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Abstract. The adoption of the workflow technology in the eScience
domain has contributed to the increase of simulation-based applications
orchestrating di�erent services in a flexible and error-free manner. The
nature of the provisioning and execution of such simulations makes them
potential candidates to be migrated and executed in Cloud environments.
The wide availability of Infrastructure-as-a-Service (IaaS) Cloud o�er-
ings and service providers has contributed to a raise in the number of
supporters of partially or completely migrating and running their scien-
tific experiments in the Cloud. Focusing on Scientific Workflow-based
Simulation Environments (SWfSE) applications and their corresponding
underlying runtime support, in this research work we aim at empirically
analyzing and evaluating the impact of migrating such an environment
to multiple IaaS infrastructures. More specifically, we focus on the inves-
tigation of multiple Cloud providers and their corresponding optimized
and non-optimized IaaS o�erings with respect to their o�ered perfor-
mance, and its impact on the incurred monetary costs when migrating
and executing a SWfSE. The experiments show significant performance
improvements and reduced monetary costs when executing the simulation
environment in o�-premise Clouds.

Keywords: Workflow Simulation; eScience; IaaS; Performance Evalua-
tion; Cost Evaluation; Cloud Migration

1 INTRODUCTION

The introduction and adoption of the workflow technology has been widely no-
ticed in the last years in several domains, such as business or eScience. Reasons
that contributed towards such direction are its o�ered high level abstraction,
design, and runtime flexibility, and the continuous development of the necessary
middleware support for enabling its execution [14]. Such a technology has en-
compassed the fulfillment of di�erent domain-specific requirements in terms of
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enforced functionalities and expected behavior of the underlying infrastructure
for di�erent types of applications. Focusing on eScience applications as the foun-
dations for the case study evaluation driving this work, simulation workflows are
a well-known research area, as they provide scientists with the means to model,
provision, and execute automated and flexible long running simulation-based
experiments [24]. Ordinary simulation-based experiments typically enclose the
following characteristics: (i) the gathering and processing of large amounts of
data, (ii) the transfer and consumption at irregular time intervals of multiple
distributed simulation services during (iii) long periods of time. Due to the
access and resource consumption behaviour exhibited by such services, previous
works have targeted the migration and adaptation of such environments. These
environments can be deployed, provisioned, and executed in Cloud infrastructures
in order to optimize the provisioning and usage of computational resources, while
minimizing incurred monetary costs [12,16,27,29].

The introduction and adoption of Cloud computing in di�erent domains has
contributed in the creation and expansion of existing and new Cloud services
and providers. Nowadays, the number of applications partially or completely
running in di�erent Everything-as-a-Service Cloud o�erings has substantially
increased. The existence of a wide variety of Cloud services o�ering di�erent and
frequently optimized Quality of Service (QoS) characteristics has introduced a
broadened landscape of alternatives for selecting, configuring, and provisioning
Cloud resources. These o�er the possibility to host the di�erent application
components with special resources consumption patterns in a distributed manner,
e.g. computationally or memory intensive ones in compute optimized or memory
optimized virtualized resources, respectively. However, such a wide spectrum
of possibilities has become a challenge for application developers for deciding
among the di�erent Cloud providers and their corresponding services.

Previous works targeted such a challenge by assisting application developers
in the tasks related to selecting, configuring, and adapting the distribution of their
application among multiple services [9,16]. Previous findings identify the existence
of multiple decision points that can influence the distribution of an application, e.g.
cost, performance, security concerns, etc [2]. This work incorporates such findings
towards the development of the necessary support for assessing application
developers in the selection and configuration of Infrastructure-as-a-Service (IaaS)
o�erings for migrating scientific applications to the Cloud. More specifically,
the focus of this research work is to provide an overview, evaluate, and analyze
the trade-o� between the performance and cost when migrating a Scientific
Workflow-based Simulation Environment (SWfSE) to di�erent Cloud providers
and their corresponding IaaS o�erings.

The contributions of this work build upon the research work presented in [8],
and can be summarized as follows:

– the selection of a set of viable and optimized IaaS o�erings for migrating a
previously developed simulation environment,

– a price analysis of the previously selected IaaS o�erings,
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– an empirical evaluation focusing on the performance and the incurred mone-
tary costs, and

– an analysis of the performance and cost trade-o� when scaling the simulation
environment workload.

The rest of this work is structured as follows: Section 2 motivates this work
and frame the challenges that will be addressed. The case study simulation
environment used for evaluating this work is introduced in Section 3. Section 4
presents the experiments on evaluating the performance and incurred costs when
migrating the simulation environment to di�erent IaaS o�erings, and discusses
our findings. Finally, Section 5 summarizes related work, and Section 6 concludes
and presents our plans for future work.

2 MOTIVATION & PROBLEM STATEMENT

Simulation workflows, a well-known topic in the field of eScience, describe the
automated and flexible execution of simulation-based experiments. Common
characteristics of such simulation workflows are that they are long-running as
well as being executed in an irregular manner. However, during their execution a
wide amount of resources are typically provisioned, consumed, and released. Con-
sidering these characteristics, previous works focused on migrating and executing
simulation environments in the Cloud, as Cloud infrastructures significantly
reduce infrastructure costs while coping with an irregular but heavy demand of
resources for running such experiments [27].

Nowadays there exists a vast amount of configurable Cloud o�erings among
multiple Cloud providers. However, such a wide landscape has become a challenge
for deciding among (i)the di�erent Cloud providers and (ii)the multiple Cloud
o�ering configurations o�ered by such providers. We focus in this work on IaaS
solutions, as there exists a lack of Platform-as-a-service (PaaS) o�erings that
enable the deployment and execution of scientific workflows in the Cloud. IaaS
o�erings describe the amount and type of allocated resources, e.g. CPUs, memory,
or storage, and define di�erent VM instance types within di�erent categories.
For example, the Amazon EC21 service does not only o�er VM instances of
di�erent size, but also provides di�erent VM categories which are optimized for
di�erent use cases, e.g. computation intensive, memory intensive, or I/O intensive.
Similar o�erings are available also by other providers, such as Windows Azure2

or Rackspace3. The o�ered performance and incurred cost significantly vary
among the di�erent Cloud services, and depend on the simulation environment
resource usage requirements and workload. In this work, we aim to analyze the
performance and cost trade-o� when migrating to di�erent Cloud o�erings a
simulation environment developed and used as case study, as discussed in the
following section.
1 Amazon EC2: http://aws.amazon.com/ec2/instance-types/

2 Windows Azure: http://azure.microsoft.com/en-us/

3 Rackspace: http://www.rackspace.com/

http://aws.amazon.com/ec2/instance-types/
http://azure.microsoft.com/en-us/
http://www.rackspace.com/
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3 THE OPAL SIMULATION ENVIRONMENT
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Fig. 1: System Overview of the SimTech Scientific Workflow Management System
(SWfMS)

A Scientific Workflow Management System (SimTech SWfMS) is being de-
veloped by the Cluster of Excellence in Simulation Technology (SimTech4),
enabling scientists to model and execute their simulation experiments using
workflows [21, 24]. The SimTech SWfMS is based on conventional workflow tech-
nology which o�ers several non-functional requirements like robustness, scalability,
reusability, and sophisticated fault and exception handling [11]. The system has
been adapted and extended to the special needs of the scientists in the eScience
domain [21]. During the execution of a workflow instance the system supports
the modification of the corresponding workflow model, which is then propa-
gated to the running instances. This allows running simulation experiments in a
trial-and-error manner.

The main components of the SimTech SWfMS shown in Fig. 1 are a modeling
and monitoring tool, a workflow engine, a messaging system, several databases,
an auditing system, and an application server running simulation services. The
workflow engine provides an execution environment for the workflows. The
messaging system serves as communication layer between the modeling- and
monitoring tool, the workflow engine, and the auditing system. The auditing
system stores data related to the workflow execution for analytical and provenance
purposes.

The SimTech SWfMS has been successfully applied in di�erent scenarios in the
eScience domain; one example is the automation of a Kinetic Monte-Carlo (KMC)
simulation of solid bodies by orchestrating several Web services being implemented
4 SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/
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Fig. 2: Simplified Simulation Workflows Constituting the OPAL Simulation Environ-
ment [25]

by modules of the OPAL application [22]. The OPAL Simulation Environment is
constituted by a set of services which are controlled and orchestrated through
a main OPAL workflow (the Opal Main process depicted in Figure 2). The
simulation services are implemented as Web services and divided into two main
categories: (i) resource management, e.g. distributing the workload among the
di�erent servers, and (ii) wrapped simulation packages depicted in [5,15]. The
main workflow can be divided in four phases as shown in Fig. 2: preprocessing,
simulation, postprocessing, and visualization. During the preprocessing phase
all data needed for the simulation is prepared. In the simulation phase the
workflow starts the Opal simulation by invoking the corresponding Web service.
In regular intervals, the Opal simulation creates intermediate results (snapshots).
For each of these snapshots the main workflow initiates the postprocessing which
is realized as a separate workflow (Opal Snapshot process in Figure 2). When the
simulation is finished and all intermediate results are postprocessed, the results
of the simulation are visualized.

4 EXPERIMENTS

4.1 Methodology

As shown in Fig. 2, the OPAL Simulation Environment is comprised of multiple
services and workflows that compose the simulation and resource management
services. The environment can be concurrently used by multiple users, as the
simulation data isolation is guaranteed through the creation of independent
instances (workflows, services, and temporal storage units) for each user’s simu-
lation request. The experiments must therefore consider and emulate the usage
of the environment by multiple users concurrently.
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Table 1: IaaS Ubuntu Linux On-demand Instances Categories per Provider (in January
2015) for the European (Germany - DE, and Ireland - IRL) and USA regions.

Instance

Category

Cloud

Provider

Instance Type vCPU Memory

(GB)

Region Price

(US$/h)

on-premise micro 1 1 EU (DE) 0.13
Micro AWS EC2 t2.micro 1 1 EU (IRL) 0.014

Windows Azure A1 1 1.75 EU (IRL) 0.06
Rackspace General 1 1 1 USA 0.06
on-premise large 2 4 EU (DE) 0.26

General AWS EC2 m3.large 2 7.5 EU (IR) 0.154
Purpose Windows Azure A2 2 3.5 EU (IR) 0.12

Rackspace General 2 2 2 USA 0.074
on-premise compute3.large 4 4 EU (DE) 0.52

Compute AWS EC2 c3.large 2 3.75 EU (IRL) 0.120
Optimized Windows Azure D2 2 7 EU (IRL) 0.23

Rackspace Compute 1-3.75 2 3.75 USA 0.1332
on-premise memory4.large 2 15 EU (DE) 0.26

Memory AWS EC2 r3.large 2 15.25 EU (IRL) 0.195
Optimized Windows Azure D3 4 14 EU (IRL) 0.46

Rackspace Memory 1-15 2 15 USA 0.2522

The migration of the simulation environment to the Cloud opens a wide
set of viable possibilities for selecting and configuring di�erent Cloud services
for the di�erent components of the OPAL environment. However, in this first
set of experiments we restrict the distribution of the simulation environment
components by hosting the complete simulation application stack in one VM,
which is made accessible to multiple users. Future investigations plan to distribute
such environment using di�erent Cloud o�erings, e.g. Database-as-a-Service
(DBaaS) for hosting the auditing databases. We therefore focus this work on
driving a performance and cost analysis when executing the OPAL Simulation
Environment in on- and o�-premise infrastructures, and using di�erent IaaS
o�erings and optimized configurations.

Table 1 shows the di�erent VM categories, based on their characteristics and
o�ered prices by three major Cloud providers: Amazon AWS, Windows Azure,
and Rackspace. In addition to the o�-premise VM instances types, multiple
on-premise VM instances types were created in our virtualized environment,
configured in a similar manner to the ones evaluated in the o�-premise scenarios,
and included in such categories. The on-premise VM instances configurations
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are based on the closest equivalent to the o�-premise VM configurations within
each instance category. The encountered providers and o�erings showed two
levels of VM categories, i.e. based on the optimization for custom use cases
(Micro, General Use, Compute Optimized, and Memory optimized), and based
on a quantitative assignment of virtualized resources. This fact must be taken
into consideration in our evaluation due to the variation in the performance,
and its impact on the final incurred costs for running simulations in di�erent
Cloud o�erings. The pricing model for the on-premise scenarios was adopted
from [28] as discussed in the following section, while for the o�-premise scenarios
the publicly available information from the providers was used [4], taking into
account on-demand pricing models only.

4.2 Setup

The scientific workflow simulation environment is constituted by two main systems:
the SimTech SWfMS [21, 24], and a set of Web services grouping the resource
management and the KMC simulation tasks depicted in [5, 15]. The former
comprises the following middleware stack:

– an Apache Orchestration Director Engine (ODE) 1.3.5 (Axis2 distribution)
deployed on

– an Apache Tomcat 7.0.54 server with Axis2 support.
– The scientific workflow engine (Apache ODE) utilizes a MySQL server 5.5

for workflow administration, management, and reliability purposes, and
– provides monitoring and auditing information through an Apache ActiveMQ

5.3.2 messaging server.

The resource management and KMC simulation services are deployed as Axis2
services in an Apache Tomcat 7.0.54 server. The underlying on- and o�-premise
infrastructure configurations selected for the experiments are shown in Table 1.
The on-premise infrastructure aggregates an IBM System x3755 M3 server5 with
an AMD Opteron Processor 6134 exposing 16 CPU of speed 2.30 GHz and
65GB RAM. In all scenarios the previously depicted middleware components
are deployed on an Ubuntu server 14.04 LTS with 60% of the total OS memory
dedicated to the SWfMS. Figure 3 depicts the topological representation of the
migrated to the Cloud Opal Simulation Environment. As previously introduced,
the evaluation in this work is geared towards the analysis of the performance
and cost when using di�erent instance categories among di�erent providers.
Consequently, we provisioned for the driven experiments a total of 16 Ubuntu 14.04
virtual machines, each one hosting an Apache Servlet Container, an ActiveMQ
Message Broker, and a MySQL Database Server, as the fundamental middleware
components of the Opal Simulation Environment. Such middleware components

5 IBM System x3755 M3:http://www-03.ibm.com/systems/xbc/cog/x3755m3_7164/

x3755m3_7164aag.html

http://www-03.ibm.com/systems/xbc/cog/x3755m3_7164/x3755m3_7164aag.html
http://www-03.ibm.com/systems/xbc/cog/x3755m3_7164/x3755m3_7164aag.html
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Fig. 3: Opal Simulation Infrastructure Cloud Topology - Specified as depicted in [3]

host the di�erent simulation Web services, JMS-based6 message events, and
auditing and engine databases, respectively (see Fig. 3).

For all evaluation scenarios a system’s load of 10 concurrent users sequentially
sending 10 random and uniformely distributed simulation requests/user was
created using Apache JMeter 2.9 as the load driver. Such a load aims at emulating
a shared utilization of the simulation infrastructure. Due to the asynchronous
nature of the OPAL simulation workflow, a custom plugin in JMeter was realized
towards receiving and correlating the asynchronous simulation responses. The
latency perceived by the user for each simulation was measured in milliseconds
(ms). Towards minimizing the network latency, in all scenarios the load driver
was deployed in the same region as the simulation environment.

On-premise Cost Model The incurred monetary costs for hosting the simu-
lation environment on-premise are calculated considering firstly the purchase,
maintenance, and depreciation of the server cluster, and secondly by calculating
the price of each CPU time. [28] proposes pricing models for analyzing the cost
of purchasing vs. leasing CPU time on-premise and o�-premise, respectively. The
real cost of a CPU/hour when purchasing a server cluster, can be derived using
the following equations:
6 Java Message Service Specification (JMS): http://www.oracle.com/technetwork/

java/docs-136352.html

http://www.oracle.com/technetwork/java/docs-136352.html
http://www.oracle.com/technetwork/java/docs-136352.html


Performance & Cost Trade-o� in IaaS: A SWfSE Case Study 9

(1 ≠ 1/
Ô

2) ◊
qY ≠1

T =0
CT

(1+k)T

(1 ≠ (1/
Ô

2)Y ) ◊ TC
(1)

where CT is the acquisition (C0) and maintenance (C1..N ) costs over the Y years
of the server cluster, k is the cost of the invested capital, and

TC = TCPU ◊ H ◊ µ (2)

where TCPU depicts the total number of CPU cores in the server cluster, H is the
expected number of operational hours, and µ describes the expected utilization.
The utilized on-premise infrastructure total cost breaks down into an initial cost
(C0) of approximately 8500$ in July 2012 and an annual maintenance cost (C1..N )
of 7500$, including personnel costs, power and cooling consumption, etc. The
utilization rate of such cluster is of approximately 80%, and o�ers a reliability of
99%. Moreover, the server cluster runs six days per week, as one day is dedicated
for maintenance operations. Such a configuration provides 960K CPU hours
annually. As discussed in [28], we also assumed in this work a cost of 5% on the
invested capital. The cost for the o�-premise scenarios was gathered from the
di�erent Cloud providers’ Web sites.

Table 1 depicts the hourly cost for the CPUs consumed in the di�erent on-
premise VM configurations. In order to get a better sense of the scope of the
accrued costs, the total cost calculation performed as part of the experiments
consisted of predicting the necessary time to run 1K concurrent experiments. Such
estimation was then used to calculate the incurred costs of hosting the simulation
environment in the previously evaluated on- and o�-premise scenarios. The
monetary cost calculation was performed by linearly extrapolating the obtained
results for the 100 requests to a total of 1K requests. The scientific library Numpy
of Python 2.7.5 was used for performing the prediction of 1K simulation requests.
The results of this calculation, as well as the observed performance measurements
are discussed in the following section.

4.3 Evaluation Results

Performance Evaluation Figure 5 shows the average observed latency for the
di�erent VM categories depicted in Table 1 for the di�erent Cloud providers. The
latency perceived in the scenarios comprising the selection of Micro instances
have been excluded from the comparison due to the impossibility to finalize the
execution of the experiments. More specifically, the on-premise micro-instance
was capable of stably running approximately 80 requests (see Figure 4a), while
in the o�-premise scenarios the load saturated the system with 10 requests
approximately in the AWS EC2 and Windows Azure scenarios (see Figures 4b
and 4c, respectively). For the scenario utilizing Rackspace, the VM micro instance
was saturated immediately after sending the first set of 10 concurrent simulation
requests.
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(a) On-premise (b) Amazon EC2

(c) Windows Azure (d) Rackspace

Fig. 4: Performance Analysis per Provider & VM Category

With respect to the remaining instance categories (General Purpose, Compute
Optimized, and Memory Optimized), the following performance variation behaviors
can be observed:

1. the on-premise scenario shows in average a latency of 320K ms. over all
categories, which is 40% higher in average than the perceived latency in the
o�-premise scenarios.

2. However, the performance is not constantly improved when migrating the sim-
ulation environment o�-premise. For example, the General Purpose Windows
Azure VM instance shows a degraded performance of 11%, while the Windows
Azure Compute Optimize VM instance shows only a slightly performance
improvement of 2%, when compared with the on-premise scenario.
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3. The performance when migrating the simulation environment to the Cloud
improves by approximately 56% and 62% for the AWS EC2 and Rackspace
General Purpose VM instances, respectively,

4. 54%, 2%, and 61% for the AWS EC2, Windows Azure, and Rackspace
Compute Optimized VM instances, respectively, and

5. 52%, 19%, and 63% for the AWS EC2, Windows Azure, and Rackspace
Memory Optimized VM instances, respectively.

When comparing the average performance improvement among the di�erent op-
timized VM instances, the Compute Optimized and Memory Optimized instances
enhance the performance by 12% and 6%, respectively.

Fig. 5: Average Simulation Latency per Provider & VM Category.

Figure 4 shows the perceived latency for the di�erent requests. During the
execution of the simulation environment in the Rackspace infrastructure that the
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Fig. 6: Cost Comparison (in January 2015 Prices)

performance highly varies when increasing the number of requests (see Figure 4d).
Such performance variation decreases in the on-premise, AWS EC2, and Windows
Azure infrastructures (see Figures 4a, 4b, and 4c, respectively). In all scenarios,
the network latency does not have an impact in the performance due to the
nature of our experimental setup described in the previous section.

When comparing the performance improvement among the di�erent VM
instances categories, the Windows Azure infrastructure shows the greatest when
selecting a Compute Optimized or Memory Optimized VM instance over a General
Purpose VM instance (see Figure 4c).

Cost Comparison Figures 6 and 7 present an overview of the costs per hour of
usage published by the Cloud providers (referring to Table 1), and the expected
costs for running 1K experiments among 10 users. The following pricing variations
can be observed:
1. The provisioning of on-premise resources shows in average an increase of

65%, 55%, 69% of the price, for the micro, general purpose, and compute
optimized VM instances, respectively. However,

2. the provisioning of on-premise memory optimized instances incurs in average
a 16% less monetary costs.

3. Amazon EC2 instances are in average 36% low-priced, when comparing
it to the on-premise costs and the remaining of the public Cloud services
considered in this work.

4. The incurred costs of hosting the simulation environment on-premise is 25$
in average.

5. When migrating the simulation infrastructure o�-premise, the cost descends
in average 80%, 12%, and 94% when utilizing the AWS EC2, Windows Azure,
and Rackspace IaaS services, respectively.
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6. When comparing the incurred costs among the di�erent VM categories, the
Memory Optimized categories are in average 61% and 47% more expen-
sive when compared to the Compute Optimized and General Purpose VM
categories, respectively.

7. Among the di�erent o�-premise providers, Windows Azure is in average 900%
more expensive for running the simulation environment.

Fig. 7: Cost Comparison extrapolated to 1K Simulation Requests (in January 2015
Prices)

4.4 Discussion
The experiments driven as part of this work have contributed to derive and
report a bi-dimensional analysis focusing on the selection among multiple IaaS
o�erings to deploy and run the OPAL Simulation Environment. With respect to
performance, it can be concluded that:
1. The migration of the simulation environment to o�-premise Cloud services

has an impact on the system’s performance, which is beneficial or detrimental
depending on the VM provider and category.

2. The selection of Micro VM instances did not o�er an adequate availability
to the simulation environment in the o�-premise scenarios. Such a negative
impact was produced by the non-automatic allocation of swap space for the
system’s virtual memory.
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3. When individually observing the performance within each VM category, the
majority of the selected o�-premise IaaS services improved the performance of
the simulation environment. However, the General Purpose Windows Azure
VM instances showed a degradation of the performance when compared to
the other IaaS services in the same category.

4. The perceived by the user latency was in average reduced when utilizing
Compute Optimized VM instances. Such an improvement is in line with the
compute intensity requirements of the simulation environment.

The cost analysis derived the following conclusions:

1. There exists a significant monetary cost reduction when migrating the simu-
lation environment to o�-premise IaaS Cloud services.

2. Despite of the improved performance observed when running the simulation
environment in the Compute Optimized and Memory Optimized VM instances,
scaling the experiments to 1K simulation requests produces in an average
increase of 9% and 61% with respect to the General Purpose VM instances
cost, respectively.

3. The incurred monetary costs due to the usage of Windows Azure services tend
to increase when using optimized VM instances, i.e. Compute Optimized and
Memory Optimized. Such behavior is reversed for the remaining o�-premise
and on-premise scenarios.

4. Due to the low costs demanded for the usage of Rackspace IaaS services
(nearly 40% less in average), the final price for running 1K simulations is
considerably lower than the other o�-premise providers and hosting the
environment on-premise.

The previous observations showed that the IaaS services provided by Rackspace
are the most suitable for migrating our OPAL Simulation Environment. However,
additional requirements may conflict with the migration decision of further
simulation environments, e.g. related to data privacy and transfer between EU
and USA regions, as Rackspace o�ers a limited set of optimized VMs in their
European region.

5 RELATED WORKS

We consider our work related to the following major research areas: performance
evaluation of workflow engines, workflow execution in the Cloud, and migration
and execution of scientific workflows in the Cloud.

When it comes to evaluating the performance of common or scientific workflow
engines, a standardized benchmark is not yet available. A first step towards this
direction is discussed in [20], but propose approach is premature and could not
be used as the basis for this work. Beyond this work, performance evaluations are
usually custom to specific project needs. Specifically for BPEL engines not much
work is currently available. For example [19] summarize nine approaches that
evaluate the performance of BPEL engines. In most of the cases, workflow engines



Performance & Cost Trade-o� in IaaS: A SWfSE Case Study 15

are benchmarked with load tests with a workload consisting of 1-4 workflows.
Throughput and latency are the metrics most frequently used.

There are only few Cloud providers supporting the deployment and execution
of workflows in a Platform-as-a-Service (PaaS) solution. The WSO2 Stratos
Business Process Server [18] and Business Processes on the Cloud is o�ered by IBM
Business Process Manager7. These o�er the necessary tools and abstraction levels
for developing, deploying and monitoring workflows in the Cloud. However, such
services are optimized for business tasks, rather than for supporting simulation
operations.

Scientific Workflow Management Systems are exploiting business workflows
concepts and technologies for supporting scientists towards the use of scientific
applications [23, 24]. Zhao et al. [29] develop a service framework for integrating
Scientific Workflow Management Systems in the Cloud to leverage from the
scalability and on-demand resource allocation capabilities. The evaluation of
their approach mostly focuses on examining the e�ciency of their proposed PaaS
based framework.

Simulation experiments are driven in the scope of di�erent works [5, 15].
Later research e�orts focused on the migration of simulations to the Cloud.
Due to the diverse benefits of Cloud environments the approaches evaluate the
migration with respect to di�erent scopes. The approaches that study the impact
of migration to the performance and incurred monetary costs is considered more
relevant to our work. In [16] the authors examine the performance of X-Ray
Crystalography workflows executed on the SciCumulus middleware deployed in
Amazon EC2. Such workflows are CPU-intensive and require the execution of
high parallel techniques. Likewise, in [12] the authors compare the performance
of scientific workflows migrated from Amazon EC2 to a typical High Performance
Computing system (NCSA’s Abe). In both approaches the authors conclude that
migration to the Cloud can be viable but not equally e�cient to High Performance
Computing environments. However, Cloud environments allow the provisioning
of specific resources configurations irregularly during the execution of simulation
experiments [26]. Moreover, the performance improvement observed in Cloud
services provide the necessary flexibility for reserving and releasing resources
on-demand while reducing the capital expenditures [17]. Research towards this
direction is a fertile field. Juve et al. [13] execute nontrivial scientific workflow
applications on grid, public, and private Cloud infrastructures to evaluate the
deployments of workflows in the Cloud in terms of setup, usability, cost, resource
availability, and performance. This work can be considered complementary to our
approach, although we focused on investigating further public Cloud providers
and took into account the di�erent VM optimization categories.

Further Cloud application migration assessment frameworks, such as the
CloudSim [6] or CloudMIG [7], focus on estimating the benefit of using Cloud
resources under di�erent configurations. However, the vast majority rely on the
usage of simulation techniques, which require the definition of the corresponding
behavioral model for each Cloud. Moreover, such approaches solely target the
7

http://www-03.ibm.com/software/products/en/business-process-manager-cloud

http://www-03.ibm.com/software/products/en/business-process-manager-cloud
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application’s QoS dimension, while in our work we aim at bridging and comparing
the trade-o� between the observed performance and the incurred monetary costs.

6 CONCLUSION AND FUTURE WORK

Simulation workflows have been widely used in the eScience domain due to
their easiness to model, and because of their flexible and automated runtime
properties. The characteristics of such workflows together with the usage patterns
of simulation environments have made these type of systems suitable to profit
from the advantages brought by the Cloud computing paradigm. The existence of
a vast amount of Cloud services together with the complexity introduced by the
di�erent pricing models have become a challenge to e�ciently select which Cloud
service to host the simulation environment. The main goal of this investigation is
to report the performance and incurred monetary cost findings when migrating
the previously realized OPAL simulation environment to di�erent IaaS solutions.

A first step in this experimental work consisted of selecting a set of potential
IaaS o�erings suitable for our simulation environment. The result of such selection
covered four major deployment scenarios: (i) in our on-premise infrastructure,
and in (ii) three o�-premise infrastructures (AWS EC2, Windows Azure, and
Rackspace). The selection of the IaaS o�erings consisted of evaluating the di�erent
providers and their corresponding optimized VM instances (Micro, General Pur-
pose, Compute Optimized, and Memory Optimized). The simulation environment
was migrated and its performance was evaluated using an artificial workload.
A second step in our analysis consisted on extrapolating the obtained results
towards estimating the incurred costs for running the simulation environment
on- and o�-premise. The analyses showed a beneficial impact in the performance
and a significant reduction of monetary costs when migrating the simulation
environment to the majority of o�-premise Cloud o�erings.

The e�orts in this work build towards the assessment for the migration of
Cloud applications to the Cloud, as defined in [1]. More specifically, in this
work we cover the subset of tasks relevant to the selection and configuration
of Cloud resources to distribute the application, w.r.t. their performance and
the incurred monetary costs. Despite our e�orts towards analyzing and finding
the most e�cient Cloud provider and service to deploy and run our simulation
environment, our experiments solely focused on IaaS o�erings.

Future works focus on analyzing further service models, i.e. Platform-as-
a-Service (PaaS) or Database-as-a-Service (DBaaS), as well as evaluating the
distribution of the di�erent components that constitute the simulation envi-
ronment among multiple Cloud o�erings. Investigating di�erent autoscaling
techniques and resources configuration possibilities is also part of future work, e.g.
feeding the application distribution system proposed in [10] with such empirical
observations.
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9. Gómez Sáez, S., Andrikopoulos, V., Leymann, F., Strauch, S.: Design Support for
Performance Aware Dynamic Application (Re-)Distribution in the Cloud. IEEE
Transactions on Services Computing 8(2), 225–239 (December 2014)
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