1) with data associations on data objects

containing the data to exchange, in order to encapsulate

data into a message and send it to another participant.

On the side of the receiving participant, the modeler

has to add a message receive task or event (e. g., s2 in

Fig. 1) to consume the message and specify data asso-

Modeling and Execution of Data-aware Choreographies 3

P1
P2

s1 e1

s2 e2

t1

c1
x1

x2

A B

D

E

F

D

E

G

F

G

Data Object

Message Start
Event

Message End
Event

Message
Receive Event

Message
Send Event

Data
Association

Task

Legend

Message
Flow

Figure 1 Example choreography illustrated as BPMN 2.0 collaboration model.

ciations to one or more data objects where the data

contained in a message should be extracted to. Finally,

the modeler has to connect the sending and receiving

tasks or events with a message flow (e. g., x1 in Fig. 1),

to specify the exchange of the previously introduced

message. The result is that data produced by one partic-

ipant is now also accessible at another participant both

having their own local, independent copy of the data.

We call this message-based data exchange. An example

is shown in Fig. 1, where data objects D and E are ex-

changed through a message flow between participant P1

and P2. The key point to take away is that data cannot

be exchanged between participants without introducing

additional control flow and modeling constructs in order

to exchange the data. As we can see in Fig. 1, what we

discussed is a rather simple conversation scenario. The

overhead of introducing additional modeling constructs

in order to share data between participants will increase,

e. g., if multiple participants require the same data or

received data has to be routed to other participants.

Another drawback of message-based data exchange

is the fact that the same data objects, or slight vari-

ations of them, need to be specified in the scope of

each participant that interacts with the data. This is

also directly visible in Fig. 1 where each of the partici-

pants defines the same four data objects. However, to

technically enable the collaboration between different

participants through a choreography they have to agree

on the structure of the exchanged data. This leads to

the question if the underlying choreography modeling

language allows the specification of a common, globally

consolidated and agreed set of data objects representing

a data contract between the collaborating parties. Often,

this is not supported and therefore modelers have to

agree on structures without being able to specify the

outcome explicitly and in a central, reusable manner

within a choreography model. As a result, each party has

to take care of specifying the required set of data objects

in the context of all participants it is responsible for

while being compliant with the agreed structures. The

issue is that if these structures change over time, there

is no central point in a choreography model to do this

and changes have to be manually reflected at all affected

data objects specified in the context of several partic-

ipants interacting with this data. This makes changes

error-prone and might lead to inconsistent specifications

of data objects. Furthermore, the data required and

produced by the choreography as a whole and of each

participant individually has to be identified by analyz-

ing the model instead of being directly visible through

its graphical representation. Another potentially useful

capability not supported at the moment, is that model-

ers should be able to express that multiple data objects

(semantically) belong together. This will improve the

visual expressiveness of the models regarding their data

perspective [15].

Moreover, binding cross-partner data flow to message

exchanges and therefore coupling it with the control flow

disallows the independent evolution of data and control

flow in choreography models. This coupling potentially

also results in unnecessary routing of data and blocking

of control flow of participants while data is exchanged.

The former means that data might be passed through

several consecutive message flows across participants

instead of directly exchanging it in a peer-to-peer man-

ner as soon it is available. The latter point addresses

the fact that while the data is exchanged through mes-

sage flow the receiving participants are blocked until

the message arrives. This is actually the result of an

inherent trade-off modelers have to make. On the one

hand, they can improve the data flow by introducing ad-

ditional message-based data exchanges to exchange the

data in a peer-to-peer manner and as soon as possible.

On the other hand, modelers can try to keep the num-

ber of message-based data exchanges minimal and only

pass all required data to another participant at once,

if the exchange of a message is anyhow required. The

first choice results in more complex and conversation-

4 Michael Hahn et al.

intensive models but reduces the time participants have

to wait for required data. The second choice results in

less complex and less conversation-intensive models but

increases the time participants have to wait for required

data because data is only exchanged in blocks at certain

points in time.

To sum up our discussion, when following the message-

based data exchange approach the exchange of data

during run time has to be specified completely upfront

at modeling time. Therefore, during run time it is hard

to optimize data exchange between participants since

all data exchanges are strictly expressed through mes-

sage flows. The only way to realize (more) dynamic

data capabilities using the message-based approach is

to introduce corresponding control flow logic already on

the level of the choreography models. The main draw-

back of this approach is that the models are polluted

with data management functionality that is not relevant

from a business perspective. Therefore, we are arguing

that such generic data management and exchange func-

tionality should be provided transparently by the run

time environment without the necessity to be explicitly

modeled in a choreography model.

3 The TraDE Approach

In this section, we introduce our concepts for modeling

and execution of data-aware choreographies through

TraDE. Therefore, we first have a look at the modeling

perspective and introduce the notion of cross-partner

data objects and data flow and how they tackle the

shortcomings discussed in Sect. 2. Based on that, we

will introduce our proposal for required run time support

for these new modeling constructs through a new TraDE

middleware component.

3.1 Modeling

Figure 2 shows our motivation example choreography

model with our concepts already applied. To enable the

specification of choreography data, representing a data

contract between the participants within a choreography

model, we introduce a choreography data model (CDM).

A CDM provides the foundation for data-awareness and

data-related capabilities in choreographies. It enables

to specify required data and its structures in a self-

contained and consolidated manner at a central location

in a choreography model. Therefore, a CDM consists

of a set of cross-partner data objects that express the

commonly agreed data of a choreography shared by

and accessible from all participants. To avoid confu-

sion between BPMN 2.0 data objects and cross-partner

input

D
E

output

F
G

A B

Legend

Cross-Partner
Data Flow

Data Element

Cross-Partner
Data Object

Figure 2 Example choreography with TraDE concepts applied.

data objects as a general concept, we use the term data
container as a language-independent name for a model-

ing construct that allows the specification of data, e. g.,

BPMN 2.0 data objects or BPEL variables. The model

of Fig. 2, makes it explicit which data the overall chore-

ography as well as each of its participant requires or

produces. The major advantage is that data required

by multiple participants of a choreography can be itself

modeled less redundantly. Moreover, its exchange can be

expressed more intuitively using cross-partner data flow

instead of specifying messages and corresponding tasks

or events to process them. Although each participant

can still have its own local data containers, cross-partner

data objects allow to model shared data which is as-

sociated to the whole choreography instead of a single

participant. By using cross-partner data objects, data

containers have to be modeled only once which nor-

mally need to be modeled multiple times in the scope of

different participants on the level of the choreography.

A cross-partner data object has a unique identifier

and contains one or more data elements. A data element

has a unique name, from the scope of its surrounding

data object, and a reference to a definition of its struc-

ture, e. g., using a simple, build-in type system or XML

Schema Definitions1. The idea of this single level of nest-

ing is that cross-partner data objects can be seen as

named envelopes for a collection of typed data contain-

ers, namely data elements, which semantically belong

together. Therefore, data elements hold the correspond-

ing data values during run time. We distinguish between

cross-partner data objects that can be instantiated only

once (single-instance) or that hold a collection of values

(multi-instance) during run time. Where multi-instance

cross-partner data objects are useful to hold a collection

of identically structured values that can be processed

1 W3C, XML Schema Definition Language (XSD) 1.1 Part 1:
Structures. Online: http://www.w3.org/TR/xmlschema11-1/

http://www.w3.org/TR/xmlschema11-1/

Modeling and Execution of Data-aware Choreographies 5

with the same sequence of tasks through a loop, while

the number of loop iterations is dynamically bound to

the size of the collection during run time.

Based on top of the notion of cross-partner data

objects, we introduce cross-partner data flow. The idea

is that modelers should be able to intuitively specify

data flow within and across participants. Furthermore,

cross-partner data flow allows decoupling the exchange

of data from the exchange of messages and therefore

from choreography control flow as shown in Fig. 2. As

participant internal data flow, cross-partner data flow

also supports the specification of transformation logic,

selective queries and mappings, e. g., to read or write

only parts of a data element or cross-partner data object

or multiple data elements at once. The only difference

between intra-partner and cross-partner data flow is

how the specified data flow is conducted during run

time, i. e., if the process engine executing a participants

private process or TraDE middleware is handling the

data exchange.

Regarding the modeling perspective, these two ex-

tensions, i. e., cross-partner data objects and data flow,

are enough to provide us the basis for an easier and

more intuitively specification and handling of data in

choreographies.

3.2 Refinement

At the end of the choreography modeling phase, we

are transforming modeled choreographies to a collection

of interconnected process models in order to execute

them [5]. The idea is to translate the introduced cross-

partner data objects into standard data containers on

the level of the private process models again. For ex-

ample, using data objects in BPMN 2.0 or variables in

BPEL. Using the specified choreography data model as

input, this can be done in an automated manner. Based

on that, we are able to reduce manual refinement efforts

on the level of the resulting private process models by

leveraging provided data-related knowledge to generate

more complete process models. The overall goal is that

modelers refining the private processes should not need

to know nor distinguish between local or globally shared

data containers. From the viewpoint of each private

process model, there is no difference between a data

container that is defined locally or globally. As a re-

sult, during refinement modelers can extend the process

model with additional private control flow and data flow

as usual.

To reflect the extensions to model the context to

which a data container belongs (data element of a cross-

partner data object) and to express if a data container is

defined locally or linked to a cross-partner data object on

the level of a process model, the modeling construct for

data containers of the underlying process language has

to be extended. In the case of BPMN 2.0 and BPEL the

extensibility of the languages can be used to introduce

new attributes and elements that can be associated with

the corresponding modeling constructs for data objects

or variables, respectively. These language extensions

can then be used by the process engine in order to

communicate with the TraDE middleware to realize the

modeled cross-partner data flow.

Figure 3 presents the refined example for the chore-

ography model from our motivation scenario. In the

Choreography Modeling Environment we can see the

data-aware choreography model which specifies two

cross-partner data objects and corresponding data flow.

The transformed and refined private process models of

the two participants are deployed to corresponding pro-

cess engines as depicted in the middle of Fig. 3. Each of

the two private process models contains corresponding

BPMN data objects that contain a link to the cross-

partner data object they represent (indicated by *).
Whenever the process engine reads or writes data from

or to these data objects, it invokes corresponding func-

tionality exposed by the TraDE middleware to query

or forward shared data from or to the middleware, re-

spectively. This allows us to share and exchange data

across multiple interacting parties as modeled through

the choreography but completely independent and de-

coupled from message flow. The resulting data contain-

ers are only placeholders referring to the actual cross-

partner data objects managed by the TraDE middleware

outside of the process engine. Therefore, the process en-

gines have to be extended in order to integrate with

the TraDE middleware and to support such placeholder

data containers.

3.3 Middleware

By the TraDE middleware we want to introduce new

degrees of freedom regarding the data perspective of

service choreographies. In general, TraDE acts as a

middleware layer supporting an easier management, ex-

change, and provisioning of shared data independent

of its processing within a service choreography or or-

chestration. Therefore, all cross-partner data objects are

exposed in a web-accessible manner through a REST

API. The major advantage is that each data object is

represented as a resource and can therefore be easily

accessed, referenced, and shared with others through a

Uniform Resource Locator (URL).

This is especially important for scientists who should

be supported with an accepted way to share data of

their simulation choreographies independent of the life

6 Michael Hahn et al.

P2
P1

P1
P2

Choreography Modeling Environment

Users

input

D
E

output

F
G

A B
A B

D*

E*

F*

D*

E*

G*

F*

G*

Process Engine

Process Engine

Legend

D* Linked Data Object

TraDE Middleware

input

D
E

output

F
G

Figure 3 Run time environment for data-aware choreographies with deployed motivation example choreography from Fig. 2.

time of a simulation instance. The TraDE middleware

will enable scientists to upload and provide simulation

input data, inspect and observe intermediary results

during the execution of a simulation (depicted in Fig. 3

by the arrow between the users and the middleware) or

enable the reuse of data from previous simulation runs

by simply provide a reference in form of a URL to it.

Outsourcing the data to the TraDE middleware de-

couples the life time of the data from the underlying

process instances and from the availability of the pro-

cess engines. This allows an easier reuse of data across

multiple instances of the same choreography model or

even across different choreography models that require

common data. Especially the fact that we are able to

share the data not only in the context of a choreography

and its interacting services, opens up completely new

ways of how data can be processed, provided and man-

aged in service choreographies. For example, using other

data-centric tools and systems to process or transform

the data in parallel to the execution of a choreography

to allow their use for other purposes. The logic can

therefore be triggered in an event-based manner using

the TraDE middleware as coordinator.

In contrast to the previously outlined positive ef-

fects and advantages of introducing cross-partner data

flow and decoupled data exchange through the TraDE

middleware, this causes also some negative side effects.

Whenever something is shared in a distributed context,

concurrency issues will arise. Since in our case data

and control flow are running in parallel, the probability

for concurrent access of shared data from different, po-

tentially not synchronized participants is much higher

than in classical scenarios. Therefore, modelers have

to pay attention to concurrency issues when specifying

cross-partner data flow. In future work, we will con-

duct a thorough analysis of potential concurrency issues

and cases for which we have to provide corresponding

mechanisms based on the state of the art.

4 Case Study

This section presents a case study from the domain of

eScience as an example how to apply our concepts to

an existing choreography model.

Figure 4 shows a choreography model of a Kinetic

Monte Carlo (KMC) simulation using the custom-made

simulation software Ostwald ripening of Precipitates on
an Atomic Lattice (OPAL) [4]. OPAL simulates the for-

mation of copper precipitates, i. e., the development of

atom clusters, within a lattice due to thermal aging.

The simulation consists of five major building blocks

which are reflected as participants of the choreography

depicted in Fig. 4. Following the choreography paradigm,

the conversations between the five participants are spec-

ified in a peer-to-peer manner through the exchange of

messages. The consumed and produced data is repre-

sented through BPMN data objects (DO). To exchange

data between participants the corresponding message

flow is specified. The labels on the message flows are

added to visualize which data objects of a participant

are exchanged during a conversation through a message.

The invocations of the different modules of the OPAL

simulation software are modeled through corresponding

service tasks. Since the OPAL simulation software was

originally programmed in Fortran using file-based data

exchange and not having service orientation in mind,

the software is provided as a set of executables each

representing one module of OPAL. To provide these

Modeling and Execution of Data-aware Choreographies 7

O
pa

lX
YZ

R

O
pa

lP
re

p

O
pa

lM
C

O
pa

lC
LU

S

O
pa

lV
isu

al

Process
Snapshot

Search
Atom

Clusters

Determine
Position
and Size

clusterssnapshot posSize

plot

video

Create
Plot

Create
Video

opal_in

lattice

Prepare
Input Files

energy

params

Run
Opal MC

Simulation

saturation

snapshotsopal_in

clusters

#opal_in,
#params,
#lattice

#clusters

#snapshot

#clusters,
#posSize

Visualize
Results

#snapshots,
#saturation

#video,
#plot

saturation

snapshots

plot

video

allPosSizes

allClusters

lattice

Service
Task

Data Object
Collection

Parallel
Gateway

#DO

Message
Flow

Exchanged
Data Object

Legend

Figure 4 Choreography conducting a thermal aging simulation from material science domain.

executables as services, they are manually wrapped to

enable their service-based invocation [24].

Whenever the OpalPrep participant receives a new

request message, a new simulation instance is created.

The initial request contains a set of parameters (params
DO), e. g., the number of snapshots to take, an initial

energy configuration (energy DO) and a lattice (lat-
tice DO). The Prepare Input Files service task sends

the parameters and the energy configuration to a ser-

vice which takes the data to consolidate and transform

it into the right input format (opal_in DO) for the

KMC simulation. After that, a message containing the

opal_in, params and lattice data is send to the OpalMC
participant to start the actual KMC simulation.

The Run Opal MC Simulation service task invokes

the corresponding service which conducts the KMC sim-

ulation based on the provided data. According to the

specified number of snapshots in params, the service

saves the current state of the atom lattice at a particu-

lar point in time as a snapshot and replies all snapshots

together (snapshots collection DO) as well as saturation

data (saturation DO). After that, the snapshots are

analyzed and visualized in parallel. Based on the num-

ber of snapshots, multiple instances of the OpalCLUS
and OpalXYZR participants are created through the

Process Snapshots service task. Each instance of the two

participants is analyzing one particular snapshot. The

OpalCLUS participant takes a snapshot and invokes

a corresponding service (Search Atom Clusters task)

which replies identified clusters (clusters DO) of the

snapshot. This cluster information is then forwarded to

the OpalXYZR participant which invokes a service (De-
termine Position and Size task) capable of identifying

the position and size of each cluster (posSize DO). After

that, the resulting cluster and position data is replied

back to the Process Snapshot task of the OpalMC partic-

ipant which collects the instance results into collection

data objects, i. e., allClusters and allPosSizes DOs.

In parallel to analyzing the snapshots, the Visual-
ize Results service task triggers the visualization of the

snapshot and saturation data through the OpalVisual
participant. The required data is passed through a mes-

sage and then used by the Create Video and Create Plot
service tasks to invoke corresponding services. Based

on the collection of snapshots, a video of animated 3D

scatter plots (Create Video task) is created and the satu-

ration data is used to create a 2D plot of the saturation

function of the precipitation process (Create Plot task).
Finally, the resulting media data is replied back to the

OpalMC participant which then completes the execution

of the simulation instance.

Figure 5 presents the same choreography using the

TraDE paradigm. All data relevant for the choreogra-

phy model is specified independently of any participant

and in a shared and reusable manner through cross-

partner data objects. This makes the data required and

produced by the choreography and each of its partic-

ipants more visible and easier to identify by human

readers. Furthermore, this also reduces the amount of

data objects and participant internal data flow leading

to less complex graphical models. The grouping of data

elements directly visually reflects data that is semanti-

cally related and belongs together, as for example the

sim_input data object containing all data elements pro-

viding simulation input data. Another benefit of this

grouping is that the whole collection of data elements

8 Michael Hahn et al.

O
pa

lX
YZ

R

O
pa

lP
re

p

O
pa

lM
C

O
pa

lC
LU

S

O
pa

lV
isu

al

Process
Snapshot

Search
Atom

Clusters

Determine
Position
and Size

allClusters[i]

Create
Plot

Create
Video

Prepare
Input Files

Run
Opal MC

Simulation
Visualize
Results

saturation

snapshots allPosSizesallClusters

snapshots[i]
allClusters[i] allPosSizes[i]

sim_input

energy
params

lattice
opal_in

sim_results

video
plot

Legend

query

Cross-Partner Data Flow

Selective
Query

Figure 5 Data-aware OPAL simulation choreography after applying TraDE concepts.

can be specified as the source or target of a data flow.

For example, the data flow between the start activity of

the OpalPrep participant and the sim_input data object

specifies that the request message contains data for mul-

tiple data elements. The data flow therefore specifies a

set of mappings how the data contained in the message

should be extracted and assigned to the respective data

elements. Furthermore, selective queries can be attached

to the cross-partner data flow in order to specify that

only parts of a cross-partner data object or even data

element are required. For example, each instance of the

OpalCLUS participant processes one snapshot from the

whole collection of snapshots (snapshots cross-partner
data object) which is specified through the selective

query attached to the data flow (snapshots[i]).

The routing of data through consecutive participants

is improved compared to the classical version of the

model shown in Fig. 4. Instead of routing cluster data

from the OpalCLUS participant through the OpalXYZR
participant to the OpalMC participant, with the data-

aware paradigm it is directly stored in the globally

shared allClusters cross-partner data object. The advan-

tage is that other services requiring this data can directly

retrieve it from the shared data object instead of waiting

for a corresponding message. Furthermore, by using the

introduced capabilities of the data-aware paradigm, sci-

entists are able to inspect each of the identified clusters

as soon as they are added to the allClusters data object

while the processing of the remaining snapshots is still

running. Instead of sending all required input data en-

capsulated in the initial request message to trigger a new

simulation instance, scientists are also able to upload

data such as the initial lattice to the TraDE middleware

beforehand and then only pass a reference to this data

within the request message. This is especially useful if

the same data is used for multiple simulation runs, e. g.,

in the context of a parameter study where it does not

make sense to send the same data multiple times over

the network, if this is not really required in terms of

other reasons. The same applies the other way around,

e. g., for the resulting video. Instead of routing data

through several participants, the resulting video will be

directly stored from the OpalVisual participant to the

shared sim_results data object from where it can then

be downloaded through the TraDE middleware even

after the simulation instance is completed.

5 System Architecture

Figure 6 presents the overall architecture of the software

system enabling the modeling and enactment of data-

aware service choreographies. Each participant has a

Choreography and Orchestration Modeling Environment
to model his part of the overall choreography. The mod-

eling environment supports the transformation of the

choreography model to a set of private process models

where each of them is further refined by a modeler to an

executable process model. The introduced TraDE facili-

ties are integrated into the modeling environment and

enable the specification of a choreography data model

Modeling and Execution of Data-aware Choreographies 9

Choreography &
Orchestration

Modeling Environment

Process Engine

TraDE
Middleware

Users

Services

Data Source

Figure 6 System architecture of a modeling and run time en-
vironment for data-aware choreographies supporting the TraDE
approach.

with cross-partner data objects and data flow and their

transformation to the level of the process models.

To enable the execution of a choreography its pri-

vate process models are deployed to process engines.

The choreography model is in addition deployed to the

TraDE middleware to provide the shared data of the

choreography. The TraDE middleware is therefore not a

single centralized component, but rather a collection of

multiple independent and decentralized nodes forming

a distributed system where the whole network of nodes

is experienced as one single coherent middleware. The

overall goal is to efficiently place and provide data and

to use the TraDE middleware as a platform to apply for

further optimizations on data flow across participants

during run time. For example, data can be pro-actively

transferred, as soon as it is available, between partici-

pants based on available knowledge extracted from the

models (e. g., analyzing data dependencies) or auditing

information from previous choreography executions. The

idea is that data are already available as near to the tar-

get participant as possible and before the corresponding

control message is exchanged between the participants.

During choreography execution, the process engines

responsible for the participant processes, conduct the

modeled conversations through the exchange of messages

that transport data or invoke corresponding services. In

addition, the process engines are also communicating

with the TraDE middleware in terms of handling the

modeled cross-partner data flow between participants.

Furthermore, as depicted by the dashed lines in Fig. 6,

the TraDE middleware also allows users and other ser-

vices to access and provision data through its API. In

terms of services, this allows a process engine to pass

data by reference in a request message, in case the cor-

responding service is aware of the TraDE middleware.

Users will be able to upload their data for its processing

within a choreography or process instance as well as to

inspect data available at the middleware. To support

the retrieval and storing of data of cross-partner data

objects from and to heterogeneous external data sources,

existing concepts and mechanisms [16, 22] can be inte-

grated into the TraDE middleware. The integration of

corresponding functionality into the TraDE middleware

improves the provisioning and persistence of shared data

since data can then be automatically retrieved from and

stored into various data sources.

6 Prototypical Implementation

We are building on existing tools: The Chor Designer [25]

and an extended version of the BPEL Designer2 both be-

ing Eclipse-based graphical editors for BPEL4Chor and

BPEL, respectively. The resulting Eclipse-based mod-

eling environment also provides required model trans-

formation logic [21] in order to generate a collection

of BPEL process models out of a given BPEL4Chor

choreography model.

An extended version of the open source BPEL engine

Apache Orchestration Director Engine (ODE)3 is used

as process engine. To support the reading and writing of

cross-partner data objects, we extended the underlying

implementation of Apache ODE and integrated it with

our TraDE middleware.

The TraDE middleware itself is a Java-based web

server which exposes its functionality through a REST

API. At the moment, we support a single-node deploy-

ment of the TraDE middleware, but for future work, we

are planing to support also multi-node deployments.

7 Related Work

Our focus is on existing works following also the goal

of improving data-awareness and data-related capabili-

ties for the modeling and execution of choreographies.

Therefore, we follow the arguments of Meyer et al. [15]

that data-related aspects or data-awareness in general

should only be supported to the degree actually required

in the domain or scope in which a modeling language

is used. Since our focus is on improving and extending

the role of data in classical control flow driven choreog-

raphy and process modeling languages such as BPMN,

BPEL4Chor, and BPEL, we focus on corresponding

related work following the same paradigm. This means

the specification of control flow remains the main part

of choreography and process modeling while further sup-

port for data and data flow modeling is added. However,

for the sake of completeness, we also shortly outline

2 The Eclipse Foundation, BPEL Designer Project: http://

www.eclipse.org/bpel/
3 The Apache Software Foundation, Apache ODE: http://

ode.apache.org

http://www.eclipse.org/bpel/
http://www.eclipse.org/bpel/
http://ode.apache.org
http://ode.apache.org

10 Michael Hahn et al.

other potentially related approaches yet following an-

other paradigm and therefore not discussed in detail in

the context of this work.

Modeling languages following the artifact-centric
modeling paradigm consider business data and how it

evolves and is changed within a process as the main

driver. Therefore, the focus changes from modeling con-

trol flow with associated data to modeling data with

associated control flow, specifying the actions performed

on data. Examples for corresponding artifact-centric

modeling approaches are business artifacts [18] or case
handling [1].

Lohmann and Wolf [14] apply the paradigm of busi-

ness artifacts on the level of choreographies to model

collaborations from a data perspective. Therefore, they

provide a systematic approach to specify relevant data

as artifacts and a set of agents that are operating on that

data in the context of a collaboration. By enhancing

artifacts with location and remote access information

they are then able to derive an overall interaction model.

Furthermore, Lohmann and Nyolt [13] investigate to

what extend BPMN can be used or requires extensions

in order to support modeling of artifact-centric processes

and choreographies. Although we support the author’s

arguments to make data more prominent and increase

modeling support in choreography and process models,

we still rely on control flow as the main driver for pro-

cesses and related established standards such as BPMN

and BPEL.

Knuplesch et al. [9, 10] introduce the notion of data-

aware process interaction models as a means to model

data-aware choreographies. Their goal is to enrich in-

teraction models with a data perspective as a means

to explicitly consider data being exchanged through

messages between participants and also used for rout-

ing decisions while ensuring correctness of the resulting

models. Therefore, they define a formal framework and

specific correctness criteria for Data-Aware Choreogra-
phies (DAChor) while their behavior is described using

elements of Interaction Petri Nets and Workflow Nets
with Data. Although the authors concentrate on the

modeling and correctness of data-aware choreographies,

our focus is more on the improvement of data-awareness

during run time. Similar to our cross-partner data ob-

jects, the authors introduce so-called virtual data objects.
However, the exchange of actual business data is still

message-based and virtual data objects only allow to

share states across participants to support data-based

routing decisions.

The model-driven approach by Meyer et al. [16] sup-

ports the modeling and enactment of data exchange

in choreographies using messages. The authors propose

an extension of the BPMN modeling language by in-

troducing annotations on BPMN data objects which

are then automatically transformed into SQL queries to

specify and enact message extraction from and message

storage to local databases. This enables the complete

automation of data exchange between participants and

the enrichment of model transformations with data-

related aspects. We fully support the authors arguments

that the collaborating partners should specify the ex-

changed data and its structure in a commonly agreed

global data model already on the level of a choreography

model. However, instead of directly binding data objects

to databases on the level of the models, our approach

introduces the TraDE middleware as an abstraction

layer. This allows us to support also other domains, e. g.,

eScience where data is commonly stored and exchanged

through files in different formats. Moreover, we decouple

the exchange of data from the exchange of messages to

simplify modeling and improve run time flexibility of

choreographies regarding their data perspective.

Barker et al. [2] define MAP as new language for

executable service choreographies. For the enactment an

open source framework and the concept of peers is intro-
duced. A peer provides extra functionality that enables

web services to participate in a choreography without

requiring to adapt the underlying service implementa-

tions. The main difference is the introduction of a new

modeling language and run time environment instead

of building on top of existing standardized languages

and tools. Furthermore, Barker et al. [3] introduce the

Circulate approach that combines the advantages of both

paradigms: orchestration and choreography. Although

the control flow remains orchestration-based, the data

flow is conducted in a choreography-based manner. In

order to enable services to transfer data between each

other, proxies are introduced to provide the required

functionality. Therefore, a proxy acts as an intermedi-

ary between the process engine and the actual services

during service invocations. Consequently, the process

engine triggers the invocation of services and the ex-

change of data between services through a proxy. In

general, we are following a similar approach by apply-

ing the public-to-private technique and introducing the

TraDE middleware to decouple the data flow from the

control flow. However, instead of explicitly modeling the

invocation of proxies and data exchange through them,

we propose to introduce cross-partner data objects and

data flow. Translated to corresponding annotations on

the level of process models, the process engine is then

able to transparently enact the data flow together with

the TraDE middleware which serves as data flow coordi-

nator. As a result, process models are enriched instead

of changed and the coordination of cross-partner data

flow is outsourced to the TraDE middleware instead

Modeling and Execution of Data-aware Choreographies 11

of explicitly specified in process models. The former

preserves the portability of the models on run time

environments without TraDE support and the latter

provides more flexibility and optimization possibilities

during run time.

An approach similar to some of our discussed ideas,

but with focus on the level of process models and BPEL

in particular, is provided by Habich et al. [7]. They try

to overcome the issue of centralized and only implicitly

specified data flow in BPEL through variables and as-

sign activities and the resulting by value semantics of

data exchange. Therefore, they combine their concept

of Data-Grey-Box Web Services with an extension of

BPEL through so-called BPEL data transitions. The
former allow to enhance web service interfaces with an

explicit data aspect allowing the separation of parame-

ters passed by value and data passed by reference. The

latter support the annotation of BPEL processes with ex-

plicit data flows between the composed Data-Grey-Box

Web Services. Both concepts together allow to integrate

specialized data propagation tools and logic, e. g., spec-

ified using Extract Transform Load (ETL) tools, as a

means to implement the specified data transitions and

act as mediators between Data-Grey-Box Web Services

during run time to provide and resolve data by reference.

Although the authors propose to introduce explicit data

flow on the level of BPEL, we argue that data flow can

be specified easier and more intuitive on the level of a

choreography showing all participants of a service com-

position and not only a centralized view as on the level

of BPEL or process models in general. Furthermore,

while we also aim at supporting the exchange of data by

reference, our overall goal is to hide as much as possible

of the data flow related logic on the level of the process

models by outsourcing the required functionality to the

TraDE middleware. Therefore, the TraDE middleware

can be used to propagate and resolve data by refer-

ence as well as an integration layer for specialized data

propagation tools and logic.

The essential flow model [11] tackles the issue that

modelers have to decide early which paradigm they

follow when modeling collaborations. By following the

orchestration paradigm the whole collaboration is spec-

ified within one consolidated process model where all

tasks are connected through control flow. By follow-

ing the choreography paradigm the collaboration can

be split into multiple interacting process models where

tasks from different models are connected through mes-

sage flow. This imposes not only restrictions during

modeling, but also on the IT infrastructure for the exe-

cution of the resulting collaboration models. The notion

of essential flow models allows to defer the decision how

to split and organize a collaboration to a later phase.

It enables modelers to specify their collaborations by

modeling essential flows between tasks and responsible

partners. Based on that, an essential flow model can

be mapped and implemented in different ways, e. g., as

orchestration or choreography, taking the target IT in-

frastructure into account. The authors idea of removing

the burden from modelers to distinguish between and

decide on local or remote control flow, i. e., message

flow, is similar to our approach regarding data flow. Al-

though the authors do not take data flow into account,

the notion of essential flow models will be useful as

an abstraction technique and entry point for specifying

data-aware service choreographies.

8 Conclusions and Outlook

The importance of data-awareness and its effect on the

BPM domain is increasing. A more prominent role of

data in service compositions is therefore a must in order

to benefit from these developments. In this work, we

motivated and discussed our vision of data-aware service

choreographies aiming at improving data modeling ca-

pabilities and data-awareness during both modeling and

run time. The results of the discussion are used as a basis

for our proposal of corresponding modeling extensions,

namely cross-partner data objects and data flow. Since

most of the existing approaches concentrate on model-

ing or execution aspects only, our goal is to provide an

end-to-end approach together with a supporting mod-

eling and run time environment for data-aware service

choreographies. Therefore, we introduced a correspond-

ing system architecture which supports the proposed

modeling extensions and new run time capabilities of

data-aware service choreographies followed by a brief

description of our prototypical implementation of this

architecture.

In future work, we are planning to support dis-

tributed, multi-node deployments of the TraDE mid-

dleware towards the goal of identifying and enabling

further data flow optimization possibilities. Since this

increases the level of concurrency from a data perspec-

tive, we therefore will conduct a thorough analysis of

potential issues and cases for which we have to provide

corresponding synchronization and scheduling mecha-

nisms. Furthermore, we plan to provide a Web UI for

the TraDE middleware in order to enable its use for

human users. Regarding the modeling perspective, we

will define a formal framework for data-aware service

choreographies and corresponding algorithms to enable

modelers to seamlessly translate data-aware choreogra-

phy models into standards-based models and vice versa.

12 Michael Hahn et al.

Acknowledgements This research was supported by SimTech
(EXC 310/2) and SmartOrchestra (01MD16001F).

References

1. van der Aalst WMP, Weske M, Grünbauer D (2005)

Case handling: a new paradigm for business process

support. Data & Knowledge Engineering 53(2):129–

162

2. Barker A, Walton C, Robertson D (2009) Chore-

ographing Web Services. IEEE Transactions on Ser-

vices Computing 2(2):152–166

3. Barker A, Weissman JB, Van Hemert J, et al (2012)

Reducing Data Transfer in Service-Oriented Archi-

tectures: The Circulate Approach. IEEE Transac-

tions on Services Computing 5(3):437–449

4. Binkele P, Schmauder S (2003) An atomistic Monte

Carlo simulation of precipitation in a binary system.

Zeitschrift für Metallkunde 94(8):858–863

5. Decker G, Kopp O, Barros A (2008) An Introduc-

tion to Service Choreographies. Information Tech-

nology 50(2):122–127

6. Decker G, Kopp O, Leymann F, Weske M (2009)

Interacting services: from specification to execution.

Data & Knowledge Engineering 68(10):946–972

7. Habich D, Richly S, Preissler S, Grasselt M, Lehner

W, Maier A (2008) BPELDT - Data-Aware Ex-

tension for Data-Intensive Service Applications. In:

Emerging Web Services Technology, vol II, Springer

8. Hahn M, Karastoyanova D, Leymann F (2016) A

Management Life Cycle for Data-Aware Service

Choreographies. In: Proceedings of ICWS’16, IEEE

Computer Society

9. Knuplesch D, Pryss R, Reichert M (2012) Data-

aware interaction in distributed and collaborative

workflows: Modeling, semantics, correctness. In: 8th

International Conference on Collaborative Comput-

ing: Networking, Applications and Worksharing,

IEEE, pp 223–232

10. Knuplesch D, Pryss R, Reichert M (2012) A for-

mal framework for data-aware process interaction

models. Open Access Repository of University Ulm

11. Kopp O, Leymann F, Unger T, Wagner S (2011)

Towards The Essential Flow Model. In: Proceed-

ings of ZEUS’11, CEUR-WS.org, CEUR Workshop

Proceedings, vol 705, pp 26–33

12. Kopp O, Leymann F, Wagner S (2011) Modeling

Choreographies: BPMN 2.0 versus BPEL-based

Approaches. In: EMISA 2011, GI, LNI

13. Lohmann N, Nyolt M (2011) Artifact-centric Mod-

eling Using BPmn. In: International Conference on

Service-Oriented Computing, Springer, pp 54–65

14. Lohmann N, Wolf K (2010) Artifact-centric chore-

ographies. In: International Conference on Service-

Oriented Computing, Springer, pp 32–46

15. Meyer A, Smirnov S, Weske M (2011) Data in Busi-

ness Processes. Technical Report 50, HPI, Univer-

sity of Potsdam

16. Meyer A, Pufahl L, Batoulis K, Fahland D, Weske

M (2015) Automating Data Exchange in Process

Choreographies. Information Systems

17. Meyer S, Sperner K, Magerkurth C, Pasquier J

(2011) Towards Modeling Real-world Aware Busi-

ness Processes. In: Proceedings of WoT’11, ACM,

pp 81–86

18. Nigam A, Caswell NS (2003) Business artifacts: An

approach to operational specification. IBM Systems

Journal 42(3):428–445

19. OASIS (2007) Web Services Business Pro-

cess Execution Language Version 2.0. URL

http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.html

20. OMG (2011) Business Process Model And Notation

(BPMN) Version 2.0. URL http://www.omg.org/

spec/BPMN/2.0/

21. Reimann P, Kopp O, Decker G, Leymann F

(2008) Generating WS-BPEL 2.0 Processes from a

Grounded BPEL4Chor Choreography. Technischer

Bericht 2008/07, Universität Stuttgart

22. Reimann P, Reiter M, Schwarz H, Karastoyanova

D, Leymann F (2011) SIMPL-A Framework for

Accessing External Data in Simulation Workflows.

In: BTW, Citeseer, vol 11, pp 534–553

23. Schmidt R, Möhring M, Maier S, Pietsch J, Härting

RC (2014) Big Data as Strategic Enabler - Insights

from Central European Enterprises. In: Business

Information Systems, LNBIP, vol 176, Springer In-

ternational Publishing, pp 50–60

24. Sonntag M, Hotta S, Karastoyanova D, Molnar

D, Schmauder S (2011) Using Services and Ser-

vice Compositions to Enable the Distributed Exe-

cution of Legacy Simulation Applications. In: Ser-

viceWave’11, Springer, pp 1–12

25. Weiß A, Andrikopoulos V, Gómez Sáez S, Karas-

toyanova D, Vukojevic-Haupt K (2013) Modeling

Choreographies using the BPEL4Chor Designer.

Technical Report 2013/03, University of Stuttgart

26. Zimmermann O (2016) Microservices tenets. Com-

puter Science - Research and Development pp 1–10

All links were last followed on July 21, 2017.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/

	Introduction
	Motivation and Discussion
	The TraDE Approach
	Case Study
	System Architecture
	Prototypical Implementation
	Related Work
	Conclusions and Outlook

