
1Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,mathias.weske}@hpi.uni-potsdam.de

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

BPEL4Chor:
Extending BPEL for Modeling Choreographies

Gero Decker1, Oliver Kopp2, Frank Leymann2, Mathias Weske1

© 2007 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{BPEL4Chor,

author = {Gero

Decker and

Oliver Kopp and

Frank Leymann

and

Mathias Weske},

title = {BPEL4Chor: Extending BPEL for Modeling Choreographies},

booktitle

= {ICWS 2007},

year = {2007},

pages = {296-303},

doi

= {10.1109/ICWS.2007.59},

publisher = {IEEE Computer Society}

}

:

BPEL4Chor: Extending BPEL for Modeling Choreographies

Gero Decker1, Oliver Kopp2, Frank Leymann2, Mathias Weske1

1Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,mathias.weske}@hpi.uni-potsdam.de

2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{oliver.kopp,frank.leymann}@iaas.uni-stuttgart.de

Abstract

The Business Process Execution Language (BPEL)
is a language to orchestrate web services into a single
business process. In a choreography view, several pro-
cesses are interconnected and their interaction behavior
is described from a global perspective. This paper shows
how BPEL can be extended for defining choreographies.
The proposed extensions (BPEL4Chor) distinguish be-
tween three aspects: (i) participant behavior descrip-
tions, i.e. control flow dependencies in each participant,
(ii) the participant topology, i.e. the existing participants
and their interconnection using message links and (iii)
participant groundings, i.e. concrete configurations for
data formats and port types. As BPEL itself is used un-
changed, the extensions facilitate a seamless integration
between service choreographies and orchestrations. The
suitability of the extensions is validated by assessing
their support for the Service Interaction Patterns.

1 Introduction

The service oriented architecture (SOA) is an ar-
chitectural style for building software systems based
on services. Services are loosely coupled components
described in a uniform way that can be discovered and
composed. One realization of a SOA is the web ser-
vices platform architecture where services are offered
as web services ([7]). The Business Process Execution
Language (BPEL, [1]) is an established standard to
describe long-running business processes in such an
environment.

BPEL is well suited for describing the communication
behavior of an individual service. In scenarios, where
several such conversational services are to be intercon-
nected, we need a global view on the overall interaction
behavior. Therefore, choreographies were introduced
as a new view on interacting services (cf. [9]). They de-

scribe message exchanges between services from the per-
spective of an observer who is able to see all interactions
and their flow dependencies. Existing choreography
languages, as the Web Service Choreography Descrip-
tion Language (WS-CDL, [11]), support a top-down
approach for choreography design and implementation.
Here, choreographies serve as starting point for gener-
ating participant behavior descriptions for each service
which are then used for implementing new services or
for adapting existing services. Vice versa, bottom-up
approaches, where existing BPEL processes are intercon-
nected, are helpful for analyzing the overall interaction
behavior between services and optimizing it.

Since BPEL is an accepted standard and has a de-
fined execution semantics, we use it as foundation for
describing choreographies. An additional layer, namely
BPEL4Chor, is added to shift BPEL from an orchestra-
tion language to a complete choreography language. It
decouples non-technical specifications from web-service-
specific configurations. That way, reuse of choreogra-
phies for different technical groundings is facilitated.

The remainder of this paper is structured as follows:
After introducing a choreography example in section 2,
related work is discussed in section 3. The main con-
tribution can be found in section 4, where BPEL4Chor
is introduced. A validation for BPEL4Chor is given in
section 5, where its support for the Service Interaction
Patterns ([5]) is investigated. Finally, section 6 draws
a conclusion and gives an outlook on future work.

2 Example

Figure 1 shows a sample choreography modeled using
BPMN ([13]). A traveler wants to book a flight. She
therefore submits a trip order to a travel agency of her
choice. The travel agency requests the price for the
selected route and date from a set of airlines. Each
airline responds and the travel agency selects the airline
offering the best price. The agency orders a ticket from

1

Traveler Travel Agency Airline

Plan trip

Submit trip
order

Request price

Select airline

Order tickets

Issue itinerary

Create itinerary

Quote price

Make
reservation

Confirm order

Issue eTicket

Retrieve price

Traveler
reference

Figure 1. Choreography example

this airline and passes the traveler’s email address on
to the airline. As soon as the airline has confirmed the
booking, the travel agency sends the itinerary to the
traveler and the airline issues the eTicket. The airlines
not selected for booking, stop waiting for the order as
soon as a timeout occurs.

3 Related Work

Different viewpoints for service-oriented design have
been proposed in [9]; the differences between chore-
ographies, interface behaviors, provider behaviors, and
orchestrations are explained. “Observable behavior”
([1]) and “local model” ([16]) are used as synonyms for
provider behavior. For describing a choreography, we
are using provider behavior descriptions given as “partic-
ipant behavior descriptions” and their interconnections
given in the “participant topology”. The orchestration
of each participant is out of scope of a BPEL4Chor
choreography description.

The BPEL standard includes the notion of abstract
processes. Abstract processes can be seen as partici-
pant behavior descriptions for services. However, they

can be tightly linked to WSDL, since port types, op-
erations, and XML schema types for data elements
may be defined. This hampers reuse of choreography
models. Suppose the activity for receiving the eTicket
is coupled to the port type travellerPT and to the
operation receiveETicket. After the complete choreog-
raphy design, the role of the traveler should be taken
by an interface for travelers realized on the port type
travelInterfacePT. Now, the processes of the travel
agency and the airline have to be modified to communi-
cate with the new port type, even though the behavior
has not changed. The decision which port types to use
should be made as late as possible.

BPSS ([6]) is not tied to any particular technology.
However, only bi-lateral collaboration scenarios can be
specified. WSCI ([2]) and WSCL ([3]) are also languages
for describing behavioral dependencies between web ser-
vice interactions. WSCI does not provide a global view
and WSCL is limited to bi-lateral interaction scenar-
ios. WS-CDL ([11]) was introduced as successor for
WSCI and WSCL. WS-CDL is also tightly linked to
WSDL. It has been criticized that WS-CDL does not
easily integrate with BPEL, as WS-CDL comes with its
own set of control flow constructs that can hardly be
mapped to those of BPEL (cf. [4]). In [8], the suitability
of WS-CDL is assessed by investigating which of the
Workflow Patterns and Service Interaction Patterns are
supported. It turns out that WS-CDL does not directly
support scenarios where the number of participants
involved in a choreography is only known at runtime.

WSFL ([12]) is a predecessor of BPEL, where the
global view (“Global Model”) is distinguished from the
local view (“Service Providers”). In contrast to BPEL,
all sending and all receiving operations are modeled
in port types for each service. Each sending operation
is wired to a receiving operation in the global model.
In the Service Component Architecture (SCA, [10]),
instead of each operation, the interfaces as a whole are
wired together to form a complete application. Both
a wiring on the operation level and on the interface
level are too coarse-grained. We claim that a wiring
on the activity level provides a more detailed view on
the dependencies between processes. That means, an
activity sending data to a receiving activity is explicitly
modeled and not hidden behind an interface. This
allows to see where exactly in the receiving process
the message is consumed, what happened before the
consumption and what is going to happen afterwards.

Let’s Dance ([15]) is a visual choreography language
targeted at business analysts. It does not allow any
technology-specific configurations. However, interface
behavior descriptions out of the global interaction model
can be generated ([16]).

2

The Business Process Modeling Notation (BPMN,
[13]) is a graphical modeling language for intra- or inter-
organizational business processes. It allows to inter-
connect processes using message flows and therefore to
express choreographies. BPMN lacks formal semantics
and is not executable, however mappings from BPMN
to BPEL are available (e.g. [14]).

4 BPEL4Chor

In the choreography space there are two different
modeling approaches: interaction models and intercon-
nected interface behavior models. In case of interaction
models (e.g. defined using WS-CDL and Let’s Dance), el-
ementary interactions, i.e. request and request-response
message exchanges, are the basic building blocks. Be-
havioral dependencies are specified between these inter-
actions and combinations of interactions are grouped
into complex interactions. Due to the fact that these
models capture the dependencies from a truly global
perspective, the modeler is able to define dependencies
that cannot be enforced. E.g., she might specify that
a shipper can only send the delivery details to a buyer
after the supplier has notified the insurance about the
delivery. In this case it is left unexplained how the
shipper can learn about whether the notification has
been sent. Additional synchronization messages would
be necessary to turn such a locally unenforceable inter-
action model into an enforceable one [16]. In the case of
interconnected interface behavior models (e.g. expressed
in BPMN) such unenforceability issues cannot arise
since control flow is defined per participant. However,
on the other hand, interface behavior models might
be incompatible, i.e. the different participant cannot
interact successfully with each other. Deadlocks are
typical outcomes of such incompatibility. For instance,
imagine a participant expecting a notification of another
participant before being able to proceed and the other
participant never sends such a notification.

It has not been investigated yet which approach
is more suitable for the human modeler. We adopt
interconnected interface behavior descriptions for spec-
ifying choreographies since this approach is closer to
the history of BPEL. More precise, we use the Abstract
Process Profile for Observable Behavior of BPEL ([1])
and add an interconnection layer on top of that leading
to interconnected interface behavior descriptions.

In addition, unlike WS-CDL, BPEL4Chor decouples
the “heart” of choreographies, i.e. the communication
activities, their behavioral dependencies and their inter-
connection, from technical configuration, e.g. the defini-
tion of WSDL port types. That way, higher reusability
of the choreography models is achieved.

BPEL4Chor choreography

Participant
topology

Structural aspects

Participant behavior
descriptions (PBDs)

Observable control & data flow

Participant groundings

Technical configuration

Participant Declaration

List of the participants

Message Links

Connecting PBDs

Figure 2. BPEL4Chor artifacts

BPEL4Chor is a collection of three different arti-
fact types (cf. Figure 2): (i) Participant behavior de-
scriptions define the control flow dependencies between
activities, in particular between communication activ-
ities, at a given participant. (ii) A Participant topol-
ogy defines the structural aspects of a choreography
by specifying participant types, participant references,
and message links. Participants of the same type have
to provide the same set of communication activities.
The communication activities of different participants
are connected through message links. (iii) Participant
groundings define the actual technical configuration
of the choreography. Here, the choreography becomes
web-service-specific and the link to WSDL definitions
and XSD types is established.

The following subsections are going to introduce
these artifact types. Corresponding code snippets will
be given for the example from section 2.

4.1 Participant Behavior Descriptions

Communication activities, i.e. message send and re-
ceive activities, together with their control and data
flow dependencies are at the center of attention in chore-
ographies. BPEL comes with a rich set of constructs
for control flow and data manipulation, which are used
unchanged in BPEL4Chor. Therefore, existing BPEL
tools can also be reused for choreographies.

In abstract processes, some language constructs
needed to specify executable BPEL processes may
be omitted. Such constructs are for example the
partnerLink and the operation attribute of a message
activity. A profile can force or forbid the usage of cer-
tain attributes. We will introduce the Abstract Process
Profile for Participant Behavior Descriptions stating
the requirements for defining the behavior of one par-
ticipant. This profile inherits all constraints of the
Abstract Process Profile for Observable Behavior speci-
fied by BPEL. We have to uniquely reference activities

3

from abstract process models to define the participant
topology and therefore need an identifier for each ac-
tivity in each process. Since onMessage branches do
not offer a name attribute, we introduce wsu:id having
the type xsd:id as new attribute for communication
activities and onMessage branches. Besides the unique
naming, the profile we introduce forbids the usage of
partnerLink, portType, and operation attributes at the
communication activities. In that way, the strong de-
pendency between BPEL and WSDL interfaces is re-
moved. All structural configuration will be defined in
the participant topology and the participant ground-
ings. Note that it is still allowed, but not required, to
specify variables or use untyped variables at the BPEL
constructs used for communication, as it is allowed in
the Abstract Process Profile for Observable Behavior.
Omitting variables and especially variable types allows
branching conditions to be formulated as plain text.
If variables or variables types are not used, they have
to be filled in at the executable completion after the
grounding of the abstract process. Since the relation
between a receive and a reply activity cannot be es-
tablished using portType and operation, we force the
attribute messageExchange to be present at each pair of
receive and reply activities. If a receive models an
asynchronous operation, the attribute messageExchange

must not be specified.

Listing 1 Participant behavior description
<process name="agency"

targetNamespace="urn:booking:agency"

abstractProcessProfile=

"urn:HPI_IAAS:choreography:profile:2006/12">

<sequence>

<receive wsu:id="ReceiveTripOrder"

createInstance="yes" />

<forEach wsu:id="RequestPriceFE" parallel="yes">

<scope><sequence>

<invoke wsu:id="RequestPrice" />

<receive wsu:id="ReceivePrice" />

</sequence></scope>

</forEach>

<opaqueActivity name="SelectAirline" />

<invoke wsu:id="OrderTickets" />

<receive wsu:id="ReceiveOrderConfirmation" />

<opaqueActivity name="CreateItinerary" />

<invoke wsu:id="IssueItinerary" />

</sequence>

</process>

Listing 1 shows the participant behavior description
(PBD) for the travel agency in the example given in
section 2. The BPEL profile for participant behavior
descriptions is referenced. This allows us to add opaque
activities into a PBD, which is useful for documentation
purposes. Each communication activity and onMessage

branch carries an identifier. These identifiers will be
used later on for interconnecting corresponding send
and receive activities of different participants.

In the example given above, the number of airlines is
not known at design time. If no counterName attribute
is specified in a forEach used in a PBD, the semantics of
the forEach changes: The forEach is then iterating over
a set of participants, which is specified in the participant
topology. After transformation to BPEL the set will
be represented as a xsd:sequence of sref:service-ref
elements, where the current element is accessed via an
XPath statement.

Executable BPEL demands that process instantia-
tion is defined in every process. That means the receipt
of a certain message leads to the creation of a process
instance. In our scenario our travel agency is triggered
by the receipt of a trip order from a traveler. How-
ever, it can be left open what triggers the traveler.
Therefore, it is not required in BPEL4Chor that a pro-
cess begins with an incoming message activity with the
createInstance attribute set to yes.

BPEL comes with a built-in handling of message
correlation. Since BPEL4Chor choreographies depend
on BPEL and should not introduce any implementation
dependencies, the correlation mechanism of BPEL is
used unchanged: Correlation may be specified in the
participant behavior description. We allow the usage of
correlationSets, but use the QNames of the properties
specified for a correlation set as names. Thus, the names
of properties change to NCNames and therefore have
no connection to property aliases. Hence, properties get
untyped and not bound to WSDL. On the other hand,
properties always need to be typed in BPEL. Since we
see typing as web service specific configuration detail,
we leave properties untyped in the participant behavior
descriptions and do the actual typing in the groundings.

4.2 Participant Topology

The participant topology describes the structural
aspects of a choreography and serves as “glue” between
the participant behavior descriptions. It introduces the
notions of participant type and participant reference
as well as message link. Every participant behavior
description represents one participant type. Therefore,
the same participant behavior description applies to all
participants of the same type. Participant references
point to participants.

Concerning the relationship between participants
and participant types we can distinguish between three
cases: (i) There is only one participant of a certain
type in one conversation (choreography instance). E.g.,
there is one traveler and one travel agency involved

4

in a booking conversation. (ii) Several participants
of a certain type appear in one conversation and the
number of participants is known at design-time. (iii)
An unbounded number of participants are involved and
the exact number might only be determined at runtime.
E.g., there are many airlines involved in our sample
scenario. In order to provide support for all cases,
participant sets are introduced.

Listing 2 Participant topology
<topology name="bookingtopology"

targetNamespace="urn:booking"

xmlns:agency="urn:booking:agency">

<participantTypes>

<participantType name="Agency"

participantBehaviorDescription="agency:agency" />

<participantType name="Traveler" ... />

<participantType name="Airline" ... />

</participantTypes>

<participants>

<participant name="traveler" type="Traveler"

selects="agency" />

<participant name="agency" type="Agency"

selects="airlines" />

<participantSet name="airlines" type="Airline"

forEach="agency:RequestPriceFE">

<participant name="currentAirline"

forEach="agency:RequestPriceFE" />

<participant name="selectedAirline" />

</participantSet>

</participants>

<messageLinks>

<messageLink name="tripOrderLink"

sender="traveler" sendActivity="SubmitTripOrder"

receiver="travelagency"

receiveActivity="ReceiveTripOrder"

messageName="tripOrder" />

<!-- ... -->

<messageLink name="ticketOrderLink"

sender="travelagency" sendActivity="OrderTickets"

receiver="selectedAirline"

receiveActivity="ReceiveOrder"

messageName="ticketOrder"

participantRefs="traveler" />

<messageLink name="eTicketLink"

sender="selectedAirline" sendActivity="IssueETicket"

receiver="traveler" receiveActivity="ReceiveETicket"

messageName="eTicket" />

</messageLinks>

</topology>

Listing 2 presents the participant topology for our
example from section 2. In addition to the references for
the traveler and the travel agency we find a participant
set for representing the airlines.

The attribute selects defines which participant se-
lects which other participants. In our scenario the trav-
eler starts a conversation and selects a travel agency
of her choice. The travel agency is in turn responsible
for determining which airlines will be asked for a quote.
The knowledge about participants during a conversa-

tion is local to individual participants. Only the travel
agency knows all airlines involved. The traveler will
only get into contact with one airline and an airline
might not know which other airlines are involved.

Participant sets typically appears in combination
with the notion of containment : a participant refer-
ence can be contained in a participant set. One usage
scenario for this is the case where one participant is
selected from the set. E.g., the travel agency will order
a ticket only from the airline with the best offer. In an-
other usage scenario a participant reference is needed in
forEach constructs. The reference then represents the
one participant selected in each of the parallel branches.

Message links state which participant can potentially
communicate with which other participants. The iden-
tifiers given in receiveActivity and sendActivity refer
to the activities in the participant behavior descriptions
and therefore specify an interconnection of the partic-
ipant behavior descriptions. The ordering constraints
between these interactions are not given in the topology
as they have already been defined in the participant
behavior descriptions. Every time, a sending activity is
active, a message is sent over the message link. If there
are multiple senders with the same target specified, only
one sender is allowed to send a message. If a receiving
activity is executed multiple times, several interactions
can take place over one message link. In the case of
more than one potential sender, instead of sender con-
taining the concrete sender, senders containing the set
of potential senders is specified. Each sender has to be
of the same participant type.

A message link has to obey the following restrictions:
(i) A receive activity, a onMessage branch, or a invoke

are valid as receiveActivity in a message link. If the
output variable is specified, an invoke activity must
appear as receiveActivity in a message link. Assume
a message link l with an invoke i as sendActivity and a
receive r as receiveActivity. If r is not associated with
a reply y activity through a messageExchange attribute,
the invoke i must not appear as receiveActivity in
another message link. (ii) reply and invoke activities
are valid as sendActivity in message links. Take i, r,
and y as defined above. The message link where y is the
sendActivity is required to have i as receiveActivity.
That means, a reply may only answer a synchronous
request by an invoke and must not send the answer to
another invoke, receive, or onMessage branch. (iii) For
every invoke and reply activity, there is exactly one
message link in which this activity is the sendActivity.
This implies: If there are several receives for the same
invoke or reply (e.g. through branching on the receiver’s
side) then all these receives must have the same iden-
tifier. Otherwise we would need several message links

5

for one invoke and this would violate the constraint iii.
(iv) For every receive activity and onMessage branch,
there is exactly one message link in which the activity
respectively the branch is the receiveActivity. This
implies: In the case of several sends for one receive

(or onMessage branch), a list of senders is given in the
message link. (v) If senders is specified in a message
link, each listed sender has to be of the same type. (vi)
If senders is specified in a message link l and the receiv-
ing activity r is connected to a reply activity p through
a messageExchange attribute, bindSenderTo has to be
specified in the link l. (vii) If corresponding variables
are typed at both sender’s and receiver’s side, the types
have to match.

The selection of participants might happen at run-
time or already at design-time. The topology in listing 2
does not exclude the case that every traveler has exactly
one travel agency she always goes to or that the list
of airlines is fixed. As knowledge about participants is
local, it might be required that participant references
are passed on. E.g., the travel agency needs to pass
on the traveler’s reference to the airline so that the
airline knows who to send the eTicket to. This phe-
nomenon is called link passing mobility, realized through
the attribute participantRefs.

Selection and reference passing lead to the binding of
concrete participants to participant references. Binding
might also happen in the case of a message receipt: If no
participant is bound to a participant reference that is
used in a receive activity, a message of any participant
might be received and the sender of the message is
bound to the reference. This second case is especially
interesting in multi-lateral scenarios: E.g., consider a
bidding scenario where bids from arbitrary bidders are
accepted and stored. If the scope of the respective
participant reference is limited, it can be reused. If
such a participant is contained in a participant set,
every binding of a participant that is not yet part of
the set leads to adding this reference to the set.

We do not use the notion of partner link in the
participant topology since in BPEL each partner link is
related to one port type only. We leave it open in the
participant topology whether a participant relates to
exactly one port type or a collection of port types.

So far, we have only considered the case where partic-
ipant behavior descriptions exist for every participant
type. However, we might also envisage top-down ap-
proaches, where the participant topology is the first
artifact to be created and then refined into a full chore-
ography in a step-wise manner. Alternatively, the topol-
ogy could simply be used as participant landscape if
the behavioral constraints between message exchanges
are not of interest.

4.3 Participant Grounding

While the participant topology and the participant
behavior descriptions should be free of technical con-
figuration details, the participant groundings introduce
the mapping to web-service-specific configurations. So
far, port types, operations, and XML schema types for
messages have been avoided.

Listing 3 Participant grounding
<grounding topology="top:bookingtopology"

xmlns:top="urn:booking" xmlns:...>

<messageLinks>

<messageLink name="tripOrderLink"

portType="ag1:travelAgency_pt"

operation="getTripRequest" />

<messageLink name="ticketOrderLink"

portType="lhx:web_pt"

operation="getOrder" />

<!-- ... -->

</messageLinks>

<participantRefs>

<participantRef name="traveler"

WSDLproperty="msgs:travelerProp" />

</participantRefs>

</grounding>

Listing 3 shows the participant grounding for the
example from section 2. For each link a port type /
operation combination is given. This allows for realizing
one participant through different port types. A ground-
ing is only valid, if all message links are grounded. If
variables were specified at the sending or receiving ac-
tivity, the message type of the specified operation must
match the given variable types.

The attribute participantRefs enables link passing
mobility in BPEL4Chor choreographies. In the case of
executable BPEL, end point references are passed in
messages. In analogy to properties that are used for
message correlation, we do not specify where exactly
the references can be found in the message. The con-
crete location in the messages is specified using existing
property aliases.

The grounding of properties is included, since corre-
lation in the choreography is only specified on a name
basis. If it comes to an execution, the concrete WSDL
property has to be known.

After a choreography is completely grounded, every
participant behavior description can be transformed
to an executable BPEL process following the Abstract
Process Profile for Observable Behavior. That profile
ensures that the interactions between the participants
will not be changed during the executable completion
of each BPEL process. Future work will give a de-
tailed elaboration of the mapping from BPEL4Chor
over abstract BPEL to executable BPEL.

6

5 Validation

The Service Interaction Patterns [5] have been put
forward as a benchmark for evaluating choreography
languages. They capture common interaction scenarios
between two or more participants. An assessment of
WS-CDL can be found in [8].

The three simple patterns Send , Receive , and
Send/receive are directly supported in BPEL4Chor
through invoke, reply, and receive activities when be-
ing interconnected using message links in the partici-
pant topology. BPEL4Chor allows that a receiver of a
message is bound at design-time or at runtime.

In the case of the Racing incoming messages
pattern a party expects to receive one among a set of
messages. Solution: This is expressed using a pick. If
the participant reference used for the respective receive
activity is not bound when this activity is reached,
messages from arbitrary senders can be received.

One-to-many send : A party sends messages to
several parties. Solution: In BPEL4Chor this pattern is
directly supported through the notion of participant sets
in combination with a forEach construct. The number
of recipients does not need to be known at design-time.
The sender is responsible for selecting the recipients,
indicated by the selects attribute.

The One-from-many receive pattern describes
that a party receives a number of logically related mes-
sages that arise from autonomous events occurring at
different parties. Solution: This can be expressed using
a while construct in BPEL4Chor with a correspond-
ing participant topology: A participant set senders

represents the set of all possible senders. The second
set mySenders contains all participants the messages of
which are actually received. Within the while structure
we find a scope the participant reference s is limited
to. This means that every time the scope is entered,
there is no participant bound to s and a message of any
sender can be received. The containment relationship
between s and mySenders has the semantics that if a
sender that is not contained in mySenders is bound to
s, then this new sender is added to the set.

The One-to-many send/receive pattern is similar
to One-to-many send : A party sends a request to several
other parties. Responses are expected within a given
timeframe. The interaction may complete successfully
or not depending on the set of responses gathered. Solu-
tion: The timeframe aspect is supported in BPEL4Chor
through scopes with an onAlarm event handler attached
to it. Successful vs. unsuccessful completion is directly
supported through exception mechanisms.

In the case of Multi-responses a party X sends a
request to another party Y. Subsequently, X receives

any number of responses from Y until no further re-
sponses are required. Solution: This pattern is directly
supported through while structures.

Contingent requests: A party X makes a request
to another party Y. If X does not receive a response
within a certain timeframe, X alternatively sends a re-
quest to another party Z, and so on. Responses from pre-
vious requests might be still considered or discarded. So-
lution: The limited timeframe can be specified through
an onAlarm structure. Should responses for previous
requests also be considered we need to introduce two
different participant references for the responders. How-
ever, we cannot ensure that the responder has actually
received a request before. If responses from previous
requests should be discarded, we only need to employ
one participant reference for the responders. That way
we ensure that the sender of the response is the same
participant like the recipient of the latest request.

In the case of Atomic multicast notification a
party sends notifications to several parties and a certain
number of parties are required to accept the notification.
For example, all parties or just one party are required to
accept the notification. BPEL4Chor does not directly
support this pattern. As a workaround an One-to-many
send/receive-like implementation can be used.

Request with referral : Party A sends a request to
party B indicating that any follow-up response should
be sent to a number of other parties depending on the
evaluation of certain conditions. Solution: BPEL4Chor
directly supports link passing mobility through the
participantRefs attribute of the messageLink element.
Since also participant sets can be used as value for that
attribute, the number of references passed does not
need to be known at design-time in BPEL4Chor.

Relayed request : Party A makes a request to party
B which delegates the request to other parties (P1, ...,
Pn). Parties P1, ..., Pn then continue interactions
with party A while party B observes a “view” of the
interactions including faults. Solution: Using a flow

structure responses are sent to A and to B.

6 Conclusion

This paper has shown how BPEL can be reused
for describing choreographies. Although only few new
constructs were added on top of BPEL, BPEL4Chor pro-
vides direct support for all Service Interaction Patterns,
except Atomic Multicast Notification. BPEL4Chor was
introduced as an alternative to WS-CDL. It compares
with WS-CDL as follows:

WS-CDL follows the approach of interaction model-
ing, while BPEL4Chor expresses interconnected partic-
ipant behavior descriptions. Therefore, unenforceable

7

models are possible with WS-CDL and BPEL4Chor
allows to define incompatible behavior descriptions.

While a WS-CDL choreography is tightly coupled to
WSDL files, web-service-specific details only appear in
BPEL4Chor’s participant groundings. Therefore, the
same choreography can be reused with different port
type definitions by changing the groundings.

Unknown numbers of participants are natively sup-
ported in BPEL4Chor through the notion of participant
set. WS-CDL does not directly support parallel con-
versations with an unknown number of participants
although these multi-lateral scenarios are very common
as stated in the Service Interaction Patterns.

As BPEL4Chor is based on BPEL, a seamless inte-
gration between choreographies and orchestrations is
possible. While WS-CDL comes with a different set of
control flow constructs, the same constructs are found
in BPEL and BPEL4Chor. All constructs introduced
in topologies and groundings can be mapped to BPEL.

Future work will include detailed investigations on
transformations from BPEL4Chor to BPEL and vice
versa. Another aspect will be the investigation of mod-
eling methods for choreographies using BPEL4Chor.

We demanded the variable types of a sendActivity

and the receiveActivity to match. A next research
step is to investigate how message mediation can help
here. The participant groundings link activities directly
to WSDL port types and operations. We suppose this
is not the only way to do grounding and will investigate
other possibilities like semantical groundings.
Acknowledgments. This work was partially sup-
ported by the German Federal Ministry of Education
and Research (project number 01ISE08B).

References

[1] Web Services Business Process Execution Lan-
guage Version 2.0 – Committe Specification. Tech-
nical report, OASIS, Jan 2007.

[2] A. Arkin et al. Web Service Choreography Interface
(WSCI) 1.0. Technical report, Aug 2002.

[3] A. Banerji, C. Bartolini, D. Beringer, V. Chopella,
K. Govindarajan, A. Karp, H. Kuno, M. Lemon,
G. Pogossiants, S. Sharma, and S. Williams. Web
Services Conversation Language (WSCL) 1.0, W3C
Note. Technical report, March 2002.

[4] A. Barros, M. Dumas, and P. Oaks. A Critical
Overview of WS-CDL. BPTrends, 3(3), 2005.

[5] A. Barros, M. Dumas, and A. ter Hofstede. Service
Interaction Patterns. In BPM 2005, LNCS, pages
302–318, Nancy, France, 2005. Springer Verlag.

[6] J. Clark, C. Casanave, K. Kanaskie, B. Harvey,
N. Smith, J. Yunker, and K. Riemer. ebXML
Business Process Specification Schema Version
1.01. Technical report, UN/CEFACT and OA-
SIS, May 2001. http://www.ebxml.org/specs/
ebBPSS.pdf.

[7] F. Curbera, F. Leymann, T. Storey, D. Fergu-
son, and S. Weerawarana. Web Services Plat-
form Architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messag-
ing and More. Prentice Hall PTR, 2005.

[8] G. Decker, H. Overdick, and J. M. Zaha. On the
Suitability of WS-CDL for Choreography Modeling.
In EMISA 2006, Hamburg, Germany, Oct 2006.

[9] R. Dijkman and M. Dumas. Service-oriented
Design: A Multi-viewpoint Approach. Interna-
tional Journal of Cooperative Information Systems,
13(4):337–368, 2004.

[10] D. F. Ferguson and M. Stockton. Enterprise Busi-
ness Process Management – Architecture, Technol-
ogy and Standards. In J. Eder and S. Dustdar,
editors, BPM 2006, volume 4103 of LNCS, pages
1–15, Nancy, France, 2006. Springer Verlag.

[11] N. Kavantzas, D. Burdett, G. Ritzinger, and
Y. Lafon. Web Services Choreography Descrip-
tion Language Version 1.0, W3C Candidate Rec-
ommendation. Technical report, November 2005.
http://www.w3.org/TR/ws-cdl-10.

[12] F. Leymann. Web Services Flow Language (WSFL
1.0), May 2001.

[13] Business Process Modeling Notation (BPMN) Spec-
ification, Final Adopted Specification. Technical
report, OMG, Feb 2006. http://www.bpmn.org/.

[14] C. Ouyang, M. Dumas, S. Breutel, and A. H. ter
Hofstede. Translating Standard Process Models to
BPEL. In CAiSE 2006, Luxembourg, June 2006.

[15] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hof-
stede. A Language for Service Behavior Modeling.
In CoopIS 2006, Montpellier, France, Nov 2006.

[16] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Bar-
ros, and G. Decker. Service Interaction Modeling:
Bridging Global and Local Views. In EDOC 2006,
Hong Kong, Oct 2006.

8

	cover.pdf
	Slide Number 1

