
1Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

2IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

Deriving Explicit Data Links in WS-BPEL Processes

Oliver Kopp1, Rania Khalaf2, Frank Leymann1

© 2008 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{BPELdataflow,

author = {Oliver Kopp and Rania Khalaf and Frank Leymann},

title = {Deriving Explicit Data Links in WS-BPEL Processes},

booktitle = {Proceedings of the International Conference on Services

Computing, Industry Track, SCC 2008},

year = {2008},

pages = {367-376},

doi = {10.1109/SCC.2008.122},

publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Deriving Explicit Data Links in WS-BPEL Processes

Oliver Kopp1, Rania Khalaf2, Frank Leymann1

1Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann}@iaas.uni-stuttgart.de

2IBM TJ Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, USA
rkhalaf@us.ibm.com

Abstract

WS-BPEL is a standard language to model business pro-
cesses. Control flow is modeled explicitly using links.
Data is passed via shared variables and there is no no-
tion of explicit data links. However, explicit data links
are an important means to reason about business pro-
cess models. We present an algorithm to derive explicit
data links in WS-BPEL processes. By considering dead
path elimination as defined in WS-BPEL, we reduce the
number of derived data links when compared to existing
approaches that ignore dead path elimination.

1. Introduction

The Web Service Business Process Execution Lan-
guage (BPEL for short) is a workflow language geared
towards Service Oriented Computing. BPEL provides
basic workflow capabilities, such as the ability to define
the control flow between a set of activities via explicit
links, as well as advanced features such as recovery, fault
handling and event handling. The area of workflow often
requires both, understanding the control flow as well as
the data flow between a set of activities. This aids the
design of business processes as well as their analysis
and reengineering. BPEL, however, has no explicit con-
struct for modeling data flow, but uses variables shared
between activities for that purpose: Activities simply
read from and write to these variables. In order to derive
explicit data links between the activities of a BPEL pro-
cess, one must therefore perform a data-flow analysis on
that process.

To address this problem, we present an algorithm that
statically determines data links. Mainstream data-flow
analysis techniques are presented in [1,13,14]. However,
these techniques cannot be directly applied to a BPEL
process, since BPEL supports both, parallelism and dead
path elimination (DPE) [15]. DPE is a technique used in

BPEL (as well as many workflow system implementa-
tions) to propagate the disablement of activities that can
no longer be executed. While algorithms are presented
that determine data dependencies in BPEL [5, 12], these
algorithms typically produce too many data links. The
algorithm presented in this paper determines explicit
data links and deals with DPE, thus reducing the number
of data links.

Explicit data links are used in [12] to construct a more
precise formal model of the given BPEL process. The
work of [5] uses data links to determine uninitialized
variables. We create a data-flow analysis algorithm for
BPEL to enable splitting BPEL processes based on busi-
ness needs: A user assigns the activities of a business
process to different partners and the result is a set of
BPEL processes, one for each partner, such that the op-
erational semantics of the original process is maintained.
The splitting of BPEL processes is introduced in [8].
In that work data dependencies are modeled explicitly
in BPEL by using BPEL-D, which is an extension of
BPEL [6].

We present in [7] an algorithm to split standard BPEL
processes. One of the inputs to that algorithm is the
result of data-flow analysis on the BPEL process being
split. A data link between two activities in different
fragments is roughly translated into a message sent from
one fragment to another. Therefore, it is important to
return as few data links as possible in order to minimize
the communication overhead between the partners. This
work relates to [7] in that it provides one specific data-
flow analysis algorithm determining the data links in
a BPEL process and providing a small number of data
links due to its treatment of DPE.

The remainder of the paper is structured as follows:
Section 2 presents the challenges of DPE for data-flow
analysis and section 3 presents an algorithm addressing
the challenges. Section 4 presents the state of the art in
the field of data-flow analysis on BPEL processes and
section 5 draws a conclusion and presents future work.

2. Challenges of DPE

In order to address data-flow analysis in BPEL,
we present a short summary of the behavior of
links and activities focusing on processes where
suppressJoinFailure is set to yes, thus enabling
dead path elimination. Each BPEL activity may have
incoming and/or outgoing links, where each link is asso-
ciated with a transition condition. If no explicit transition
condition is associated, the default transition condition
is true. A BPEL join condition is a Boolean func-
tion over the status of the incoming links of an activity.
Once every incoming link has fired, the join condition
is evaluated. If the join condition evaluates to true,
the activity is executed, and if executed successfully, the
transition conditions of the outgoing links are evaluated.
If the join condition evaluates to false, the activity is
not executed and the status of its outgoing links is set
to false. Regardless of whether the activity is exe-
cuted or not, the outgoing links are fired and the target
activities visited. This technique is called “dead path
elimination” (DPE), which is explained in detail in [4].
Activities and links not being executed due to DPE are
called dead. It should be noted that the existence of mul-
tiple incoming links associated with an activity always
represents a synchronizing join.

21 1

2

4

3

1
wx

1wx
1 wx

2wx
2

rx2r
x
2rx1r

x
1

a1a1

a2a2

wx activity writing to variable x
rx activity reading from variable x
a activity not reading or writing
jc join condition
tc link with explicit transition condition
l link with default transition condition true

Figure 1. Process with join conditions

Figure 1 presents activities in a BPEL flow. A flow
is a compound activity that contains activities and con-
trol dependencies between them (i.e., a directed acyclic
graph). The contained activities are represented as anno-
tated nodes. The annotation shows whether the activity
is reading from the variable x, writing to the variable x,
or neither reading from nor writing to it.

Consider the join condition jc1. Whether wx
1’s write

reaches rx1 depends on the value of join condition jc1.
Suppose tc1 evaluates to false. Then wx

2 is marked
as dead and the status of l1 is set to false. If jc1 is a

logical AND over the status of all incoming links, rx1 will
be dead and will therefore never read the data written
by wx

1. However, wx
1 can still be a valid writer for a

subsequent read, after rx1: Consider that the status of l4
evaluates to true, leading to rx2 being executed even
though wx

2 and rx1 are dead. Since wx
1 has been executed,

a data link from wx
1 to rx2 must be created.

Now suppose jc1 is instead a logical OR1. The evalu-
ation of jc1 will always return true, regardless of tc1,
since l2 has no explicit transition condition assigned and
a1 is never dead. If tc1 evaluates to false, wx

2 is dead.
Thus, rx1 reads the value written by wx

1 and not the value
written by wx

2.
All in all, explicit data links are dependent on the join

conditions: If jc1 is a logical OR, both wx
1 and wx

2 are
possible writers for rx1. If jc1 is a logical AND, wx

2 is the
only possible writer for rx1.

3. The Algorithm

In the following, we present an algorithm which de-
termines data links in BPEL processes and respects dead-
path elimination behavior. The algorithm is based on
the ideas presented in [14], where the control flow is
abstractly interpreted.

To stay close to existing syntax formalizations of
BPEL, our notation is based on the one presented in
[16], where a detailed explanation of the notation can be
found. The used notation is presented in table 1. The
central idea of the formalization is to connect nested
XML elements using a relation HR ⊆ A ×A . If c is
an XML child of a flow activity f , then (f ,c) ∈ HR.
Control links specified in a flow activity are explicitly
modeled by the set of control links L . The control
flow is modeled by the control link relation LR⊂A ×
L ×A , where (p, l,s) ∈ LR denotes that activity p is
connected to activity s by the control link l.

3.1. Handling Complex Types

Variables in BPEL processes are accessed using
queries. Let QV denote the set of all queries for access-
ing locations in variables. In the context of XPath [17],
such a query is a location path. If the whole vari-
able is accessed, the query is empty (ε). We define
EQV ⊆ V ×QV to denote all tuples of variables and
queries on each variable in the given process model. In
the subsequent sections, each element in EQV is called
variable element to ease reading. The set EQV

w ⊆ EQV

is the set of all variable elements, which are written by

1We use the term “jc is a logical OR” as shortcut for “jc is a Boolean
OR function over the status of all incoming links”. Similar for “jc is a
logical AND”.

Table 1. Notations used
Notation Meaning

Abasic The set of all basic activities
process The process element
Aflow The set of all flow activities
A The set of all activities; A = Abasic∪{process}∪Aflow
C Set of all Boolean conditions
πi(t) Returns the projection to the ith component of a tuple t
L All control links in flow activities
LR⊂A ×L ×A The control link relation
℘(S) Denotes the power set of a set S
Lin : A →℘(L) Returns the set of all incoming links of an activity
Lout : A →℘(L) Returns the set of all outgoing links of an activity
jc : A → C ∪{⊥} Returns the join condition of the given activity. “⊥” denotes an undefined join

condition defaulting to the logical OR of all incoming links.
HR⊆A ×A The hierarchy relation denoting the nesting of activities. Let h = (p,a) ∈ HR. Then p

is a parent of a. The execution order of activities nested in a flow activity is specified
by the control link relation LR.

children : A →℘(A) Returns the set of all children of the given activity with respect to HR
descendants : A →℘(A) Returns the set of all transitive children of the given activity with respect to HR
V Set of all variables including the variable implictly declared at fault handlers
QV Set of all queries (i.e., XPath location paths) for accessing locations in variables. QV

includes ‘ε’ to denote “empty query”, i.e., the whole variable is accessed.
EQV ⊆ V ×QV The set of tuples of a variable v and a (valid) query q on v
EQV

w ⊆ EQV The set of variable elements written by activities
w : A ×EQV → B Returns true iff the given activity completely changes the given variable element

and not only parts of it
r : A ∪L ×EQV → B Returns true iff the given activity or link completely reads the given variable element

activities.
Let $var be a variable of a complex type and thus

being of the form presented in figure 2. Assume now
three writers wv

1, wv/c
2 , wv/c

3 in a sequence with following
writes: wv

1: $var, wv/c
2 : $var/car, wv/c

3 : $var/car.
wv/c

3 overwrites the data written by wv/c
2 , but it does not

overwrite all data written by wv
1. Thus, wv

1 is still a
writer to take into account for a subsequent read on
$var, where the data written by wv

1 and wv/c
3 has to be

merged.
A writer has to be removed from the set of possible

writers if its written data is overwritten by a subsequent
write (cf. section 3.4). Therefore, every writer writing to
a variable element ve also has to be considered as a writer
to elements being subelements of ve. To formally define

Figure 2. Variable of a complex type

the subelement-relation, we can interpret the structure
of each variable v as a lattice. Assume the comparison
operator of the lattice to be “A”. Then, n A m returns
true iff n is a parent of m in the structure of the variable
v, where n and m are parts of the variable. Thus, A forms
the subelement-relation.

XPath expressions may reference more than one lo-
cation in the structure of a variable. The presented ap-
proach for handling elements in the variable structure
works for single elements only. Therefore, we restrict
XPath queries not to contain any variable reference and
to return exactly one element in a variable.

Assume poss◦ : (A ∪L)×EQV →℘(A) being the
function returning the set of possible writers for a given
activity or link and variable element during program
execution (cf. section 3.2). An activity is contained in
poss◦ if it completely writes to ve. As shown above, a
read of an activity a on a variable element ve also has
to read all data written to children of ve. Therefore, the
function W6 ‖ : A ∪L ×EQV →℘(A) returning the set
of possible writers, including partial writers, is defined

as follows:

W6 ‖ : (x,ve) 7→ {a′ | a′ ∈ poss◦(a,v′e), v′e v v,r(x,ve)}

r : A ∪L ×EQV →B returns true iff the given activity
a directly reads the given variable element ve.

3.2. Static Analysis

The control flow of the BPEL process definition
is abstractly interpreted. Since DPE may only be ac-
tive within a flow activity, the algorithm handles BPEL
processes including a single flow activity as the only
structured activity. We assume that the Bernstein Cri-
terion [11] holds for the analyzed BPEL process. The
Bernstein Criterion states that there may be no writes
happening in parallel to reads on the same variable.

The idea of the static analysis is to distinguish be-
tween three states of a writing activity: possible, disabled
and invalid. A writing activity w is a possible writer at
an activity a if the data written by w can reach a. For ex-
ample, wx

2 is a possible writer for rx1 in the BPEL process
presented in figure 1. In general, w is a disabled writer
if it is overwritten by a subsequent writer. If the process
execution reaches the activity wx

2, wx
1 gets overwritten

by wx
2 and thus wx

1 is disabled. If the join condition jc1

is an AND, wx
1 will also remain disabled at rx1: If tc1

evaluates to false, wx
2 is dead. Thus, the status of l1 is

false and jc1 subsequently evaluates to false. Thus,
rx1 is dead and will not read the value written by wx

1. A
disabled writer can be a possible writer again, which
happens for wx

1 at rx2, if jc1 is an AND. Since l4 does not
contain an explicit transition condition, the status of l4
is true and the join condition at rx2 evaluates to true
even if the status of l3 is false. Thus, the data written
by wx

1 does not reach rx1, but rx2. A writer can also be
disabled completely and thus become invalid. Assume
tc1 is true. Then wx

2 always overwrites the value writ-
ten by wx

1 and thus wx
1 is never a possible writer at all

activities following wx
2.

To store the state of a writing activity, two lattices
and a Boolean value are used: One lattice for the possi-
ble writers, another lattice for the disabled writers, and
one Boolean value for marking the current activity to
be possibly dead due to DPE. The invalid writers are
not stored, since they are not needed to determine the
possible writers. Each lattice is formed in the same way:
Each element of the lattice is a subset of the set of all
activities, and the containment relation forms the lattice
relation. The current state of the writes to the given
variable element is assigned to every link and activity
by the function writes◦. The function writes• returns the
current states of the writes after the activity or the link

has been interpreted.

writes◦ : (A ∪L)×EQV →℘(A)×℘(A)×B
writes• : (A ∪L)×EQV →℘(A)×℘(A)×B

To ease reading, the following functions are used to
access each tuple element:

poss◦(x,ve) := π1(writes◦(x,ve)) returns the activi-
ties which are possible writes to the variable element ve
at position x in the BPEL process. A position x can be
an activity or a link. “poss” stands for “possible”.

dis◦(x,ve) := π2(writes◦(x,ve)) returns the activities
which were overwritten by preceding writes from a path
leading from the root to position x. “dis” stands for “dis-
abled”. The writers contained in dis◦ are those writers,
which may get possible writers at a subsequent OR join
as outlined in the example.

mbd◦(x,ve) := π3(writes◦(x,ve)) returns true iff x
may be not executed due to DPE on a path from any
directly preceding writer (or from the root node if there
is no directly preceding writer) to x. “mbd” stands for
“may be dead”. mbd◦(x,ve) is needed to decide if a
writer x disables preceding possible writers or if x makes
them invalid. A writer w is a directly preceding writer if
there is no other writer on the path from w to x.

poss•, dis•, and mbd• are defined on writes• similarly
to poss◦, dis◦, and mbd◦ on writes◦.

3.3. Depth-first Search

The static analysis executes a depth-first search (DFS)
which covers all possible executions. Since each link in
the flow graph is associated with a transition condition,
the DFS visits the links explicitly. A DFS is started for
each variable element ve ∈ EQV

w as shown in Algorithm 1.
Variable elements can be analyzed independently from
each other, since BPEL does not support aliasing of
variables. “Aliasing” describes the fact that two variables
can point to the same place in memory.

The DFS is implemented in HANDLEACTIVITY and
HANDLELINK. HANDLELINK visits the control links
and is described in section 3.7. The activities are vis-
ited by HANDLEACTIVITY, which is presented in Al-

Algorithm 1 Analysis of a given BPEL process
procedure ANALYZEPROCESSMODEL

Determine EQV
w in the given BPEL process model.

for all ve ∈ EQV
w do

∀a ∈A : visited(a)← false
∀l ∈L : visited(l)← false
HANDLEACTVITY(process, ve)

end for
end procedure

Algorithm 2 Handling of an activity
procedure HANDLEACTIVITY(a,ve)

parentHandled←
a = process ∨ visited(p), (p,a) ∈ HR

allLinksVisited←
Lin(a) = /0 ∨ ∀l ∈Lin(a) : visited(l)

if parentHandled ∧ allLinksVisited then
visited(a)← true
writes◦(a,ve)←

joinLinks(a,ve) |Lin(a)|> 0
writes◦(p,ve) ∃p : (p,a) ∈ HR

(/0, /0,false) otherwise
if a ∈Abasic then

HANDLEBASICACTIVITY(a,ve)
else if a ∈Aflow then

HANDLEFLOW(a,ve)
else if a = process then

// Directly handle the contained activity
HANDLEACTIVITY(a′,ve), (a,a′) ∈ HR
writes•(a)← writes•(a′)

end if
for all l ∈Lout(a) do

HANDLELINK(l,ve)
end for

end if
end procedure

gorithm 2. It checks whether all incoming links of the
currently visited activity were handled, and whether the
parent activity was visited. If not, it returns, since the
activity will be reached via all non-visited links or via
the parent activity again. Note that BPEL does not allow
control links to form a cycle. Thus, all incoming links
of an activity can always be visited before the activity
itself. If all incoming links (in case there are any) and
the parent activity (in case there is any) were handled,
the information of the predecessors of the activity has
to be put into writes◦. If the activity has incoming links,
their information has to be joined, since a real process
execution reaches the activity by these links. The joining
is done by the function joinLinks, which is explained in
the next section 3.4. If the activity has no incoming links,
it may have a parent in the hierarchy tree. If that is the
case, the information of writes◦ of the parent has to be
copied, since the current activity will be started right af-
ter the parent activity and thus has the data of the parent
activity available. If the current activity has no incom-
ing links and no parent activity (i.e., it is the process
element itself), writes◦ is initialized to contain no writ-
ers. After writes◦ has been determined, the activity itself
is handled by the algorithms for handling the respec-

tive types of activities: HANDLEBASICACTIVITY (sec-
tion 3.5) to handle basic activities and HANDLEFLOW
(section 3.6) to handle the flow activity. If other activity
types have to be handled, the respective function has
to be called here. After handling the activity itself, its
outgoing links are traversed by HANDLELINK which in
turn calls HANDLEACTIVITY for the target of each link.
It is important to note that this is the same order as a
BPEL engine executes the activities in a BPEL process.

3.4. Handling Incoming Links

The function joinLinks : (a,ve) 7→ (P,D,d) is used
to join the information on the incoming links in Algo-
rithm 2. P, D, and d are defined as follows:

The Set P of Possible Writers Case (1) in Algo-
rithm 3 handles the situation in which the join condition
cannot re-enable any writes. It contains two subcases:
(i) The join condition is a logical AND over all incom-
ing links, (ii) there is only one incoming link and the
join condition does not negate the status of the incoming
link. (i) If the join condition is a logical AND over all
incoming links, and during process execution the status
of at least one incoming link is set to false, the ac-
tivity itself is not executed. Thus, any disabled writers
cannot be re-enabled. A re-enablement may happen later
as illustrated on activity rx2 in figure 1. (ii) If there is
only one incoming link, the current activity can only
be reached over that path. If the join condition does
not negate the status of the incoming link, the target
activity is executed iff the status of the incoming link
is true. In other words, if the status of the incoming
link is false, the activity itself is not executed and thus
any disabled writers cannot be re-enabled at this activity.
If the status of the incoming link is true, the disabled
writers cannot be re-enabled either, since there is no al-
ternative execution path reaching the activity. If the join
condition negates the status of the incoming link, the

Algorithm 3 Determining the set P of possible writers
if (|Lin(a)|= 1∧¬negateslinkstatus(jc(a))) ∨ jc(a)
is a logical AND over all incoming links then

P←
⋃

l∈Lin(a)

poss•(l,ve) (1)

else

P←
⋃

l∈Lin(a)

poss•(l,ve)∪dis•(l,ve)

\
⋂

l∈Lin(a)

dis•(l,ve)

(2)

end if

target activity is executed iff the status of the incoming
link is false. As a consequence, disabled writers may
be re-enabled at the target activity. We use the function
negateslinkstatus : C → B to return true iff the given
join condition negates the status of its incoming link.

Case (2) handles the case where the join can enable
disabled writes. An active incoming link not contained
in the possible dead path from a last possible writer can
set the state of the current activity to active. Therefore,
the data is not taken from the dead writer, but from a
preceding write disabled by the dead writer. For example,
this is the case at rx2 in figure 1, where wx

1 has to be
enabled again.

All in all, disabled writes get enabled again at a join
activity that does not have an AND join condition. The
only exception are writes that are dead during the exe-
cution on all paths reaching the current activity. These
writes cannot be enabled again by an incoming path and
thus are not put into P.

The Set D of Disabled Writers The Algorithm 4 for
determining D is similar to the algorithm determining P,
but handles disabled writers instead of enabled ones. If
the join cannot re-enable any writers (case (1)), the set
of disabled writers remains the same. If the join enables
disabled writers (case (2)), D is the set of writers that are
not re-enabled.

Algorithm 4 Determining the set D of disabled writers
if (|Lin(a)|= 1∧¬negateslinkstatus(jc(a))) ∨ jc(a)
is a logical AND over all incoming links then

D←
⋃

l∈Lin(a)

dis•(l,ve) (1)

else
D←

⋂
l∈Lin(a)

dis•(l,ve) (2)

end if

State “Dead” of an Activity (d) An activity a may be
dead on a path from any directly preceding writer (or
from the root node if there is no preceding writer) if the
join condition of a evaluates to false.

The decision logic presented in section 3.5 uses the
value of mbd◦(a,ve) to decide whether possible writers
get disabled or invalid: If mbd◦(a,ve) is true, then
the possible writers get disabled. Otherwise, they get
invalid. An invalid writer is never revived due to dead
path elimination. Therefore, the set of possible writers
decreases if more writers get invalid. On the other hand,
a writer may never be treated as “invalid” if it can be a
possible writer. Therefore, a one-sided error is accept-
able: mbd◦(a,ve) may return true, even if it should be

false. But mbd◦(a,ve) may never return false, if it
should return true.

We use following approximation to determine
mbd◦(a,ve):

i) If the join condition always evaluates to true,
mbd◦ is set to false.

ii) If the join condition contains negations, mbd◦ is set
to true.

iii) Otherwise, the join condition is evaluated with the
negated values of mbd• of each incoming link.

After presenting details of each case, we will show an
example illustrating the one-sided error of this approxi-
mation of mbd◦(a,ve) at the end of this section.

For case i we define the function alwaystrue : C → B
to return true iff the given condition always evaluates
to true. The function may have a one-sided error: If
the join condition always evaluates to true, alwaystrue
may return false, but not the other way round. One im-
plementation of alwaystrue is to check whether the given
condition equals the string true(). This implementa-
tion runs in linear time in the length of the condition.
In the general case, the implementation is in NP: Join
conditions are Boolean formulas over the status of the
incoming links. Thus, checking for always evaluating to
true is equal to check for satisfiability of the negation
of the formula. Since the satisfiability problem is in
NP [3], alwaystrue is also in NP.

For case ii, we define the function negations : C → B
to return true, iff the given join condition contains
negations.

For case iii, we define the semantics operation
[[a,ve]]

jc
¬mbd•

. It takes the negated value of mbd•(l,ve)
as the current status of each link l in the join condition
of the given activity a and evaluates the join condition.
This ensures proper handling of the activity with respect
to the directly preceding writers: The join condition of a
does not include any negations. Due to the definition of
mbd• on links, mbd•(l,ve) is true if l may be dead. If
mbd•(l,ve) is false, the link is surely not dead from
any path from all directly preceding writers (or the root
node if there is no directly preceding writer). By using
the negated value of mbd•(l,ve), the status of the link
is reflected: If a link is dead, the status of the link is
false during process execution. If the link is not dead,
the status of the link is true. Note that by using the
negated value of mbd•(l,ve) we evaluate the join con-
dition in the case in which most links are dead in one
process execution.

We illustrate the use of [[a,ve]]
jc
¬mbd•

by the process
presented in figure 3, which is a modified version of
the process presented in figure 1. wx

1 and wy
2 write to

different variables x and y. Furthermore wx,y
3 writes to

both x and y. rx,y1 is reading from both x and y. li are

1 1

2

4

3

wx
1wx
1 wy

2wy
2

rx;y1r
x;y
1wx;y

3wx;y
3

a1a1

a2a2

Figure 3. Process illustrating [[a,ve]]
jc
¬mbd•

links with the default transition condition true. wx
1 and

wx,y
3 both write to x. Because of the transition condition

tc1 and the AND join on wx,y
3 , wx,y

3 can be dead and the
value of wx

1 reaches rx,y1 in that case. On the other hand,
the value written by wy

2 never reaches rx,y1 . If wy
2 is dead,

wx,y
3 is dead, too. If wy

2 is not dead, wx,y
3 is not dead

either.
Note that we cannot use [[a,ve]]

jc
¬mbd•

to handle case ii,
where the join condition contains negations. Assume
that the negation in a join condition of an activity b
is ¬l. Thus, the join condition negates l. Further-
more, assume that mbd•(l,ve) = true. Recall that
mbd•(l,ve) = true denotes that there exists a path
from the root node to the current node, which sets
the status of the link l to false, because of DPE.
mbd•(l,ve) = true does not state that l is dead in all
cases: It is possible, that there are paths, where the status
of the link is true. In a process execution, the activity
b is executed if and only if the status of the incoming
link l evaluates to false. Otherwise, the activity b is
dead.

[[b,ve]]
jc
¬mbd•

=¬(¬mbd•(l,ve)︸ ︷︷ ︸
l

)

︸ ︷︷ ︸
join condition

=¬(¬(true))=true

The negated value of [[a,ve]]
jc
¬mbd•

is used in Algorithm 5
to determine d. In our case, ¬[[b,ve]]

jc
¬mbd•

= ¬true=
false and thus d would be set to false, which means
that activity b is never dead. This contradicts the fact that
the activity b is executed iff the status of the incoming
link l evaluates to false. Thus, [[a,ve]]

jc
¬mbd•

cannot be
used if the join condition of an activity contains nega-
tions.

Algorithm 5 presents the algorithmic summary of the

Algorithm 5 Determining whether an activity may be
dead

d←


false alwaystrue(jc(a))
true negations(jc(a))
¬[[a,ve]]

jc
¬mbd•

otherwise

l1

l2

tc1

tc2

x ¸ 10x ¸ 10

x < 10x < 10

wx
1wx
1 rx1r

x
1

OR OR

a3a3

wx
2wx
2

a1a1

a2a2

Figure 4. Illustration of the one-sided error

determination of d. The used approximation only con-
siders the join condition of a and mbd•(l,ve) of each
incoming link of a. It does not take other information
in account, which may lead to a wrong value of mbd◦:
Consider the process illustrated in figure 4. Since there
is a transition condition on tc1, mbd•(tc1,ve) = true
as illustrated in section 3.7. This propagates to l1, where
mbd•(l1,ve) = true. Similar for tc1 and l2. Since one
of the incoming links at wx

2 may be dead, wx
2 itself is con-

sidered as possibly dead (mbd◦(wx
2,ve) = true). Thus,

wx
2 is considered to disable wx

1. However, wx
1 revives

at rx1, because of the OR join. If the whole processing
history is taken into consideration, mbd◦(wx

2,ve) has to
be set to false: The control flow always reaches wx

2

if wx
1 is executed, since the transition conditions tc1 and

tc2 are mutual exclusive.

3.5. Handling Basic Activities

In this section, we describe the handling for basic
activities. The term ‘writing activity’ is used to refer to
activities that can write data (receive, assign, . . .).
To define writes•(a,ve), the activity a is checked whether
it writes to the given variable element. We define the
function w : A ×EQV → B to state whether the given
activity completely writes to the given variable element.
If an activity a changes a part of a variable element ve
and not the whole variable w(a) returns false. If an
activity a writes to a parent of ve, w(a) returns true,
since the given query completely changes ve.

If a is not a writing activity (empty, wait, . . .),
writes•(a,ve) is the identity of writes◦(a,ve) (Case (1)
in Algorithm 6).

If a is a writing activity (w(a,ve) = true) the result
depends on the value of mbd◦(a,ve). If mbd◦(a,ve) =
true, the possible writes are added to the disabled
writes and a is put as the only writer (Case (2) in Algo-
rithm 6). Recall that mbd◦(a,ve) = true denotes that
a may not be executed due to DPE on a path from any
directly preceding writer to a (or from the root node
if there is no directly preceding writer). Assume w to
be a valid preceding writer for an activity a. At the
activity a itself, the write of a is the only valid write,
since a definitely overwrites the write of w if a was exe-

Algorithm 6 Handling a basic activity
procedure HANDLEBASICACTIVITY(a,ve)

writes•(a,ve)←

writes◦(a,ve)
if ¬w(a) (1)

({a},dis◦(a,ve)∪poss◦(a,ve),false)
if w(a,ve)∧mbd◦(a,ve) (2)

({a},dis◦(a,ve),false)
if w(a,ve)∧¬mbd◦(a,ve) (3)

end procedure

cuted. If w was executed, a is not necessarily executed
(mbd◦(a,ve) = true) and thus a may not have overwrit-
ten the value written by w. Since w can become valid
again at a successor of a, w has to be stored.

In the other case, where mbd◦(a,ve) = false, the
possible writes can never be active again and are re-
moved from the set of possible writers and not added to
the set of disabled writers (Case (3) in Algorithm 6).
Assume w being a valid preceding writer for an ac-
tivity a. If w was executed, a will also be executed
(mbd◦(a,ve) = false). If w was not executed, a will
not be executed either. Thus, the write of w is always
overwritten by the write of a and there is no need to store
w.

In both cases (2) and (3), a is a writer to ve. In this
case, a is the starting point of all paths from a to a
subsequent writer. Since a is not dead at the beginning of
all paths starting at a, mbd• = π3(writes•) is set false
in cases (2) and (3) in Algorithm 6. It is important to
note that Algorithm 5 and Algorithm 8 ensure that mbd◦
and mbd• are set to true if the activity or the link may
be dead and thus the write of a can survive.

3.6. Handling a Flow Activity

The traversal of the activities nested in a flow activity
starts from the roots of the flow activity. It is important to
note that links may cross the boundary of a flow activity.
Therefore, a root of a flow activity is an activity in the
flow with no incoming links from any activities inside
the flow. The outgoing links of the roots are traversed in
HANDLEACTIVITY and thus all activities in the flow get
visited. As soon as HANDLEACTIVITY returns, writes•
is defined for all activities contained in the flow. The
information of the flow’s leaf activities has to be joined
into the flow’s writes•. A leaf of a flow is an activity
with no outgoing links to any other activity inside the
flow. It is important to note that mbd• is not constructed
by using mbd• of the leaves, but by using the value of
mbd◦ of the flow: If a flow activity itself is not dead

Algorithm 7 Handling a flow activity
procedure HANDLEFLOW(f ,ve)

roots←{a |a ∈ children(f)∧
¬∃l : (a′, l,a) ∈ LR,a′ ∈ descendants(f)}

for all ar ∈ roots do
HANDLEACTIVITY(ar,ve)

end for
leaves←{a |a ∈ children(f)∧

¬∃l : (a, l,a′) ∈ LR,a′ ∈ descendants(f)}
writes•(f ,ve)←

(⋃
al∈leaves poss•(al ,ve),⋃

al∈leaves dis•(al ,ve), mbd◦(f)
)

end procedure

at the beginning of its execution, it remains not dead
at the end of the execution, even if all leaves of a flow
activity are dead. The complete handling is presented in
Algorithm 7.

3.7. Handling Links

A control link has exactly one source activity and
one target activity. Therefore, the analysis result of the
source activity can be directly taken as writes◦. Further-
more, a link l cannot perform a write to a variable but is
associated with a transition condition, which may eval-
uate to false. The subsequent activity may be dead,
if the source of the link may be dead or if the transition
condition on link l may evaluate to false.

A special case is when a transition condition always
evaluates to true. In this case, the value of mbd◦ is
copied to mbd•, since the transition condition has no in-
fluence on whether the subsequent activity may be dead.
In general, it is not possible to check whether a transition
condition always evaluates to true, since the satisfia-
bility of XPath expressions is undecidable [2]. Never-
theless, we reuse the function alwaystrue presented in
section 3.4, but we demand that it returns false if it
cannot determine whether the given XPath expression
is satisfiable. One implementation for alwaystrue is pre-
sented in section 3.4: Check whether the given string
equals true(). Using this implementation, the algo-
rithm produces an over-approximation, as illustrated in
section 3.4.

After writes•(l,ve) is set, the link is marked as visited
and the target activity is visited. The complete handling
is presented in Algorithm 8.

3.8. Explicit Data Links

After ANALYZEPROCESSMODEL completed,
writes◦ and writes• are defined for all variable elements.
poss◦(a,ve) = π1(writes◦(a,ve) returns the set of

Algorithm 8 Handling a link
procedure HANDLELINK(l,ve)

a,a′ : (a, l,a′) ∈ LR
writes◦(l,ve)← writes•(a,ve)
writes•(l,ve)←poss◦(l,ve),

dis◦(l,ve),
mbd◦(l,ve)∨¬alwaystrue(tc(l))


visited(l)← true
HANDLEACTIVITY(a′,ve)

end procedure

possible writers for each given activity and variable
element. As shown in section 3.1, a read of an activity a
on a variable element ve (r(a,ve) = true) also has to
read all data written to children of ve. A data link is a
tuple (w,z), where w is an activity writing data and z an
activity or a link possibly reading the data written by w.
Thus, the set of all data links in the given BPEL process
DL⊂℘(A ×A ∪L) is defined as follows:

DL := {(w,z) | z ∈A ∪L , w ∈ poss◦(z,v
′
e),

v′e v ve, r(z,ve) = true}

This paper provides data links for analysis purposes.
Using them to replace BPEL’s shared variable behav-
ior at runtime requires further specification of runtime
semantics.

3.9. Algorithm Applied

Table 2 presents the result of the data-flow algorithm
applied to the example process of figure 1 having jc1

set to AND. Note that the process of figure 1 contains
a single variable x of a simple type. poss◦(rx1) = {wx

2}
denotes that wx

2 is the only possible writer for rx1.
The complexity of the algorithm depends on the im-

plementation of alwaystrue and the checking of “jc is
a logical AND over all incoming links”. In the gen-
eral case, alwaystrue cannot be implemented. If the
requirements on the implementation are lowered, both
alwaystrue and the checking for an AND join run in
linear time in the number of links. Then, the limiting
factor of the algorithm is the set of possible and the set
of disabled writers. In the worst case, the flow is a graph
where the activities are ordered sequentially and each
link takes a transition condition. Then, poss•(l,ve) con-
tains all predecessors and has to be copied to poss◦(a,ve)
at each activity. For a graph with n activities, this hap-
pens 0 + 1 + · · ·+ n− 2 + n− 1 = 1

2 n(n− 1) = O(n2)
times. Since the number of the activities is less than
the number of links, the complexity of the analysis the

Table 2. Analysis result for the example pro-
cess of figure 1 with jc1 set to AND

Activity /
Link

Possible
Writers
(poss◦)

Disabled
Writers
(dis◦)

May Be
Dead

(mbd◦)
wx

1 /0 /0 false
link with tc1 {wx

1} /0 false
wx

2 {wx
1} /0 true

l1 {wx
2} {wx

1} false
a1 /0 /0 false
l2 /0 /0 false
rx1 {wx

2} {wx
1} false

l3 {wx
2} {wx

1} false
a2 /0 /0 false
l4 /0 /0 false
rx2 {wx

1,w
x
2} /0 false

process for one ve is O(n2), where n is the number of
links in the flow activity. Since the depth-first search
is started for each ve ∈ EQV , the overall complexity is
O(
∣∣EQV

∣∣ ·n2).

4. Related Work

Current data-flow analysis algorithms do not explic-
itly deal with “graph-based programs”, but deal with
traditional “structured programs”. Thus, current ap-
proaches that take BPEL as input treat control links as a
special case: The work of [12] transforms BPEL into a
Concurrent Static Single Assignment Form (CSSA, [10])
representation. The complexity of this transformation
is O(|V | · n2), where V denotes the set variables and n
denotes the number of nodes. In the case of sequential
execution of activities in a flow activity, their algorithm
returns too many possible writers. For example, if their
algorithm is applied to the example presented in figure 1
with jc1 being an AND, the algorithm returns {w1,w2}
as the set of possible writers for rx1. Our algorithm is
more precise and returns wx

2 as the only possible writer
for rx1. Their algorithm treats each activity with incom-
ing links as an if statement with the join condition
as branching condition. The activity is executed if the
branching condition evaluates to true. An artificial
joining node (called “Phi-node”) after the if statements
joins the information from both paths. As a result, each
activity in a flow can be skipped in the abstract inter-
pretation, regardless of the structure of the graph. This
does not reflect the idea of dead path elimination, where
the dead status propagates through the graph. The work
of [5] is based on the work of [14] and provides data-flow
equations for BPEL activities. However, it does not con-
sider transition conditions, join conditions and dead path

elimination. Both [5] and [12] do not deal with complex
types and thus offer room for improvement besides dead
path elimination.

Full technical details of the algorithm are described in
our technical report [9]. In addition, the technical report
describes the transformation of poss◦ to the required
input of the splitting algorithm described in [7].

It is shown in [2] that it is undecidable whether a
given XPath expression is satisfiable. Since standard
BPEL allows arbitrary XPath expressions to be used
as transition conditions, it follows immediately that an
exact determination of data links in BPEL processes is
undecidable. Nevertheless, the result of our algorithm
is an improvement in comparison to other approaches,
since the algorithm strictly follows the semantics of DPE
and can handle complex types.

5. Conclusion and Future Work

In this paper, we motivated that algorithms for data-
flow analysis on BPEL processes should be aware of
dead path elimination. Our presented algorithm allows
for determining data links in BPEL processes, where
dead path elimination is activated. We showed how join
conditions can be used to reduce the number of possible
writers for an activity.

HANDLEACTIVITY allows for adding handling of ar-
bitrary structured activities besides the described flow
activity. Adding handling of other structured activities
is part of our ongoing work. Of particular interest are
fault handlers designed for catching a joinFailure
which is thrown if dead path elimination is not active.
Thus, future work will provide a complete algorithm to
determine data links in arbitrary BPEL processes.

Acknowledgments. We thank Daniel Martin, Ralph
Mietzner, Simon Moser, and Dirk Nowotka for their
valuable input. We also would like to thank our col-
leagues in the IAAS and ISTE institutes at the Univer-
sity of Stuttgart for reviewing earlier drafts. Oliver Kopp
is funded by the German Federal Ministry of Educa-
tion and Research (project Tools4BPEL, project number
01ISE08).

References

[1] A. V. Aho et al. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 2006.

[2] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability
in the presence of DTDs. In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems – PODS ’05, pages 25–36.
ACM, 2005. doi:10.1145/1065167.1065172.

[3] S. A. Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the third annual ACM sympo-
sium on Theory of computing (STOC ’71), pages 151–158.
ACM, 1971. doi:10.1145/800157.805047.

[4] F. Curbera et al. Exception Handling in the BPEL4WS
Language. In Business Process Management – Interna-
tional Conference (BPM 2003), volume 2678 of LNCS,
pages 276–290. Springer, 2003. doi:10.1007/3-540-
44895-0 19.

[5] T. Heidinger. Statische Analyse von BPEL4WS-
Prozemodellen, 2003. Studienarbeit, Humboldt-
Universität zu Berlin.

[6] R. Khalaf. Supporting Business Process Fragmentation
While Maintaining Operational Semantics – A BPEL
Perspective. Doctoral Thesis, Universität Stuttgart, 2008.

[7] R. Khalaf, O. Kopp, and F. Leymann. Maintaining
Data Dependencies Across BPEL Process Fragments.
In Service-Oriented Computing – ICSOC 2007, vol-
ume 4749 of LNCS, pages 207–219. Springer, 2007.
doi:10.1007/978-3-540-74974-5 17.

[8] R. Khalaf and F. Leymann. Role-based Decompo-
sition of Business Processes using BPEL. In ICWS
2006, pages 770–780. IEEE Computer Society, 2006.
doi:10.1109/ICWS.2006.56.

[9] O. Kopp, R. Khalaf, and F. Leymann. Reaching Defi-
nitions Analysis Respecting Dead Path Elimination Se-
mantics in BPEL Processes. Technical Report 2007/04,
Universität Stuttgart, IAAS, 2007.

[10] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent
Static Single Assignment Form and Constant Propa-
gation for Explicitly Parallel Programs. In Proceed-
ings of The 10th International Workshop on Languages
and Compilers for Parallel Computing (LCPC ’97), vol-
ume 1366 of LNCS, pages 114–130. Springer, 1998.
doi:10.1007/BFb0032687.

[11] F. Leymann and W. Altenhuber. Managing business pro-
cesses as an information resource. IBM Systems Journal,
33(2):326–348, 1994.

[12] S. Moser et al. Advanced Verification of Distributed WS-
BPEL Business Processes Incorporating CSSA-based
Data Flow Analysis. In Proceedings of IEEE Interna-
tional Conference on Services Computing (SCC 2007),
pages 98–105, July 2007. doi:10.1109/SCC.2007.22.

[13] S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[14] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer, 2004.

[15] OASIS. Web Services Business Process Execution Lan-
guage Version 2.0 – OASIS Standard, 2007.

[16] C. Ouyang et al. Formal Semantics and Analysis of
Control Flow in WS-BPEL (Revised Version). BPM
Center Report BPM-05-15, BPMcenter.org, 2005.

[17] W3C. XML Path Language (XPath) Version 1.0. W3C
Recommendation, 1999.

	INPROC-2008-27.pdf
	Slide Number 1

