From Process Models to Business Landscapes

Oliver Kopp, Hanna Eberle, Tobias Unger, Frank Leymann
University of Stuttgart, Institute of Architecture of Application Systems
{kopp, eberle, unger, leymann} @iaas.uni-stuttgart.de

Abstract: Today, architecture and business processes are modeled separately. The
only integration in architectural diagrams is done with Petri nets in the Fundamental
Modeling Concept. Since business users prefer EPCs over Petri nets, we show how
information of extended EPCs can be transformed into business landscapes. This
facilitates development of IT landscapes satisfying the requirements of the business
process and adoption of existing IT infrastructures to new requirements.

1 Introduction and Motivation

Business process models show how business functions relate to each other in a concrete
scenario. Business landscapes provide a global view on all business functions and business
items within a company. So far, business landscapes and business processes have been
modeled separately. The automatic inclusion of the information of business processes in
business landscapes has been done manually. In this paper, we present an approach to
map the content of business processes to business landscapes. This enables a top-down
approach for modeling IT infrastructures: First, the business process is modeled. Second,
the presented mapping is used to automatically derive a business landscape. Afterwards,
this landscape serves as basis for creating an IT landscape supporting the modeled business
process.

Another application scenario is to identify deficiencies in an existing IT infrastructure
with respect to a specific business model as illustrated in Figure 1. Using our approach,
a business landscape is generated. The elements of this landscape can then be placed
in an existing (pure) IT landscape. The result is a combined landscape, which contains
both IT and business aspects. The result of the placement helps to identify lacks in the
existing infrastructure. For example, the fact that some business items cannot be placed is
an indicator that the IT architecture does not fully support the business process.

Process Model gdeMraleh Business Landscape | pmailG T Landscape
(eEPC) - (FMC) ﬁ‘ (FMC)

Deficiencies

Figure 1: Approach overview

As notation for business processes, we use extended Event-driven Process Chains, which are
briefly explained in section 2. We chose the Fundamental Modeling Concepts as notation
for business landscapes and present the basics in section 3. The main section 4 is devoted
to the mapping of extended Event-driven Process Chains to business landscapes, covering
in detail how functions, organizational units and data are mapped.

2 Event-driven Process Chains

We use extended Event-driven Process Chains (€EPCs) as the input for the mapping. eEPCs
are Event-driven Process Chains (EPCs, [KNS92]), where functions can be annotated with
elements (cf. [STAOS], where the usage of eEPCs is illustrated). For our mapping, we
restrict the elements to “organizational unit” and “information item.” An organizational
unit may be connected with the “is involved with” relation. This relation combines all
relations of organizational units with functions, such as “executes,” “is responsible for” or
“has decision making power.” An information item represents data, such as “output data.”
Finally, data can be sent or received by a function. Definition 1 shows a definition of the
used variant of eEPCs based on the formalization of [Kin06]. It is important to note that
the presented variant of eEPCs is a non-hierarchical EPC.

Definition 1 (Extended Event-driven Process Chain (eEPC))

An extended Event-driven Process Chain (eEPC) consists of events E, functions F, con-
nectors C, control flow arcs A € (EU F UC) x (E U F UQC), a set of names N, a
labeling function I, organizational units O, information items I, an involved-with relation
i € F x O, asendrelation s C F x I and a receive relationr C F x I. The sets E, F,
C, A, N, O and I are pair-wise disjoint.

The labeling function | assigns a name to an element of an EPC: 1 : EUFUCUOUI —
N U {and, or,xor}. A connector ¢ € C may only have and, or, or xor assigned. Events,
functions, organizational units and information items may only have an element out of N
assigned.

M = (E,F,C,A,N,l,0,1,i,s,r)

To illustrate our mapping, a simplified online shop process is used. A customer places an
order at an online shop, which processes the order. In parallel to the goods issue, the invoice
is created and delivered. As soon as a payment of the customer is received, the payment is
processed and the goods are delivered. Figure 2 presents the eEPC for the online shop.

3 The Fundamental Modeling Concept

The Fundamental Modeling Concept (FMC, [KWO03, Tab05]) is a graphical modeling
notation, which can be used to describe software systems on both the business and the
technological level. FMC allows to visualize complex software systems as a system

Customer
Order Received
‘ Customer
Data
1 Sales Orders
v A ¥
Delivery Invoicing ! Data
i
-—- Sales Orders
|
I

- Outgoing
Goods

Warehouseman

Payment

» -
Received A=
Process r=1 Invoice
Incoming ~
Accountant 1 .
L= Accounts Invoice
Delivered

Goods
Packaged

Y

Invoice Created

Payments

Accounts
Updated

Deliver Goods

Goods
Delivered

«——— control flow
Warehouseman

€ data read by a function

data read and written

Customer by a function

— Involved with relation

Figure 2: EPC for the example online shop

landscape which provides an overview on the used software, hardware and their relation
to each other. FMC was introduced as an intuitive architectural description language to
document and communicate a system architecture. It is designed to be simple and universal.
Unlike UML [Obj07], FMC describes the structure of a system in a way that is independent
of any implementation paradigm and that is on a higher level [KWO03].

FMC distinguishes between three structural types: the data diagram, the process diagram
and the block diagram. The data diagram is used to capture the relational data model
and is similar to entity relationship diagrams. The process diagram expresses process
structures using Petri nets. The block diagram is used to capture the components and their
relationships. Since both FMC data diagrams and Petri nets are not used by business users,
we focus on the block diagrams.

3.1 FMC Block Diagrams

FMC block diagrams are also called landscape architectures and provide an overview of
the composite structure of systems [AKO7]. In the following, we present all details of FMC
block diagrams and present a formalization. The formalization itself does not include the
rendering of FMC diagrams and excludes details which are not necessarily needed in the
transformation.

FMC block diagrams consist of components and their relationships. A component can be
either active or passive. AC denotes the set of active components. An active component
is capable of performing functionality. Active components are divided into functional
agents and human agents. Functional agents represent functions with a defined mapping
between input and output data. Human agents represent human actors. The function
tac : AC — {functional, human} returns the type of an active component. The function
Nac : AC — N returns the name of an active component, where A denotes the set of all
names. An active component reads, writes or both reads and writes data.

PC denotes the set of passive components. A passive component is a storage or a channel.
Note that passive components are also called “locations” to underline that data is located
there. A storage is used by active components to store data and a channel is used for
communication purposes between at least two active system components. Storages store
data durably. A storage may contain triggers which trigger readers of the storage when a
data item has been changed. Triggers do not have a visual representation and are therefore
excluded from the formalization.

In contrast to storages, channels do not store data durably. Thus, channels can be regarded
as telephone wires: The data is available at one point in time and will be lost afterwards.
Hence, it is important that some active component reads it while it is there. The function
tpc : PC — {storage, channel} returns the type of a passive component. Thus the implicit
sets of storages PCg and channels PC¢ are defined:

PCs = {s|s € PC, tpc(s) = storage}
PCc = {c|c € PC, tpc(s) = channel}

The function npg : PC — AN U {e} returns the name of a passive component. Storages
must take a name and channels may be unnamed (denoted by €). Note that the set A/ may
not contain €. The graphical notation of FMC components is presented in figure 3.

] W O o

Functional agent Human agent Store Channel

(a) Active Components (b) Passive Components

Figure 3: FMC Components

Active and passive components may be connected via connectors denoting their relationship.
A relationship is read, write and modify. Read and write are both used at channels and
storages. “Modify” may be used at storages to denote that an item in the storage is modified.
FMC allows to model channels used for request-response. Therefore “rri” and “rrp” are
introduced for channels. The initiator is connected with “rri” to the channel and the replying
agent with “rrp”. Note that it is allowed to connect an agent to storage with both read and
write relations. This states that the agent reads data and writes possibly different data. The
set R contains different kinds of relationships: R = {r, w, mod, rri, rrp}. The set E is the
set of all connectors.

E CAC x {r,w,mod} x PCs U
AC x {r,w,rri,rrp} x PC¢

Since a channel can be either used as request-response channel, as unidirectional channel
or bidirectional channel, following property has to be satisfied by E:

V(a,r,c) € ENAC xR x PCg) :
ref{r,w} =7 (a,r',c)eE:re{mrmp}a
refrmi,mp} =A@, r',c)eE:re{r,wina
r=ri =>4, r',c)eE:r=rpna
r=rnp =>ZA@,r',c)eE:r=mi

Figure 4 presents the graphical representation of connectors between active components
and storages and Figure 5 presents the graphical representation of connectors between
active components and channels.

() 2 [()

(a) Read access (b

=

Write access

2 () 2 |)

(c) Read and write access (d) Modifying access

Figure 4: Relationships between active components and storages

In short, a FMC block diagram is bipartite graph G, where the sets AC and PC form the
nodes and E forms the edges between the nodes.

G = (AC,PC,E,RR, V. tac. tpc. Nac. Npc)

a (> b a O b

(a) Unidirectional channel. Active (b) Bidirectional channel. Both active
component a has write access to the components a and b have read and
channel, whereas active component b write access to the channel

has read access to the channel
R
a O] b

(c) Request-response channel. a is
the initiator and b replies to the re-
quest.

Figure 5: Relations between active components and channels

3.2 Business Landscapes

FMC can be used to model the architecture from a business and from an IT point of view
on any granularity level. Therefore, it is important to state what aspects should be captured
by the block diagram. Our work focuses on the business aspect. So called “business
landscapes™ are used in the requirements engineering and are usually designed by business
people [AKO7]. Business landscapes do not depict technical information such as servers,
clients or databases. The purpose of business landscapes is to visualize

e business functionalities,
e business data,
e business roles and

o their relationships with each other.

Human agents represent business roles, such as members of the sales department. Func-
tional agents represent business functionality. Sforages can either represent stored master
data or dynamic data. Channels connect agents with each other. The semantics of a con-
nection established via a channel is that information is flowing between the two connected
agents. If a storage is connected with two agents, it is not necessary to additionally connect
these two agents with a channel.

Figure 6 presents an example business map. It shows the business perspective on the
architecture of an online shop.

HO— Deliver Goods O

FO—— Process Customer Order

% ‘ Customer Data ’ Gales Orders Issue Goods () warehouse-
man

Outgoing Goods

100

Create Invoice

Process
HO—] Deliver Invoice Invoice incoming [———OH
Payments
Customer
@ Accountant

Figure 6: FMC business landscape of an online shop, adopted from [AKO07]

3.3 Pure IT Landscapes

Pure IT landscapes are FMC block diagrams capturing technological aspects. They show
software components and hardware components and their relationships. For example, a
software component is a database and a hardware component is a Unix server. Pure IT
landscapes can be used to define new systems and to document already existing ones.
New systems can be designed by using architectural patterns, depending on what the
requirements on the system are. If existing systems are documented, the resulting landscape
can be used to identify bottlenecks and to determine changes needed for improvement of
the system. Figure 7 presents the pure IT landscape of the example online shop.

3.4 Relating Pure IT Landscapes with Business Landscapes

Business functionality and business data need an implementation. Therefore, business and
pure IT landscapes need to be related. These relations are shown in a mixed landscape,
called “IT landscape” [AKO7]. IT landscapes are pure IT landscapes, where business
functions and data are embodied in the technical components. This approach enables

HP-UX Server 2

mySAP ERP /ORACLE 10i Database\

mySAP SD / \
Browser- R mySAP ERP Data
—(O— based O
web shop
Customer
— A
M—}1
% sap | "X
O my.
SD Client —O
Warehouse-
man
mySAP FI
R}
mySAP 1l
% O—# Client —O v
Accountant

Figure 7: FMC pure IT landscape of an online shop

business analysts and IT professionals to start modeling independently of each other.
Figure 8 presents the combined IT and business landscapes. In our application scenario, the
IT landscape is the place, where the artifacts of the generated business landscape are placed
in to uncover deficiencies of the existing pure IT landscape.

4 Mapping eEPCs to an FMC Block Diagram

Having defined the notation of eEPCs and FMC, we present how to map information
from eEPCs to an FMC block diagram. We explain each step, show an algorithm and
apply each step to the example online shop to illustrate the mapping. The algorithm
maps an eEPC M = (E,F,C,A,N,l,0,1,i,s,r) to a FMC block diagram G =
(AC, PC,ERR, N, tac. Nac, Npc). We assume, that all sets in G are set to empty sets
and all functions are undefined.

In FMC, organizational units are seen as business roles, which are represented in the
FMC as human actors. The aim of the modeled EPC is to provide a business view on an
executable workflow. This implies that each function of the EPC should be executed by a
machine. Since a machine is represented as functional agent in FMC, we map functions to
functional agents. An organizational unit is connected with a function by the relation “is

HP-UX Server 2

mySAP ERP ORACLE 10i Database

mySAP ERP Data

mySAP SD
Browser- R)
Customer Data
% —(O—{ based O
web shop Process
Customer Customer Order
1 |4 (Sales Orders
w1
% Ry Issue Goods
mySAP .
O—{sp client[O Article
Warehouse-

man

Outgoing Goods

Stock

mySAP FI

R)
SAP .
% —O— 'gl])é"em —O Create Invoice

Invoice
Accountant v
Process
Incoming
Payments Accounts

)
[\ §

N

-

Figure 8: FMC IT landscape of an online shop [AKO07]

involved with”. That relation does not state any direction of the communication. Therefore,
the relation between the human agents and functional agents is realized with a bidirectional
channel. A bidirectional channel denotes that the agents are communicating with each
other. The mapping of a function to a functional agent can also be interpreted, that the
functional agent in the FMC block diagram is “supporting” to human agent to do his task.
For example, a tool or a screen form support a human to perform his task.

It is important to note that the names of the artifacts are retained during the mapping.
Figure 9 presents the mapping of functions, the involved organizational units and their
relation to agents and channels connecting them. Algorithm 1 presents the algorithm. In
the algorithm, we used the fact that a function f : A — B can also be represented as a set
of tuples f € A x B.

Customer
Order Received

Process
O_ O* Customer Order
<«
Customer ¢
¥ A
N oeery Mg |
Delivery ® Invoicing Data

i
|
¢ ¢ k| Sales Orders
I
iy Stock }L Outgoing
Issue Goods [Create Invoice [¢ Goods

| Outgoing =i

Ware- - |
Goods .
houseman v b e |
Goods .
Packaged Invoice Created
Payment * *
. — A\ - .
Received v L Deliver Invoice **
Process *
—O—{ ncoming [
I
TyTens b oo
‘ Delivered
JAccountant] Accounts
Updated

Deliver Goods

v

Goods
Delivered

Figure 9: Functions mapped to functional agents. “is involved with” mapped to bi-directional
channels.

An information item represents data. Since data is stored in storages in FMC, information
items are mapped to storages. If a function receives an information item, it has to read the
information item somewhere. Therefore, the read relation is mapped to a connection with
the relationship “read”. By analogy, the write relation is mapped to a connection with the
relationship “write”. If a functions both reads and writes an information item, both are
summed up in the modifying access relationship. Figure 10 illustrates the mapping using
the data accessed by the “process customer order” function as an example. The algorithm
is presented in algorithm 2.

So far, the flow relation has not been mapped. Depending on the underlying IT infrastructure,
explicit channels are needed to denote that a functional agent triggers a subsequent agent.
Therefore, the connection between two functions (with no other function in between) can
be mapped to a unidirectional channel. On the other hand, storages may contain triggers.

Algorithm 1 Mapping organizational units, functions and their relation to FMC. Input is
an eEPC M, the output is a FMC block diagram G.
procedure CREATEACTORS(M ,G)
AC«~ FUO
tac < {(ac, functional) |ac € F} U {(ac, human)|ac € O}
N <« {nlnel(e),ec FUO)}
Nac < {(ac,I(ac)) | ac € AC}
for all (f,0) €i do
Create a new channel ¢
PC <« PCuc
tpc < tpc U (c, channel)
Npc < Npc U (c, €)
E~EU(fir,c)U(fiw,c)
E<~EU(o,r,c)U(o,wW,c¢)
end for
end procedure

Customer Stock
Order Received

Process
O Customer Order|

Customer ¢

A

¢

Customer Data

Y
1

Sales Orders

Figure 10: Information items mapped to storages

Algorithm 2 Mapping organizational units, functions and their relation to FMC. Input is
an eEPC M and an FMC block diagram G. The block diagram G is modified and thus also
an output.
procedure CREATESTORAGES(M ,G)
PC<«< PCuUI
tpc < tpc U {(i, storage) |i € I}
N« NU{n|nel@),iel}
Npc <= Npc U {(i,1(i))|i € I}
RW «—snr // Function sending and receiving
for all (f,i) € RW do
E<~ EU(f,mod,i)
end for
W « s\ RW // Function only sending
forall (f,i) € W do
E<~EU(fiw,i)
end for
R <~ r\RW // Function only receiving
forall (f,i) € Rdo
E<~EU(firi)
end for
end procedure

For example, an inserted information item can trigger the subsequent agent. Hence, an
additional channel is unnecessary in this case. Since triggers are currently not included in
the metamodel of FMC, our mapping is not aware of triggers. Furthermore, the Business
Process Execution Language (BPEL) is used to drive the business process in a web services
architecture [WCL105]. Thus, the services (modeled by functional agents) do not have to
be aware of other services in the business process. Thus, we do not map the connections
between functions to channels. As a result, events between functions are not mapped either.
There are two mapping options for events without a preceding or subsequent function: (i)
induce a human actor and connect it with the actor representing the preceding/subsequent
function or (ii) do not map it to a FMC representation. Option (i) is not consistent with the
exclusion of channels between functional agents in the mapping. Therefore, option (ii) is
taken, which leads to the FMC business landscape presented in figure 6.

Algorithm 3 presents the complete algorithm, which first initializes the target FMC block
diagram and calls CREATEACTORS and CREATESTORAGES.

5 Related Work

There exists work on the transformation of graphically modeled business processes to
executable workflows (e.g., [ODtHvdAO7, MLZ06]). These works do not deal with ar-
chitecture generation, but can be extended with our contribution. [Asc07] presents how a

Algorithm 3 Mapping an eEPC to a FMC block diagram. Input is an eEPC M, the output
is a FMC block diagram G.
procedure MAP(M ,G)
AC, PC, RR,N, tac, Nac.Npc < @
CREATEACTORS(M, G)
CREATESTORAGES(M, G)
end procedure

FMC business landscape can be manually created out of an EPC. The generated business
landscape contains more information than the EPC alone. For example, actors performing
functionality in the same area, are nested in an actor representing functionality in that area.
Our work extends that work by automating the mapping of the EPC elements to FMC
business landscapes, which is a basis for the subsequent step of structuring and simplifying
the business landscape.

[Mol05] describes a process-oriented application landscape with IT modeling as one aspect.
The work states that an IT model cannot be automatically generated out of a business
process due to different modeling domains. Instead of automatic generation, required
control structure and data can be mapped to generic methods and objects. Our work
supports this mapping by automatically generating required artifacts. These artifacts can
then be placed in the existing IT landscape.

The Rational Unified Process [Kru04] is an engineering process, which describes phases
for software development. Processes can be modeled as EPCs in the “business modeling
discipline”. In the following discipline “Requirements discipline”, the generated business
landscapes can be used as communication vehicle between the developers and the customers.

6 Conclusion and Outlook

We presented the concept of mapping extended Event-driven Process chains (eEPCs) to
FMC business landscapes. This enables a top-down approach for modeling IT infras-
tructures: First, the eEPC for the business process is modeled. Afterward, the presented
mapping is used to derive a FMC business landscape. This landscape can then be used
as basis for creating an IT landscape supporting the modeled business process. The ap-
proach can also be used to identify the gaps between the existing IT infrastructure and the
infrastructure needed for process execution.

Another application scenario is to map multiple eEPCs to a single business landscape. This
business landscape captures the requirements of all given processes at one place. Since
the generated business landscape provides another view on the modeled processes, the
landscape can be used as additional validation of the modeled processes by the business
process designers.

The generated business landscape is consistent with the business process defined in eEPC.
That means, the required business functions, the required storages and the participating

human actors are — by construction —all contained in the business landscape. Thus, defining
or checking the IT using the generated business landscape ensures that all required business
functionality is covered by the IT.

Ongoing work is the implementation of the approach in Arcway Cockpit [AGO7] and a
customer evaluation. Future work is the support of eEPCs containing information about the
IT infrastructure. For example, a machine can execute a function, which results in a nesting
of the generated functional agents. We plan to define FMC4SOA, which includes special
markers for an SOA IT infrastructure at FMC block diagrams. This allows for using EPCs
with technical details (e.g., [ZMO05]) can be used as input of our approach. The technical
details are then stored in an FMC4SOA landscape.

Acknowledgments

Oliver Kopp is funded by the German Federal Ministry of Education and Research (project
Tools4BPEL, project number 01ISE08).

References

[AGO07] Arcway AG. Homepage of Arcway Cockpit, 2007. http://www.arcway.com,
visited 2007-09-15.

[AKO7] P. Aschenbrenner and F. Keller. Visual Requirements Engineering for IT-Projects,
2007. http://www.arcway.com/fileadmin/arcwaydateien/pdf/
ARCWAY_VRE_Whitepaper.pdf, visited 2007-09-15.

[Asc07] P. Aschenbrenner. Business Process driven Requirements Engineering,
2007. http://www.arcway.com/fileadmin/arcwaydateien/pdf/
BPRE_Whitepaper.pdf, visited 2007-09-15.

[Kin06] E. Kindler. On the semantics of EPCs: Resolving the vicious circle. Data Knowl.
Eng, 56(1):23-40, 2006.

[KNS92] G. Keller, N. Niittgens, and A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report Heft 89,
Universitit des Saarlandes, 1992. Veroffentlichungen des Instituts fiir Wirtschaftsin-

formatik (IWi).
[Kru04] P. Kruchten. The Rational Unified Process. Addison-Wesley, third edition, 2004.
[KWO03] F. Keller and S. Wendt. FMC: An Approach Towards Architecture-Centric System

Development. In ECBS 2003, pages 173-182. IEEE Computer Society, 2003.

[MLZ06] J. Mendling, K.B. Lassen, and U. Zdun. Transformation Strategies between
between Block-Oriented and Graph-Oriented Process Modeling Languages. In
F. Lehner, H. Nosekabel, and P. Kleinschmidt, editors, Multikonferenz Wirtschaftsin-
Sformatik 2006 (MKWI 2006), volume 2, pages 297-312. GITO- Verlag Berlin, 2006.
XMLA4BPM Track.

http://www.arcway.com
http://www.arcway.com/fileadmin/arcwaydateien/pdf/ARCWAY_VRE_Whitepaper.pdf
http://www.arcway.com/fileadmin/arcwaydateien/pdf/ARCWAY_VRE_Whitepaper.pdf
http://www.arcway.com/fileadmin/arcwaydateien/pdf/BPRE_Whitepaper.pdf
http://www.arcway.com/fileadmin/arcwaydateien/pdf/BPRE_Whitepaper.pdf

[Mol05]

[Obj07]
[ODtHvdA07]

[STAOS]

[Tab05]

[WCL105]

[ZMO5]

M. Molter. Die prozessorientierte Applikationslandschaft. In A.-W. Scheer, W. Jost,
and K. Wagner, editors, Von Prozessmodellen zu lauffihigen Anwendungen, pages
151-172. Springer, 2005.

Object Management Group. UML 2.1.1 Superstructure Specification, February 2007.

C. Ouyang, M. Dumas, A.H.M. ter Hofstede, and Wil M.P. van der Aalst. Pattern-
based translation of BPMN process models to BPEL web services. International
Journal of Web Services Research (JWSR), 2007.

A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling using Event-Driven
Process Chains. In M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede,
editors, Process-Aware Information Systems, pages 119—-146. Wiley & Sons, 2005.

P. Tabeling. Softwaresysteme und ihre Modellierung. Grundlagen, Methoden und
Techniken. Springer, Berlin, 2005.

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.F. Ferguson. Web Services
Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall PTR, 2005.

J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. In Proceedings of the 7th International Conference Mod-
ern Information Technology in the Innovation Processes of the Industrial Enterprises
(MITIP 2005), Genova, Italy, September 2005.

