
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

TOSCA: Portable Automated Deployment and
Management of Cloud Applications

Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

© 2014 Springer-Verlag.
The original publication will be available at www.springerlink.com

Institute of Architecture of Application Systems

@inbook {INBOOK-2014-01,
 author = {Tobias Binz and Uwe Breitenb{\"u}cher and Oliver Kopp
 and Frank Leymann},
 chapter = {{TOSCA}: Portable Automated Deployment and Management of
 Cloud Applications},
 booktitle = {Advanced Web Services},
 address = {New York},
 publisher = {Springer},
 pages = {527--549},
 month = {January},
 year = {2014},
 doi = {10.1007/978-1-4614-7535-4_22},
 isbn = {978-1-4614-7534-7}
 }

:

http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22

TOSCA: Portable Automated Deployment and
Management of Cloud Applications

Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

Abstract Portability and automated management of composite applications are major
concerns of today’s enterprise IT. These applications typically consist of heteroge-
neous distributed components combined to provide the application’s functionality.
This architectural style challenges the operation and management of the application
as a whole and requires new concepts for deployment, configuration, operation, and
termination. The upcoming OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA) standard provides new ways to enable portable auto-
mated deployment and management of composite applications. TOSCA describes the
structure of composite applications as topologies containing their components and
their relationships. Plans capture management tasks by orchestrating management
operations exposed by the components. This chapter provides an overview on the
concepts and usage of TOSCA.

Tobias Binz
University of Stuttgart, IAAS, Universitätsstr. 38, 70569 Stuttgart, Germany, e-mail: binz@iaas.
uni-stuttgart.de

Uwe Breitenbücher
University of Stuttgart, IAAS, Universitätsstr. 38, 70569 Stuttgart, Germany, e-mail:
breitenbuecher@iaas.uni-stuttgart.de

Oliver Kopp
University of Stuttgart, IAAS, Universitätsstr. 38, 70569 Stuttgart, Germany, e-mail: kopp@iaas.
uni-stuttgart.de

Frank Leymann
University of Stuttgart, IAAS, Universitätsstr. 38, 70569 Stuttgart, Germany, e-mail: leymann@
iaas.uni-stuttgart.de

1

binz@iaas.uni-stuttgart.de
binz@iaas.uni-stuttgart.de
breitenbuecher@iaas.uni-stuttgart.de
kopp@iaas.uni-stuttgart.de
kopp@iaas.uni-stuttgart.de
leymann@iaas.uni-stuttgart.de
leymann@iaas.uni-stuttgart.de

2 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

1 Introduction

The increasing use of IT in almost any part of today’s enterprises leads to a steadily
increasing management effort, a challenge for enterprises as each new system or
technology increases the degree of complexity (Garbani et al, 2010). This can be
tackled by automation of IT management or by outsourcing to external providers
(Leymann, 2011), which are both enabled and supported by cloud computing.

In recent years, cloud computing introduced a new way of using and offering
IT software, platforms, and infrastructure services (Mell and Grance, 2009). The
“utility-like” offering of these services and flexible “pay-per-use” pricing are similar
to how resources such as electricity and water are offered today (Leymann, 2011):
Applications and other IT resources such as compute and storage must not be bought
upfront and managed by the enterprise on its own, but can be simply requested
when the respective functionality is actually needed—without dealing with the
complexity of management, configuration, and maintenance. Therefore, enterprises
move from a model of capital expenditure (CAPEX) to operational expenditure
(OPEX) (Armbrust et al, 2009). These approaches are expected to change the way
how enterprises use and think about IT and may even relieve them from owning their
own IT environment, which could be seen as the “next revolution in IT” (Leymann,
2009). Not only Gartner considers the efficient use of cloud computing as one of the
key success factors for enterprises (Gartner, 2010). From a provider’s perspective,
automating the management of the offered services is of vital importance, because
management and operation of IT is one of the biggest cost factors today—in terms of
money and time. The ability to offer services which are elastic, self-serviced, rapidly
provisioned, and priced based on actual consuption (pay-as-you-go) depends on the
degree of automation of management. Thus, the management has to be organized
in an industrial manner, i. e., shared throughout a number of customers and tenants
(Leymann, 2011).

Enterprise applications are typically complex composite applications, which con-
sist of multiple individual components, each providing a clearly distinguishable piece
of functionality. The functionality of the involved components is aggregated and
orchestrated into a composite application providing a higher-level of functionality.
Components typically have relationships to other components. For instance, a Web
server component runs on an operating system component or an application connects
to a database and external services. These composite enterprise applications typically
rely on modular, component based architectures, which benefit from cloud technolo-
gies and properties such as elasticity, flexibility, scalability, and high availability
(Armbrust et al, 2009; Buyya et al, 2009; Varia, 2010a,b). The different compo-
nents involved need to be managed in terms of deployment, configuration, quality of
service, and their communication to other components. The management becomes
time-consuming and error-prone if the application structure, i. e., its components
and relations, are not documented in a well-defined, machine-readable format. The
management is often done manually by executing scripts or even completely manual
work, which hinders automation, repeatability, and self-service.

TOSCA: Portable Automated Deployment and Management of Cloud Applications 3

To enable the creation of portable cloud applications and the automation of their
deployment and management, the application’s components, their relations, and
management must be modeled in a portable, standardized, machine-readable format.
This is where TOSCA—the Topology and Orchestration Specification for Cloud
Applications (OASIS, 2012)—proposes an XML-based modeling language tackling
these issues by formalizing the application’s structure as typed topology graph and
capturing the management tasks in plans. In the scope of IT service management
in general and cloud computing in particular, three problems are addressed by
TOSCA: (1) automated application deployment and management, (2) portability
of applications and their management, and (3) interoperability and reuseability of
components. An overview on TOSCA and how TOSCA addresses these challenges
is provided in Sect. 2. After presenting the details of TOSCA in Sect. 3, we describe
the supporting ecosystem in Sect. 4. In Sect. 5, we discuss how TOSCA achieves
portability of composite cloud applications and what to do to improve portability of
a TOSCA application. Finally, we close with our conclusions in Sect. 6.

2 Overview on TOSCA

TOSCA is an upcoming OASIS standard to describe composite (cloud) applications
and their management. It provides a standardized, well-defined, portable, and modular
exchange format for the structure of the application’s components, the relationships
among them, and their corresponding management functionalities. In this section,
we provide a brief overview on the main concepts (Sect. 2.1) and which challenges
in the are of cloud computing are addressed by TOSCA (Sect. 2.2).

2.1 Main Concepts of TOSCA

TOSCA enables full automated deployment, termination, and further management
functionalities, such as scaling or backing up applications through the combination
of the two TOSCA main concepts: (1) Application topologies and (2) management
plans. Application topologies provide a structural description of the application,
the components it consists of and the relationships among them. Each node is
accompanied with a list of operations it offers to manage itself. Thus, the topology is
not only a description of the application’s components and their relations, but also an
explicit declaration of its management capabilities. Management plans combine these
management capabilities to create higher-level management tasks, which can then be
executed fully automated to deploy, configure, manage, and operate the application.
Figure 1 presents an abstract TOSCA-based application description, showing the two
TOSCA main concepts and their relation: The application topology contains nodes,
which are connected by relationships. Management plan are started by an external
message and call management operations of the nodes in the topology.

4 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

Node

Application Topology

calls
Node

Management Plans

Relationship

Management
Operation

TOSCA-based Application Description

X

Fig. 1 Relation of TOSCA Concepts

2.2 Challenges Addressed by TOSCA

In the area of cloud computing, there is a number of research challenges (cf. Dillon
et al (2010); Khajeh-Hosseini et al (2010)). This section discusses three major chal-
lenges and how TOSCA addresses them, namely ensure the portability of applications
(Sect. 2.2.1, enable the automated management of applications (Sect. 2.2.2), and
allow interoperability and reusability of application components (Sect. 2.2.3).

2.2.1 Automated Management

The management of applications plays an important role in enterprise IT (see Sect. 1).
Especially external solutions impose the problem that the respective management
knowledge must be acquired by each user, which usually results in slow and error
prone manual mangement. TOSCA aims to formally capture the knowledge of the
creator of the IT solution, who has all the knowledge of the solution’s internals and
proven best practices, in management plans (Binz et al, 2012). These plans make the
management of complex enterprise applications automated, repeatable, traceable, and
less error prone. Users can easily fulfil management tasks without deep knowledge
on how to manage the IT solution.

Management plans are portable between various environments and can be executed
fully automated to support self-service management and rapid elasticity, both major
requirements in cloud computing today. TOSCA enables these capabilities by using
workflows to define management plans: Workflows provide the properties portability
and fully automated execution (Leymann and Roller, 2000).

TOSCA: Portable Automated Deployment and Management of Cloud Applications 5

2.2.2 Portability of Applications

Current technologies and cloud providers usually define proprietary APIs to man-
age their services. Thus, moving an application based on these technologies to
another provider requires rebuilding management functionalities and often even re-
implementing parts of the application, if they use proprietary APIs offered only by the
former provider. This is called vendor lock-in, which is the fact that the investment
to switch from one provider to another provider is too expensive for a customer to
be done economically. There is current research on technologies abstracting from
concrete APIs towards a unified interface for different APIs in order to reduce the
problem of vendor lock-in, for example the work by Petcu et al (2011). This may
prevent vendor lock-in on the lower level but the user is then locked into this unified
API, if, for instance, the unified API does not support certain providers. Research on
this issue has already proposed solutions for supporting movability and migration of
applications on a functional level, but especially application portability in terms their
(automated) management is still a big problem (Petcu et al, 2012; Binz et al, 2011;
Leymann et al, 2011). TOSCA achieves portability by fomalizing the application
topology as well as its management in a self-contained way. Each component de-
fines and implements its management functionality in a portable way. How TOSCA
achieves portability is discussed in detail in Sect. 5.

2.2.3 Interoperability and Reusability of Application Components

TOSCA aims to enable the interoperability and reusability of application components
such as Web servers, operating systems, virtual machines, and databases. These com-
ponents are defined in a reusable manner by the developers, providers, or third parties
together with their executables. Components of different providers do not stand on
their own, as TOSCA enables combining them into new composite applications.
Thus, TOSCA enables defining, building, and packaging the building blocks of an
application in a completely self-contained manner. This allows a standardized way to
reuse them in different applications.

3 TOSCA in Detail

TOSCA conceptually consists of two different parts: (1) The structural description of
the application, called topology, and (2) the standardized description of the applica-
tion’s management by plans. These concepts are explained in Sections 3.1 and 3.2
in detail. Instantiating the topology requires software files such as installables. In
TOSCA, required software files, the topology and the management plans are pack-
aged into one TOSCA archive. Section 3.3 describes this packaging. Section 3.4
describes an application topology example with a respective management plan for
deploying the exemplary application.

6 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

3.1 TOSCA Application Topologies

Web Shop
(PHP Application)

PHP Container
(Apache PHP Module)

Web Server
(Apache)

Operating System
(Windows 2003 Server)

Server
(IBM Z Series)

deployedOn

installedOn

installedOn

hostedOn

Fig. 2 Conceptual
Layers of TOSCA-
based Applications

In TOSCA, the structure of a composite application is explic-
itly modeled by a colored graph called “application topology”.
Vertices represent the components of a composite application,
edges represent different kinds of relations between these com-
ponents. Relations may be, for example, one component is
“hosted on”, “depends on”, or “communicates with” another
component. Figure 2 shows a PHP example topology deliv-
ering a PHP Web shop: A Windows 2003 Server operating
system is hosted on an IBM server. Thereon, an Apache Web
server is installed together with the PHP module on which the
PHP application is deployed.

Vertices and edges in the topology may define additional
properties, the management operations they offer, the artifacts
required to run the component, or non-functional requirements.
It is important to note that TOSCA does not only define the
functional aspects of vertices and edges, i. e., providing a cer-
tain business functionality such as a Web service implemen-
tation, but in addition defines their management operations,
for example, how to setup the component, establish a relation,
deploy artifacts, scale-up, or backup. These management func-
tionalities are reflected in the topology model and are the basis
for the automated management concept of TOSCA, which is
described in Sect. 3.2.

Figure 3 presents the structural elements of a Service Template: The Topology
Template, Node Templates, Relationship Templates, and their types. The term “tem-
plate” is used to indicate that it may be instantiated more than once and does not
reflect the existing infrastructure. Each template is associated with a type, which
defines the semantics of the template.

The layers of the topology are discussed in detail in Section 3.1.1. Section 3.1.2
details Node Types and Relationship Types. Node Templates and Relationship Tem-
plates are detailed in Sect. 3.1.3.

3.1.1 Conceptual Layers of TOSCA

To enable a clear understanding of TOSCA it is important to distinguish three
conceptual layers as shown in Fig. 4: TOSCA defines a metamodel and exchange
format for (1) types and (2) templates, which results in a third layer, the (3) instance
layer, which depends on the TOSCA runtime (discussed in Sect. 4.2).

The metamodel layer defines Node Templates, which represent components, and
Relationship Templates, representing the relations among the components, e. g., a
“hosted on” relationship is used to define that a Web server component is hosted on

TOSCA: Portable Automated Deployment and Management of Cloud Applications 7

Node
Template

Pr
op

er
tie

s Interfaces

Topology Template

type

Node Type

Relationship
Template

Service Template

type

Pr
op

er
tie

s Relationship Type

Node
Template

Node
Template

Management Plan

X

Fig. 3 General Structure of TOSCA Service Template (adapted from OASIS (2012))

NodeType RelationshipType

NodeTemplate RelationshipTemplate

NodeInstance RelationshipInstance

Types

Templates

Instances

TOSCA
Metamodel

templateOfType templateOfType

instanceOfTemplate instanceOfTemplate

Fig. 4 Conceptual Layers of TOSCA-based Applications

an operating system component. These templates are typed with reusable types, i. e.,
Node Type for Node Templates and Relationship Type for Relationship Templates,
respectively. These types are conceptually comparable to abstract classes in Java,
whereas the templates are comparable to concrete classes extending these abstract
classes.

The instance-layer represents the real instances of the components and relation-
ships defined by templates. Thus, an instance of a Web server Node Template is a
real existing instantiated Web server node, i. e., several instances may be created in
“the real world”.

8 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

3.1.2 Node Types and Relationship Types

This section describes the information TOSCA offers to specify at Node Types and
Relationship Types.

Properties of Node Instances. A node instance may have properties. Therefore,
the respective Node Type references an XSD element (or type, W3C (2004)) declar-
ing the schema for the actual property document. Properties are runtime information
such as IP address, username, configuration, ports, and all other information required
for deployment and management of the application. XSD supports lists and other
complex structures, which basically allows to store all kind of information. In addi-
tion, XSD defines a strict schema for the resulting properties which can be used for
validation. Templates are capable to define property defaults used at instantiation,
for instance, the default port or username of the administrative interface. Support
for reading and writing the properties is offered by a TOSCA container, which is
explained in Sect. 4.2.

Deployment Artifacts. Deployment Artifacts specify the actual implementation
of a Node Type. For example, an operating system type may have an image as De-
ployment Artifact and a Web server Node Type a Tomcat servlet container installable.
During deployment of the application, the Deployment Artifacts are put onto the
respective node. The concrete deployment procedure is not defined in the TOSCA
topology. It is up to the management plans and management operations of the nodes.

Lifecycle Definition. Relationship instances and node instances may be in dif-
ferent states which aggregate the complex internal state of the instance. Example
states are starting, running, stopping, and error. During runtime, each instance is in
one of these states. The transition between the states is not described in a TOSCA
model itself: The management plans and management operations trigger transitions
between the states. A TOSCA model defines, however, which states are possible in
general: The possible states are defined as URIs in the respective types.

Management and Implementation Artifacts. Each hardware and software com-
ponent offers explicit and implicit management capabilities. Explicit capabilities
are startup parameters, configuration files, management interfaces, hardware buttons
and so on. Implicit capabilities are descriptions of how to backup the application by
copying a certain file, for instance. Offered operations include deployment operations,
which are the deployment of an application on an application server or instantiating
a new virtual machine, for instance. Further operations are offered for the manage-
ment of an application, for example, upgrade, backup, scale up, and configure. A
new concept introduced by TOSCA is that management capabilities of Node Types
and Relationship Types are explicitly defined as REST-Service (Fielding, 2000),
WSDL-service (Curbera et al, 2005), or scripts (Ousterhout, 1998). However, not all
management capabilities of nodes are accessible that way. This is either because of
technical reasons, such as incompatible protocols, or due to logical reasons, such

TOSCA: Portable Automated Deployment and Management of Cloud Applications 9

as the operation being part of a composed operation. Management plans require
standardized interface descriptions to be able to access management operations (see
Sect. 3.2). Offering management capabilities not directly accessible by TOSCA plans
is done by Implementation Artifacts. They are basically small management applica-
tions delivered together with the TOSCA application (cf. Sect. 3.3). Implementation
Artifacts expose management capabilities of a Node Type via REST, WSDL, or script
interfaces. Internally, they can do anything required to provide this functionality,
including the invokation of management capabilities not compatible with TOSCA
before. This ensures that all management operations are either offered by the node
itself, an external service, a script, or an Implementation Artifact. Therefore, each
Node Type or Relationship Type is self-contained with respect to its management.
These basic management operations are then orchestrated by management plans into
higher level management functionality spanning the whole application and, therefore,
making the application self-contained with respect to its management.

Policies. TOSCA provides a generic container for attaching policies, for example,
using WS-Policy (W3C, 2007) or the Rei Ontology Kagal (2012), to nodes and
relationships. The TOSCA specification does not state how and when policies are
evaluated; it is only expected that a TOSCA-compliant environment respects these
policies. Two examples for using policies are a connection (represented by a Rela-
tionship Template) with a policy that this connection must be encrypted and a server
(represented by a Node Template) with a policy that a certain power consumption
must not be exceeded during operation.

Standardized and Derivation Types. Node Types and Relationship Types can
be refined through derivation (OASIS, 2012, Sect. 4.3). For instance, the Node
Type “Tomcat” may be derived from Node Type “JavaApplicationServer” and the
Relationship Type “JDBCConnection” may be derived from Relationship Type
“connectsTo”. Each type may be derived from exactly one or no other type, which
structures the types as trees.

Derivation enables groups of subject matter experts to standardize selected Node
Types and Relationship Types. For instance, a generic virtual machine with its proper-
ties and operations may be offered as standardized Node Type. Vendors extend these
standardized Node Types to offer their specific implementations. Besides offering
standardized functionality, they might add proprietary functionality representing
their competitive advantage. Offering different solutions under a common interface
simplifies the creation of applications suitable for multiple environments and fosters
portability.

From the ecosystem perspective (cf. Sect. 4), cloud and application providers may
create and distribute libraries containing the Node Types and Relationship Types for
their services and products to enable frictionless usage of them when building new
applications.

10 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

3.1.3 Node Templates and Relationship Templates

Node Templates and Relationship Templates, which are typed with exactly one
Node Type or Relationship Type respectively, are composed to create the Topology
Template of a TOSCA application. Templates define how the respective type is
instantiated for use in the application. Templates allow defining the start values
of the properties by specifying defaults for the properties. Deployment Artifacts,
Implementation Artifacts, and policies may be overwritten and extended to adjust
the types for the usage in the respective application, for example, an “Web Shop
Application” Node Template of Node Type “PHP Application” defines a Deployment
Artifact, which contains the respective PHP application files. Additionally, constraints
may be put on properties to ensure that the properties fit to the overall application.
For instance, the IP range of an application might be restricted to internal IPs of the
company.

A Node Template may be instantiated multiple times. For instance, this is the case
when there are multiple cluster nodes of an application or database cluster. Instead of
requiring to put multiple Node Templates into the Topology Template, the properties
minInstances and maxInstances are offered to set the range of the number
of instances. This concept also supports Node Templates having a variable number
of instances during runtime. For instance, the number of cluster nodes may be scaled
up and down between 2 and 10. During runtime, for each instance of a Topology
Template, each Node Template instance has its own identity and properties. This is
obviously required, for example, to have multiple cluster nodes being equal besides
the properties IP address and average load.

Grouping subgraphs of the Topology Template is possible by using Group Tem-
plates, which can be nested, but not overlapping. Group Templates can be used to
separate nodes technically. For instance, a database cluster may be scaled indepen-
dently of the other parts of the application. Either physically, e. g., by hosting all
nodes of the database cluster in one dedicated data center, or logically, e. g., by
assigning all database cluster nodes to a certain operations department.

3.2 TOSCA Management Plans

Section 3.1.2 showed how nodes and relationships offer their management capabili-
ties. Based on the brief introduction to the concepts of management plans in Sect. 2,
this section discusses details of the management plan concept. Management plans
are not restricted to management operations of one node or relationship, but can also
invoke a series of operations from different nodes, relationships, and also external
services, including a human task interface (OASIS, 2010). Therefore, they are able
to cover all kind of management tasks required by a TOSCA application.

Without TOSCA, the deployment and mangement of composite applications re-
quires extensive, mostly manual, effort by the administrator, e. g., installing software
on servers by using installation software provided on a DVD, logging onto servers

TOSCA: Portable Automated Deployment and Management of Cloud Applications 11

updating applications, or creating backups. Each user has to learn on its own how
to manage and operate the application, most of them making the same experiences
and encounter the same difficulties, acquire management knowledge, and sometimes
automate some management aspects through scripts. This is even more complicated
for complex composite applications involving a large number of components by
different vendors, which are combined to provide a certain business functionality. It
requires significant knowledge and effort to provision, deploy, configure, manage,
and, finally, terminate the components and their relationships (Rus and Lindvall,
2002). TOSCA tackles these issues by enabling application developers and operators
to capture reoccurring management tasks as management plans, which can be exe-
cuted fully automated and thus decrease manual effort for application management
and operation. Plans formalize the management knowledge and best practices im-
plicitly for everyone to reuse. The management cost of applications described using
TOSCA, including management plans, is significantly lower, especially because
enterprises executing these management plans must not know all the details behind
the management best practices. Figure 5 presents a simplified management plan used
to deploy a PHP-based application: The plan installs an Apache Web server on a
Windows operating system, installs the PHP module on that Web server, and finally
deploys the PHP application thereon.

Install Windows
on Server

Install Apache
WebServer on

Windows

Install PHP
Module on
WebServer

Deploy PHP
Application on
PHP Container

Fig. 5 Example Management Plan for Deploying a PHP-based Application

Automation of application management is a prerequisite to realize key cloud
properties. Most important are self-service and rapid elasticity. Self-service means
that a customer can instantiate and manage his application instance himself, e. g.,
add a new email account. Rapid elasticity enables on demand growing and shrinking
of resources depending on the user needs, e.g., extending the storage of an email
account. When going beyond cloud computing, automation has always been a key
goal in IT service and application management. We want to stress that, despite its
name, TOSCA is by no means restricted to cloud applications.

TOSCA does not introduce a new language for modeling and executing plans.
Instead, TOSCA includes plans by using existing workflow languages such as the
Business Process Model and Notation (BPMN, OMG (2011)) or the Business Pro-
cess Execution Language (BPEL, OASIS (2007)). By using workflow technology to
automate management tasks, TOSCA benefits from all the capabilities and proper-
ties of workflow languages and workflow execution environments. These properties
include parallel execution, monitoring, compensation, recovery, auditing, and tracing
functionalities (Leymann and Roller, 2000). In addition, established workflow lan-
guages and environments also support human tasks to include manual work into the
management plans. A typical example for a manual task, which cannot be executed

12 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

automatically without human intervention, is installing physical infrastructure such
as servers, network components, or storage as basis for virtualized environments.
Using workflow technology moves the low level management tasks onto business
processes level and makes them accessible to people or software not aware of the
technical management details.

To ensure portability of management plans, TOSCA relies on the portability of
standardized workflow languages such as BPEL and BPMN. The recommended
workflow language for TOSCA management plans is BPMN. However, TOSCA
allows plans to be defined in any workflow language providing clear execution
semantics required for automated execution. Unfortunately, not all existing languages
are suitable as many process modeling languages focus either on modeling or on
execution (Palmer, 2006; Stein et al, 2008; Kopp et al, 2009).

3.2.1 Scripts and Plans

Today, many tasks in systems and operations management of applications are already
automated by using scripts. These scripts are typically—often manually—copied to
the target system on which they are executed. In comparison to plans, these scripts can
be seen as microflows: small isolated pieces of work which can be executed fast and
do not require transactional support, called micro script stream without transactions
by Leymann and Roller (2000). In TOSCA, scripts are used for small management
tasks such as setting up databases on a single component, whereas plans are used for
large management tasks typically involving multiple components such as deploying a
Tomcat servlet container on a Linux operating system followed by the configuration
of both components. Of course, both concepts can be combined to provide the ability
of specifying management operations on different layers of granularity. Then, plans
represent workflows orchestrating several microflows represented by scripts.

A main benefit of this separation of concerns is provided by the combination of
both concepts: Plans can use scripts to do more fine grained work directly on the
target components while all problems of script handling such as data passing from
and to other tasks, error handling, compensation, and recovery can be done by the
workflow technology, which is on a much more coarse grained layer. Thus, wrapping
script handling through workflow technology increases the level of abstraction for
the operators as they do not have to deal with the deep technical details of script
handling (Kopp et al, 2012). This is in line with the programming-in-the-large
idea by DeRemer and Kron (1976), which is applied by the workflow technology,
too (Leymann and Roller, 2000).

3.2.2 Plan Usage of the Application Topology Model

Management plans may inspect the application topology to retrieve nodes and re-
lationships in order to manage them. This may be necessary for flexible plans not
developed for one specific application topology to manage, but for multiple different

TOSCA: Portable Automated Deployment and Management of Cloud Applications 13

topologies consisting of similar structures, or at least similar components. Thus, the
plan needs information about the concrete structure of the considered topology to
find the respective components and relationships therein the plan is supposed to
manage. One example is a large topology consisting of multiple software stacks and
a plan which updates the operating system components of each stack.

Management plans are executed on external workflow engines and may do various
kinds of manipulations on the node and relationship instances. During operation, the
state of node and relationship instances may change. For instance, the patch level of
an operating system changes after installing a patch on an operating system node.
To transfer this state information between different management plans, they need to
store this information externally of the workflow context to make them accessible
by various stakeholders. Therefore, the possible properties of nodes are explicitly
defined by a schema to standardize accessing them. This information is included in
the application topology model (see Sect. 3.1.2) and plans may read and write these
service instance state information (Binz et al, 2012).

3.3 Packaging

A TOSCA Service Template defines application topologies and corresponding man-
agement plans. The physical associated files such as Implementation Artifacts and
Deployment Artifacts, scripts, or XML schema files are packaged together with
the actual Service Template into a TOSCA archive, called “Cloud Service Archive
(CSAR)” (OASIS, 2012, Sect. 3.3). This standardized archive format provides a way
to package applications fully self-contained, with all required management func-
tionalities into one single file used for installing the application. Thus, the archive
can be seen as single installable for complex composite applications including their
management. A TOSCA archive can be deployed on a TOSCA runtime environ-
ment (see Sect. 4.2) which is responsible for installing the application package,
i. e., processing the archive. TOSCA archives follow a standardized format ensuring
portability between different TOSCA runtime environments and thus provide an
exchange format for complex composite applications including their management
functionalities. Figure 6 shows the conceptual structure of a TOSCA archive.

3.4 TOSCA-based Example Application

In this section we describe a TOSCA application example and a corresponding build
plan, which deploys and instantiates the application. The example implements an
online Web shop which consists of two functionally different software stacks: The
first stack provides a Web-based GUI for the Web shop application, the second stack
provides product information data stored in a MySQL database accessible through a
REST API which is called by the Web-based GUI.

14 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

TOSCA Service Template

TOSCA Archive

Files

/DeploymentArtifacts

/ImplementationArtifacts

/Schemas

/Plans

/Scripts

/TOSCA-Metadata

/…

Node
Template

Pr
op

er
tie

s Interfaces

Topology Template

type

Node Type

Relationship
Template

type

Pr
op

er
tie

s Relationship Type

Node
Template

Node
Template

Management Plan

X

Fig. 6 Conceptual Structure of TOSCA Archives

Product REST API
(WAR)

Operating System VM
(Windows 7)

Virtual Server
(AWS EC2 Server)

Servlet Container
(Tomcat)

Product Database
(MySQL Database)

(hostedOn)

Connection
(JDBC Connection) Web Shop

(PHP Application)

PHP Container
(Apache PHP Module)

Web Server
(Apache)

Operating System
(Windows 2003 Server)

Server
(IBM Z Series)

Call
(HTTP Call)

Fig. 7 Example TOSCA Application Topology

The complete application topology is presented in Fig. 7. The stack providing the
GUI is presented on the left side of the figure. The infrastructure layer of this stack
consists of a “Server” Node Template of Node Type “IBM Z Series”. This represents
a physical server node. Thereon runs a Windows operating system represented by an
“Operating System” Node Template of Node Type “Windows 2003 Server”. On this

TOSCA: Portable Automated Deployment and Management of Cloud Applications 15

OS, a “Web server” Node Template of Node Type “Apache” runs with an installed
PHP Module, which in turn is represented as a “PHP Container” Node Template
of Node Type “Apache PHP Module”. This container is able to run PHP-based
applications. The “Web Shop” Node Template of Node Type “PHP Application”
implements the GUI of the Web shop software and is hosted on the PHP Container.

The infrastructure layer of the second topology stack providing product data
for the Web-based GUI consists of a “Virtual Server” Node Template of Node
Type “AWS EC2 Server”. This is an Infrastructure-as-a-Service (IaaS, Mell and
Grance (2009)) offering provided by Amazon1. On this virtualized infrastructure an
operating system of Node Type “Windows 7” runs in a VM which is represented
by an “Operating System VM” Node Template. On this operating system, there
are two components hosted on: A “Servlet Container” Node Template of Node
Type “Tomcat” and the “Product Database” Node Template of Node Type “MySQL
Database”, which represents the database in which the product data are stored. On the
servlet container, there is a REST API providing access to the product data stored in
the database. The API is implemented as Java application, which is deployed as Web
Archive (WAR) file. This Java application is hosted on the Tomcat servlet container
and is represented as “Product REST API” Node Template of Node Type “WAR”
hosted on the servlet container node. For simplification reasons, we modeled all
“runsIn”, “deployedOn”, and “installedIn” relations as “hostedOn” relation, which is
the parent Relationship Type for all these Relationship Types.

The Build Plan shown in Fig. 8 is responsible for deploying both software stacks.
We simplified the plan in some points to reduce the degree of complexity. For
instance, handling of security issues (e. g., password generation and storage) are
hidden. BPMN supports parallel execution of tasks. Therefore, the two software
stacks are deployed in parallel. First, the deployment of the Web-based GUI is
described. The first activity installs the Windows 2003 Server operating system on a
physical server whose IP-address is given by the input message of the Build Plan.
Thus, for executing the plan, the IP-address of the server has to be known by the
operator and written into the input message. After the OS is installed, the subsequent

Install
Windows on

Server

Install Apache
Web Server
on Windows

Configure
Windows

Install PHP
Module on

Apache Web
Server

Deploy PHP
Application on
PHP Container

Set REST API
Endpoint

Acquire
Windows VM

on EC2

Install
Tomcat Servlet
Container on
Windows VM

Install MySQL
Database on
Windows VM

Deploy WAR on
Tomcat Servlet

Container

Set Database
Endpoint

Fig. 8 Build Plan for the Example Application

1 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

16 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

activity configures the operating system such as setting the correct firewall rules.
After that, the Apache Web server is installed on the Windows 2003 operating system,
the PHP Module is installed on the Apache Web server and the PHP Application
is deployed into the PHP Container. The second software stack is deployed in the
parallel branch. First, an activity acquires a Windows 7 VM on Amazon EC2. The
required credentials are contained in the input message of the plan, i. e., the operator
has to know the credentials and put them into the input message for executing the
plan. After the operating system VM is provisioned, installing the Tomcat servlet
container followed by the deployment of the WAR file on it are done in parallel with
installing the MySQL database server. The REST API Java application has to know
the endpoint of the database. The last activity in this parallel branch sets this endpoint
to the Java application. After both application stacks are deployed, the Web-based
GUI needs to know the endpoint of the REST API. This is done by the last activity
of the workflow which sets this endpoint to the PHP application.

4 Supporting Ecosystem

TOSCA specifies an exchange format for application topologies and their manage-
ment plans. The TOSCA standard does not live on its own, but requires a supporting
ecosystem to exploit its full potential. This section presents three key parts which
are important for a viable TOSCA ecosystem: (1) Topologies and their management
plans have to be modeled properly (Sect. 4.1). (2) After a TOSCA model is created,
it has to be interpreted by a TOSCA-compliant runtime environment to enable auto-
matic deployment and management (Sect. 4.2). (3) Finally, Sect. 4.3 presents how an
application marketplace could benefit from the new possibilities enabled by TOSCA.

4.1 Modeling Tool Support

As TOSCA’s representation format is XML, modeling TOSCA-based applications
and their management plans, typically also having a textual XML representation,
may be time-consuming when using text editors only. XML editors may be helpful
as TOSCA defines a schema which can be used by the editor to provide features such
as auto-completion and tag-proposals. These tools might help avoiding syntactic
errors and improve the speed of creating models compared to pure text editors. Nev-
ertheless, they are still uncomfortable as manual typing is error prone and semantical
dependencies are hard to recognize textually by the user or the tool.

Therefore, graphical modeling tools tailored towards TOSCA could reduce the
effort significantly as topologies as well as plans can be represented visually easily.
For example, modeling topologies can be enriched with graphical details, such as
icons for nodes, which supports a faster recognition of the semantics. Thus, semantic
errors, such as wrong hostedOn-relationships, can be recognized faster by the user.

TOSCA: Portable Automated Deployment and Management of Cloud Applications 17

In addition, the speed of modeling increases noticeably as a lot of unnecessary typing
is spared. As modeling of topologies as well as modeling of plans can be done graph-
ically, some modeling tools combine both activities. This is an important advantage
as bringing together modeling of topologies and corresponding management plans
might be cumbersome—especially for annoying frequently reoccurring tasks such
as copying IDs, creating boilerplate code, and so on. Enhancing a BPMN modeling
tool to provide a tight integration with TOSCA has been presented by Kopp et al
(2012). TOSCA-tailored graphical modeling tools also may support reusability of
Node Types by providing existing Node Types in a palette for dragging them into
the topology, for example. Automated management of a variety of artifacts and
exporting them into a TOSCA archive as described in Sect. 3.3 additionally reduces
the complexity and assists the user.

One open source implementation of a TOSCA-tailored graphical tool combining
the modeling of TOSCA application topologies and associated management plans
is “Valesca”2. It implements “Vino4TOSCA” Breitenbücher et al (2012), a visual
notation for TOSCA topologies. Valesca uses the Signavio Core Components3, which
are the commercially-supported enhancements of Oryx Decker et al (2008). Figure 9
shows a screenshot. Valesca supports all the advantages mentioned above and is
provided under the Apache 2.0 license.

Fig. 9 Screenshot of Valesca

2 http://www.cloudcycle.org/valesca/
3 http://code.google.com/p/signavio-core-components/

http://www.cloudcycle.org/valesca/
http://code.google.com/p/signavio-core-components/

18 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

4.2 TOSCA Container

To use all the features of TOSCA—especially automation of application management—
a TOSCA-compliant runtime is required. Without such a container, TOSCA could
be used as pure exchange format and manually operated according to the definitions
in the Service Template. However, a bare-minimum TOSCA container stores and
serves the files contained in the TOSCA archive, installs and operates Implementation
Artifacts and Management Plans, and manages the instance data of the application:
The container is the glue between these functionalities. During modeling the man-
agement plans are written without knowing the exact location of the Implementation
Artifacts, only referencing the abstract service description (port type and operation
in case of WSDL services). Implementation Artifacts are deployed by the TOSCA
container to the respective runtime, for example, Java Web services to an Apache
Tomcat known and managed by the TOSCA container. Knowing the runtime and the
location of the deployed Implementation Artifact, the TOSCA container is able to
set the location information when deploying the Management Plans onto a workflow
engine. The container is also responsible for managing the properties assigned to
node and relationship instances. Therefore, the container offers a standardized API
which may be used by Implementation Artifacts and the workflow engine to work on
the properties.

To increase convenience, other functionalities, such as a user interface for starting
the management plans, identity management, integrated monitoring and auditing,
can be supported by the container, which exceeds the scope of this chapter.

4.3 Marketplace and Catalog

TOSCA enables new business models in terms of application exchange, offering,
and trading. Due to the fact that TOSCA applications are portable between different
TOSCA-compliant providers, moving application flexibly between providers avoids
vendor lock-in: Customers have the ability to choose applications independent from
the cloud provider which hosts the application later on. This enables a new kind of
marketplaces for trading manageable and portable applications which can be hosted
by any TOSCA-compliant provider, as shown in Fig. 10. Inside enterprises, the
TOSCA ecosystem enables offering self-service catalogs which allow flexible and
rapid deployment of business applications.

5 Portability

As portability is a central goal of TOSCA, this section discusses in detail how TOSCA
supports portability (Sections 5.1 and 5.2) and propose how modelers can increase
the portability of their TOSCA applications (Sect. 5.3).

TOSCA: Portable Automated Deployment and Management of Cloud Applications 19

Cloud Provider A

TOSCA Application Marketplace

TOSC
A

App

TOSC
A

App
TOSCA

App

TOSCA Container

Cloud Provider B

 TOSCA Container

Cloud Provider C

 TOSCA Container

Fig. 10 Sketch of an TOSCA Application Marketplace

5.1 Portability of Applications

TOSCA addresses the portability of application descriptions and their management,
not the portability of the application components themselves. That means, TOSCA
does not make Deployment Artifacts portable, e. g., to run a .net application on
Apache Tomcat or to migrate one flavor of relational database system to another.

The application topology may have some prerequisites concerning the environ-
ment it is deployed on. For instance, it might require an external service such as
Amazon EC2 or inhouse infrastructure such as VMware. However, there are ways
to abstract from concrete providers and increase portability between different envi-
ronments, for example, by using software such as Deltacloud4, which unifies the
APIs of different cloud infrastructure providers into a common interface or by using
a generic and standardized virtual machine Node Type as described in Sect. 3.1.2,
which can be bound to different implementations. The remaining parts of the applica-
tion topology are built on top of these lower-level infrastructure and, therefore, are
basically self-contained inside this application topology. Thus, they only depend on
the lower-level infrastructure components. If these are portable, the whole application
is portable. The application topology’s main purpose is to be an information source
and description of the component’s management aspects for the management plans.
By concerning the existence of standardized Node Types as lower-level components
and that higher-level components can depend on these lower-level ones, we conclude
that the application topology can be modeled in a portable way. Based on this we
must have a look on the portability of management plans.

4 http://deltacloud.apache.org/

http://deltacloud.apache.org/

20 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

5.2 Portability of Management

Management plans are written in certain workflow languages and it is the TOSCA
container’s responsibility to execute them on a compatible workflow engine. There-
fore, TOSCA container support for the workflow language is the first precondition
for TOSCA portability, which is, however, softened to some extend by the fact that
BPMN is the recommended workflow language in TOSCA. Management plans are
orchestrations of three types of services: (1) External services, which are portable,
because services are, by definition, accessible from everywhere (Curbera et al, 2005),
(2) management operations offered by Node Types and Relationship Types, and (3)
APIs of the TOSCA container, for example, to access the instance data of the applica-
tion instance. As discussed in Sect. 3.1.2, the management operations can be provided
as Implementation Artifacts, whose execution is also the TOSCA container’s respon-
sibility. The API of the TOSCA container will be standardized. Therefore, support for
the language of the Implementation Artifact by the TOSCA container is the second
precondition for TOSCA portability.

Consequently, the portability of TOSCA applications only fails if the type of
management plan or Implementation Artifact is not known and supported by the
TOSCA container. We want to highlight that both of them, management plans and
Implementation Artifacts, represent the management part of TOSCA and are not the
actual application. Moreover, we expect most TOSCA containers to provide some
kind of extensibility mechanism to add plugins supporting additional plan types and
additional Implementation Artifact types. A couple of basic types will then be offered
by most of the TOSCA containers, which will provide a solid basis for portable
TOSCA applications.

5.3 Improving Portability of TOSCA Applications

The conclusions of the previous two sections lead to the following recommendations
on how to increase the portability of a TOSCA application: For Implementation
Artifacts, the goal is to provide them in programming languages, which are widely
supported by TOSCA containers. Due to the fact that Implementation Artifacts are
bound to Node Types and Relationship Types, they are widely reused so it may be
worth the effort to do multiple implementations. Management plans are tied to the
actual application and, therefore, their level of reusability is lower than reusability
for Implementation Artifacts. Providing them in multiple workflow languages would
also increase their portability, but doing this manually might not be worth the effort.
Fortunately, there are existing approaches to transform workflow languages (Stein
et al, 2008), for example, transforming BPMN to BPEL by Ouyang et al (2008).
In addition, due to the fact that BPMN is the recommended workflow language for
management plans, a wide variety of TOSCA containers will presumably support
BPMN.

TOSCA: Portable Automated Deployment and Management of Cloud Applications 21

6 Conclusions

This chapter presented the upcoming OASIS standard Topology and Orchestration
Specification for Cloud Applications (TOSCA). We highlighted that TOSCA distin-
guishes between the application topology and management plans. The application
topology declares the components of the application and their relationships as a
graph. We discussed that each vertex in the graph represents a Node Template, which
has a Node Type and is instantiated as node instance. The management plans invoke
management operations on these node instances.

TOSCA is a standard not providing any software and, therefore, requires an
ecosystem. We gave a short overview on possible modeling tool support and runtime
support. TOSCA packages may be distributed directly by a software vendor or
available through dedicated marketplaces.

At the point of writing this chapter, the TOSCA specification was not finally
released. However, we expect no fundamental changes going beyond what we de-
scribed. One can follow the current development of the TOSCA specification on
the OASIS TC website5 and the development of the OpenTOSCA ecosystem of the
University of Stuttgart on the OpenTOSCA website6.

Acknowledgements This work was partially funded by the BMWi project CloudCycle (project
01MD11023).

References

Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G, Patterson
D, Rabkin A, Stoica I, et al (2009) Above the Clouds: A Berkeley View of Cloud
Computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of
California, Berkeley

Binz T, Leymann F, Schumm D (2011) CMotion: A Framework for Migration of Ap-
plications into and between Clouds. In: Proceedings of the 2011 IEEE International
Conference on Service-Oriented Computing and Applications (SOCA), IEEE Com-
puter Society Conference Publishing Services, DOI 10.1109/SOCA.2011.6166250

Binz T, Breiter G, Leymann F, Spatzier T (2012) Portable Cloud Services Using
TOSCA. IEEE Internet Computing 16(03):80–85, DOI 10.1109/MIC.2012.43

Breitenbücher U, Binz T, Kopp O, Leymann F, Schumm D (2012) Vino4TOSCA: A
Visual Notation for Application Topologies based on TOSCA. In: Proceedings of
the 20th International Conference on Cooperative Information Systems (CoopIS
2012), Springer-Verlag, Lecture Notes in Computer Science

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing

5 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
6 http://www.opentosca.org

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.opentosca.org

22 Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann

as the 5th utility. Future Generation Computer Systems 25(6):599–616, DOI
10.1016/j.future.2008.12.001

Curbera F, Leymann F, Storey T, Ferguson D, Weerawarana S (2005) Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR

Decker G, Overdick H, Weske M (2008) Oryx – An Open Modeling Platform for the
BPM Community. In: Proceedings of the 6th International Conference on Business
Process Management, DOI 10.1007/978-3-540-85758-7 29

DeRemer F, Kron H (1976) Programming-in-the-Large Versus Programming-in-
the-Small. Software Engineering, IEEE Transactions on SE-2(2):80 – 86, DOI
10.1109/TSE.1976.233534

Dillon T, Wu C, Chang E (2010) Cloud Computing: Issues and Challenges. In:
Advanced Information Networking and Applications (AINA), 2010 24th IEEE
International Conference on, pp 27 –33, DOI 10.1109/AINA.2010.187

Fielding R (2000) Architectural styles and the design of network-based software
architectures. PhD thesis, University of California

Garbani J, Mendel T, Radcliffe E (2010) The Writing on ITs Complexity Wall.
Forrester Research

Gartner (2010) Gartner Identifies the Top 10 Strategic Technologies for 2011. Press
Release

Kagal L (2012) Rei Ontology Specifications, Ver 2.0. URL http://www.csee.
umbc.edu/˜lkagal1/rei/

Khajeh-Hosseini A, Sommerville I, I S (2010) Research Challenges for Enterprise
Cloud Computing. Tech. rep., LSCITS

Kopp O, Martin D, Wutke D, Leymann F (2009) The Difference Between Graph-
Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems 4(1):3–13

Kopp O, Binz T, Breitenbücher U, Leymann F (2012) BPMN4TOSCA: A Domain-
Specific Language to Model Management Plans for Composite Applications. In:
4th International Workshop on the Business Process Model and Notation, Springer

Leymann F (2009) Cloud Computing: The Next Revolution in IT. In: Proc. 52th
Photogrammetric Week, Wichmann Verlag, pp 3–12

Leymann F (2011) Cloud Computing. it – Information Technology 53(4)
Leymann F, Roller D (2000) Production Workflow – Concepts and Techniques.

Prentice Hall PTR
Leymann F, Fehling C, Mietzner R, Nowak A, Dustdar S (2011) Moving Applications

to the Cloud: An Approach based on Application Model Enrichment. International
Journal of Cooperative Information Systems (IJCIS) 20(3):307–356, DOI 10.1142/
S0218843011002250

Mell P, Grance T (2009) Cloud Computing Definition. National Institute of Standards
and Technology

OASIS (2007) Web Services Business Process Execution Language Version 2.0 –
OASIS Standard. URL https://www.oasis-open.org/committees/
wsbpel/

http://www.csee.umbc.edu/~lkagal1/rei/
http://www.csee.umbc.edu/~lkagal1/rei/
https://www.oasis-open.org/committees/wsbpel/
https://www.oasis-open.org/committees/wsbpel/

TOSCA: Portable Automated Deployment and Management of Cloud Applications 23

OASIS (2010) WS-BPEL Extension for People (BPEL4People) Specifica-
tion Version 1.1. URL http://docs.oasis-open.org/bpel4people/
bpel4people-1.1.html

OASIS (2012) Topology and Orchestration Specification for Cloud
Applications Version 1.0 Committee Specification Draft 03. URL
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/
TOSCA-v1.0-csd03.html

OMG (2011) Business Process Model and Notation (BPMN) Version 2.0.
URL http://www.omg.org/spec/BPMN/2.0/, OMG Document Num-
ber: formal/2011-01-03

Ousterhout J (1998) Scripting: Higher level programming for the 21st century. Com-
puter 31(3):23–30

Ouyang C, Dumas M, ter Hofstede A, van der Aalst W (2008) Pattern-based Transla-
tion of BPMN Process Models to BPEL Services. International Journal of Web
Services Research 5(1):Idea Group Publishing

Palmer N (2006) Understanding the BPMN-XPDL-BPEL Value Chain. Business
Integration Journal November/December:54–55

Petcu D, Craciun C, Rak M (2011) Towards a Cross Platform Cloud API – Compo-
nents for Cloud Federation. In: CLOSER, SciTePress

Petcu D, Macariu G, Panica S, Crciun C (2012) Portable Cloud applications—From
theory to practice. Future Generation Computer Systems DOI 10.1016/j.future.
2012.01.009

Rus I, Lindvall M (2002) Knowledge management in software engineering. Software,
IEEE 19(3):26–38

Stein S, Kühne S, Ivanov K (2008) Business to IT Transformations Revisited. In:
1st International Workshop on Model-Driven Engineering for Business Process
Management, DOI 10.1007/978-3-642-00328-8 18

Varia J (2010a) Architecting for the Cloud: Best Practices. Tech. rep., Amazon,
URL http://media.amazonwebservices.com/AWS_Cloud_Best_
Practices.pdf

Varia J (2010b) Cloud Architectures. Tech. rep., Amazon, URL
http://jineshvaria.s3.amazonaws.com/public/
cloudarchitectures-varia.pdf

W3C (2004) XML Schema Part 1: Structures Second Edition. URL http://www.
w3.org/TR/xmlschema-1/

W3C (2007) Web Services Policy 1.5 - Framework. URL http://www.w3.org/
TR/ws-policy/

All links were last followed on July 20, 2012.

http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/bpel4people/bpel4people-1.1.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/csd03/TOSCA-v1.0-csd03.html
http://www.omg.org/spec/BPMN/2.0/
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/ws-policy/

