Institute of Architecture of Application Systems

External and Internal Events in EPCs: e2EPCs

Oliver Kopp, Matthias Wieland, Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,wieland,leymann}@iaas.uni-stuttgart.de

BIBTEX:
@inproceedings{E2EPCs,
author = {Oliver Kopp and Matthias Wieland and Frank Leymann},
title = {External and Internal Events in EPCs: e2EPCs},
booktitle = {Business Process Management Workshops},
year = {2010},
pages = {381--392},
doi = {10.1007/978-3-642-12186-9_36},
publisher = {Springer}
}

© 2010 Springer-Verlag.
See http://www.springerlink.com/content/th8w0On3756657m05/

..
::::’::oo’o‘o 0 - - M
s Universitat Stuttgart
.0 *
RASKANNY G
XXX ermany

External and Internal Events in EPCs: e2EPCs

Oliver Kopp, Matthias Wieland, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Summary. The notion of event-driven process chains (EPC) is widely
used to model processes. It is an ongoing discussion of how to reach
executable workflows from EPCs. While the transformation of the general
structure and the functions is well-understood, the transformation of
events is an open issue. This paper discusses different possible event types
and their semantics. Furthermore, it presents a transformation of the
introduced event types to workflow constructs respecting the semantics
of each event.

1 Introduction

Companies have a strong interest in Business Process Management (BPM)
technology to align and support their business processes with IT infrastructure.
A business process is a collection of related, structured activities and tasks that
produce a specific service or product for customers. Business processes can be
executed on an IT infrastructure using workflows. Business processes are expressed
using specialized visual process modeling languages such as the Business Process
Modeling Notation (BPMN, [1]) or Event-Driven Process Chains (EPC, [2,3]).
BPMN and EPCs are mostly concerned with the modeling aspect of business
processes, and therefore put an emphasis on being easy to use by providing a
standardized set of visualization elements, whereas not defining exact execution
semantics. They are designed for the use by non-technical thinking people who
want to concentrate on modeling the high-level business process.

In contrast, the Web Service Business Process Execution Language [4] (WS-
BPEL or BPEL for short), facilitates business process execution by providing
and standardizing execution semantics for orchestrating business activities as
workflows. It defines the way in which basic services (business activities in the
form of Web Services) are used to build new, coarser grained services. For exam-
ple, a loan approval workflow orchestrates the basic services “RiskAssessment”,
“CreditCheck” and “IncomeReview”. Since Web Services are an implementation
of the SOA architectural style, process systems using BPEL as orchestration
language are naturally embedded into an existing service oriented architecture
implemented by Web Services.

The BPM lifecycle (Phases: Modeling, Execution, Analysis and Optimization)
has the aim to continuously improve the process. This is known as business
process reengineering. Thus, a process definition is never stable and is permanently
adapted. As a consequence, the workflow implementing the changed business

2 Oliver Kopp, Matthias Wieland, and Frank Leymann

process also has to be remodeled all the time. This is the main motivation for
automatic transformation of business processes to workflows without ignoring
parts of the business process that have to be inserted again in the workflow. In
this paper we show how EPC processes can be transformed to workflows not
only based on the functions but also transforming the events of the EPC. In the
following, we assume that the modeled processes are intended to serve as basis
for an automatic execution by a workflow engine.

Event-driven Process Chains (EPCs, [2,3]) are an event-centric business
process modeling language that treats events as “first class citizens”, i.e. the
occurrence of events are fundamental elements of the business process. EPCs
are part of the ARIS framework [5], a “holistic modeling approach” to design
and document architectures of integrated information systems from a business’
perspective. In ARIS, EPCs are used in the “control view” to describe business
processes, allowing for integration and reuse of elements from other views of a
model. EPCs consist of four main elements: (i) events (depicted as hexagons),
(ii) functions (depicted as rounded boxes), (iii) connectors (depicted as circles)
and (iv) control flow arcs. Events in EPCs are passive, i.e. they represent a state
change in the system, but do not cause it (e.g. they do not provide decisions, but
represent decisions taken). Events trigger functions, which are active elements that
represent the actual work and again raise events upon completion. Connectors
are used to join and split control flow, represented by arcs in the EPC graph. An
EPC starts and ends with one or more events, process control flow itself strictly
follows an alternating sequence of functions and events, possibly with connectors
specifying the kind of control flow join and split in between. The extended event
driven process chain (eEPC) extends the EPC by associations to functions. For
example, a function may be associated with the organizational unit performing
the function or the data needed and produced by the function. Common accepted
associations may be found in the EPC Markup Language (EPML, [6]).

eEPCs are in strong contrast to other established process languages such as
the Web Services Business Process Execution Language (WS-BPEL or BPEL for
short, [4]) or the Business Process Modeling Notation (BPMN, [1]). BPEL and
BPMN are rather service centric and do not enforce the usage of events as an
integral part already at the modeling level. BPMN distinguishes a wide range
of events including timer and message events. Mapping of events to BPEL is
not an issue here, since there exists a corresponding BPEL construct for each
event. BPMN exists in parallel to EPCs. Since EPCs currently do not offer an
explicit distinction between internal and external events, we use eEPCs as basis
for integration of process logic with the environment.

In current eEPC models, only functions may be annotated with additional
information. In the case of events, the semantics is given by their label only. The
number of events is three times the number of functions in the SAP reference model
containing about 10.000 models [7]. Thus, events are an important information
container. While [2] states that “events may reference information objects of the
data model”, this possibility is not used in products and not regarded in research.

External and Internal Events in EPCs: ¢2EPCs 3

‘ Shop Floor

Manufacture ltem
Item Completed

Figure 1 presents an
example eEPC. It models
an excerpt of the business
process “order processing”
and is taken from [3]. The
excerpt shows the func-
tion “Manufacture Item”
and its context: after the
supplier processed the or-
der (event “(Supplier) Or-
der Processed”) the man-
ufacturing plan is completed (event “Manufacturing Plan Completed”), the
function “Manufacture Item” can start. The conjunction of the two events is
modeled by the and connector. The function itself is executed at the shop floor
(association with the organizational unit “Shop Floor”), which produces an item.
The IT relevant data of the item is represented in the data object “Item”. After
“Manufacture Item” completes, the event “Item Completed” occurs.

Events in eEPCs may be internal or external. Internal denotes that the event
occurs as a direct result of a function. Ezternal denotes that the event occurs
because of a state change in the environment. The EPC metamodel does not
foresee explicit distinctions between internal and external events. Therefore it is
not stated whether the event “Item Completed” is an internal or an external event.
In case the function “Manufacture Item” denotes that a new manufacture request
is sent to the shop floor without waiting for completion, the “Item Completed”
events gets an external event, since the shop floor has to notice the process of
completion. The other possibility is that the “Manufacture Item” function models
the manufacturing of the item and finishes as soon as the item is finished. In this
case, the event “Item Completed” is an internal event and the data produced by
the function can be used to decide whether this event occurs.

In workflows, internal events are transition conditions between activities and
external events are notifications by a message. Current transformation approaches
either ignore events, treat them all as external events or treat them all as internal
events. In this paper, we propose a modeling extension for eEPCs to allow the
business modeler to distinguish internal and external events. This distinction
allows generating a fine-grained BPEL workflow model out of the input eEPC.
In addition, we use the additional information to generate a participant topology
capturing the relation between the process and its environment. This artifact can
then be used to wire existing services with the generated process.

Consequently, this paper is organized as follows: The concept and metamodel
of our extension to extended event-driven process chains, e2EPCs, is presented
in Sec. 2. Section 3 shows how the introduced distinction between internal and
external events in e2EPCs can be transformed to BPEL and a participant topology
which forms a choreography description. Section 4 provides an overview on current
work on transformation of EPCs to BPEL. Finally, Sec. 5 concludes and provides
an outlook on future work.

(Supplier)
Order
Processed

Manufacturing
Plan
Completed

I

. » Item

Fig. 1. Example scenario, taken from [3]

4 Oliver Kopp, Matthias Wieland, and Frank Leymann

2 Concept and Metamodel of e?EPCs

The scenario in Figure 1 contains events internal and external to the process.
Without semantical analysis, it is not possible to distinguish them because the
intended usage of events has to be guessed out of the used IT systems. As future
work, it would be interesting to classify the events based on the analysis of audit
and monitoring logs. Therefore, we propose to extend the eEPC metamodel by
adding associations between events and outputs of functions or organizational
units to enable the explicit modeling of internal and external events.

This results in a new version of the scenario as shown in Fig. 2. In this figure,
the new associations are marked and can be used to distinguish between internal
and external events. The two start events (Order processed, Manufacturing
plan completed) are connected to organizational units. This means, they receive
messages from these systems. Start events always are external events and have to
be connected to an organizational unit. In contrast, the “Item completed” event
is an internal event recognized by the association to the output “Item” of the
function “Manufacture Item”. Thus, the event can be evaluated based on that
data only and does not need further information. In summary, an event is an
internal event if it is associated with output data. An event is an external event,
if it is associated with an organizational unit. It is not possible to associate an
event with both an organizational unit and output data. e?EPCs allow an event
to be unassociated with any organizational unit or output data. In this case,
the event cannot be transformed to BPEL, since it is not clear whether it is
an internal or external event. Other possibilities to model internal and external
events include the usage of swim lanes. The drawback of that approach is that
the layout of existing EPCs has to be changed, since for each organizational unit
and data item, a separate lane has to be introduced.

Shop Floor

Manufacture
ltem

Order

‘ processing
system

(Supplier)
Order
Processed

Item
Completed

Productio
‘ Planning
System

_e = — — — e — 9 - = Item

Manufacturing
Plan
Completed

Fig. 2. Example Scenario modeled using e?EPC

External and Internal Events in EPCs: ¢2EPCs 5

In Fig.3 all types of

associations added to the ‘ synchronous function Igtne(;%?glriﬁ
eEPC metamodel [3] are partner el event

shown. They are used to
distinguish the two differ-
ent event types. In e?EPCs,
the symbol for an organi-
zational unit is used as su-
perclass for any kind of ex-
ecutor such as an IT sys-
tem (computer hardware,
machine, application soft-
ware as listed in [3]), a <

output data
- —p (result of
function call)

start event

intermediate/
end external
event

function
call

asynchronous
(one-way)
partner

CEP system
or asynchronous
partner

Web Service and a human
user. The different types
of organizational units shown
in Fig. 3 are used to illus- Fig. 3. Elements of €?’EPCs

trate the different possible

types of organizational units used in the transformation. For the modeler, these
organizational units do not visually differ. The different types have to be stored
in the repository of the used modeling tool and the type information of each
organizational unit has to be handed over to the transformation. In that way,
the business user has not to be aware of the different types, but the IT expert
responsible for the addition of existing IT service operations as organizational
units to the repository.

Start events are at the beginning of a process and have no incoming arcs.
These events are always triggered by messages and start the process execution.
An association between a start event and the organizational unit producing the
message is the only possible association allowed in the meta model.

Intermediate events have an incoming and an outgoing arc. An external
intermediate event is triggered by a message from an organizational unit which
makes it similar to a start event. No additional information, such as output data,
may be needed to check whether the event happens. Otherwise, the event is
not an external intermediate event anymore. An internal intermediate event is
always connected with an output of a preceding function. The data contained in
the output has to be sufficient to determine whether the event happens. If more
information was needed, the event would have to receive a message or would have
to use an information system for evaluation. In this case, it is not an intermediate
event anymore and possibly an external intermediate event or even a function
with a subsequent event.

End events are at the end of a process and have no outgoing arcs. The
distinction between internal end events and external end events is the same as in
the case of intermediate events.

6 Oliver Kopp, Matthias Wieland, and Frank Leymann

3 Transformation of e2EPCs to BPEL

To execute an EPC model on a workflow machine, there are two general ways:
(i) give the EPC an execution semantics or (ii) define a mapping to a workflow
language with an execution semantics. In this paper, we focus on the second
option, since BPEL workflow engines are widely available, whereas EPC workflow
engines are not. By mapping the EPC to a workflow language with a defined
execution semantics, the EPC is also given an execution semantics: the semantics
of the workflow language used. The Web Services Business Process Execution
Language (BPEL, [4]) is the current de-facto standard for workflow execution.
Thus, the current approaches map EPCs to BPEL workflows.

The main reason for introducing e?EPCs is to allow a higher value transfor-
mation to executable workflows. This means, more information of the process
specification is used in the transformation and the resulting workflow model
is more detailed in comparison to other transformation approaches. The SAP
reference model shows that EPCs contain in average 3 times more events than
functions. By adding new associations to the events we enable the inclusion of
them in the generated workflows. Without that association the events usually are
simply ignored. In the following, we present a transformation which makes use of
the events and transforms them to elements in the generated abstract workflow.

A BPEL workflow does not need to be executable by itself. The BPEL
specification offers modeling abstract workflows, which may hide operational
details. So called opaque activities can be used to model left-out behavior. Abstract
workflows may be refined by IT experts to executable workflows enabling the
execution on a workflow engine. It is widely acknowledged that a transformation
cannot generate an executable workflow, since necessary execution details, such
as the concrete message formats and format transformation is missing.

Figure 4 provides an BPEL4Chor topology:
overview on the transfor- 2EPG all external partners
mation. The list of par- € /V and links between
ticipants is essential for start events d them
the choreography the ab- N
strac.t workflow is. e-mbed— intermediate/endV A abstract BPEL
ded in. The participants external events M _»I receive
can be derived from the as- / ' .
sociations to the functions, functions > invoke/ recglye/
start events, intermediate opagque activity
external events and end intermediate/end N N
external events. Each or- internal events P transition condition

ganizational unit becomes
a participant in the chore-
ography. A choreography captures the interplay between different workflows [8].

The BPEL workflow itself is transformed out of the EPC process. Each
output data element is transformed to a variable declaration in the process. Then,
the structure of the process is determined as described in [9], which applies

Fig. 4. Transformation

External and Internal Events in EPCs: ¢2EPCs 7

the techniques presented in [10,11] to EPCs. In general, the graph-structure is
preserved and thus this transformation follows the Element-Minimization strategy
presented in [12] with the addition that pick and while structures are transformed
to the respective structure in BPEL. A BPEL workflow defines an orchestration of
Web services and consists of structured and basic activities. The actual business
functions are not implemented by BPEL itself, but by Web services, where the
business data is sent to and received from using messages (events are represented
as messages, t0o0). Hence, the most important basic activities are invoke and
receive. An invoke activity is used to send a message to a Web service. A receive
activity is used to receive a message. The structured activity pick realizes an
one-out-of-n choice of messages to receive: the first arrived message wins and the
other messages are ignored at that activity. Control flow itself is either modeled
block-structured using if and sequence activities or using graph-based constructs
realized by the flow activity. In a flow activity, activities are connected using
links. The issue of non-local join semantics is solved by applying Dead-path
Elimination (DPE) which in turn uses negative control tokens. DPE itself is
formally defined in [13], specified for BPEL in [4] and explained in detail in [14].

An EPC function is mapped to an invoke, receive or and opaque activity
based on the associated organizational unit. In case the organizational unit
models an IT service operation, which is already specified, the interaction is
known. In the case of current common IT service operations, the interaction
patterns are (from the view of the service) in, in/out and out. The view of the
business process is dual, therefore in and in/out are transformed to invoke and
out to a receive. In case the organizational unit does not model an IT service
operation, an opaque activity is generated. If the association from the external
event to the organizational unit was directed, the interaction pattern could be
derived. We did not introduce directed associations in e2EPCs, since it is unlikely
that a business user is aware of the interaction paradigm of a special IT system.

The work of [15] shows that start events in EPCs can be interpreted as
message events and also as condition filters. To instantiate a process, BPEL
supports message events only. Due to the design of BPEL, we will also treat
EPC start events as message events. Similar to [9,16], start events joined by a
XOR connector are transformed to a pick activity. Start events joined by an
AND connector are transformed to receive activities. End events are treated
as intermediate events targeting a special function. This special function is
transformed to an empty activity used as target for the link.

Intermediate external events are transformed dependent on the preceding
connector. In the case of a XOR connector, the each external event is transformed
to a receive activity. In the case of an AND connector, the external event is
transformed to a branch of a pick activity. OR predecessors are not supported.
This part of the transformation is described in detail in [9].

Intermediate internal events are transformed to transitions conditions on a
control link. The link connects the transformation of the element preceding the
event to the transformation of the element succeeding the event. The label of

8 Oliver Kopp, Matthias Wieland, and Frank Leymann

Shop Floor

Manufacture
Item

Order
Processing
System

(Supplier)
Order
Processed

ltem
Completed

Production
Planning
System

Manufacturing
Plan Completed

-—_—_—_——_——_—————— - _2— Y
V o v i [<Participant>
<receives <receive> Order
Manufacturing Plan H Processing System
Order Processed :
Completed H
N
| . I ;\0 <Participant>
<invoke> DU Production Planning
Manufacture ltem P System
T T~ -
Item Completed ~ J
v I~

SN <Participant>

<empty> Shop Floor
Absract BPEL

BPEL4Chor Choreography

Fig. 5. Transformation and the result as BPEL4Chor choreography

the event is put as condition on the control link. This part of the transformation
follows the algorithm described in [17].

Currently, BPEL4Chor is the only language based on BPEL which is capa-
ble to capture the links between multiple process models [18]. BPEL4Chor’s
participant topology lists the participants of the choreography and the mes-
sage links between them. For each generated communication activity, a mes-
sage link in the BPEL4Chor topology is generated. For example, the message
link for the “(Supplier) Order Processed” event is as follows: <messageLink
sender="0rderProcessingSystem" receiver="OrderProcess" receiveActi
vity="0rderProcessed"/>. Note that the activity gets the camel case version
of the label of the respective EPC function or event as name.

After the abstract BPEL workflow and the topology information has been
generated, the abstract workflow has to be manually refined to an executable
workflow model which can be enacted by a workflow engine. For wiring the
generated workflow with the other participants in the choreography, a BPEL4Chor
participant grounding has to be defined, where each message link is assigned to a
Web Service operation. Using that information, the workflow can be deployed. If
the other participants do not exist, their behavior can be derived by generating
a view on the generated abstract BPEL workflow containing only the interaction

External and Internal Events in EPCs: ¢2EPCs 9

with the missing participant as outlined in [19]. Note that a participant in a
choreography does not necessarily need to be implemented as a BPEL workflow.
It may also be implemented as plain Web Service, since the participant behavior
description in a choreography only specifies the public visible behavior and not
the actual implementation.

Figure 5 presents the transformation idea and a graphical representation of
the transformation result. An implementation is not available, but is possible by
extending the ProM tool or by extending other EPC to BPEL transformations.
There exists a formal syntax of EPCs [20] and BPEL [21]. Thus, a formal
transformation can be defined but is not part of this paper.

Since the BPM lifecycle has the aim to continuously improve the process
model, a process definition is never stable and is permanently adapted. Thus, the
EPC process has to be changed all the time and consequently the BPEL workflow
will change accordingly. The abstract BPEL workflow BPEL, is manually refined
to an executable workflow BPEL.. In order to keep the added technical details, the
BPEL workflow cannot simply be regenerated, but rather needs to be updated in a
smart way. Therefore we take the original generated model BPEL, and the model
generated within the second lifecycle round BPEL; to compute the difference
A(BPEL,, BPEL’g). Now, it is possible to apply this difference A to the original
executable workflow BPFEL, in order to get a starting point for the executable
workflow BPEL!, that contains both, the new semantics of the process model and
the refinements made in the previous lifecycle round. It may be possible that not
all differences can be applied to the new model in case the model has significantly
changed. Nevertheless, the derived executable workflow BPEL, contains more
information than the generated abstract workflow BPEL;. A detailed discussion
of advantages and drawbacks in the case of applying differences to models is
presented in [22].

Events concerning the lifecycle of events are out of scope of the paper. These
kinds of events are neither treated in the EPC process nor the BPEL workflow
itself, but by the workflow engine.

4 Related Work

This section provides an overview on current approaches to transform EPCs to
BPEL and to choreographies. A general overview of all available transformations
from EPCs to BPEL is provided in [23,24].

10 Oliver Kopp, Matthias Wieland, and Frank Leymann

Figure 6 summarizes the different
el e2 e3

possibilities to transform events into a

workflow: (i) An event can be ignored.

(ii) An event can be transformed to a * + +
message receipt. (iii) Finally, an event

can be transformed to a transition con- € ‘ Oi’
dition. The transformation approach no message transition
presented in this paper distinguishes mapping receive condition
between internal and external events event

and transforms start events, interme-
diate events as well as end events. Cur-
rent related work either does not han-
dle all event types or does not distinguish between external and internal events.
Table 1 shows how each related work deals with events. The column “Distinction”
shows whether the approach distinguishes between external and internal events.
The subsequent three columns show if the approach transforms the respective
events. In case the approach transforms the event, the generated BPEL construct
is listed.

[17] deals with a variant of EPCs and translates them to a graph-structure. [12]
presents different transformation strategies from EPC to BPEL. The transforma-
tion strategies are divided into two categories: Preserving the graph-structure or
translating as much structures as possible into the corresponding BPEL struc-
tures. [25] shows possible annotations to EPCs to enable Web Service specific
details in BPEL workflows. [26] identifies workflow patterns [27] in the EPC
and translates each pattern to the respective BPEL construct. [16] presents on
overview on the transformation using in the ARIS toolset. [9] argues that all
events in EPCs should be treated as external events and show how complex
event processing can be used to transform EPCs to BPEL. Finally, [28] shows
how EPCs can be used to model all details of BPEL processes such as concrete
associations to services and variable modifications.

In [29] the authors translate Petri nets into “readable” BPEL code. The
algorithm follows the Structure-Maximization strategy presented in [12]. Since
Petri-nets are used as input, the translation is not aware of events. Using the
event distinction presented in this paper, the translation of [29] may be adopted
to use e?EPCs as input language.

Currently, there is no work on transforming EPCs to a choreography definition.
Besides choreographies, business landscape [30] also provide an overview on the
interplay of services. The work presented in [31] shows how a business landscape
can be generated out of EPCs and lists other work generating system overviews
out of EPCs.

Fig. 6. Different possibilities to transform
events into a workflow

5 Conclusion and Outlook

This paper presented an extension to eEPCs to enable an unambiguous distinction
between internal and external events. We showed how this distinction can be

External and Internal Events in EPCs: ¢2EPCs 11

Reference Distinction Start Event Intermediate Event End Event
[17] Kopp et al. - - transition condition -
[12] Mendling et al. - pick/empty - terminate
[25] Schmelzle - receive transition condition reply
[26] Specht et al. - - transition condition -
[16] Stein et al. - receive - invoke
[9] Wieland et al. - pick/receive pick/receive pick/receive
[28] Ziemann et al. + - pick/receive -
This paper + pick/receive transition condition/ transition condition/
pick/receive pick/receive

Table 1. Current EPC-to-BPEL transformation approaches and their treatment of
events. — denotes “not supported”, + denotes “supported”

used to improve the mappings from eEPCs to BPEL by generating transition
conditions out of an internal event and generating a receiving activity in case of
an external event.

Future work is to provide suitable tool support for the presented method.
Future area of research includes the evaluation of combined intermediate events.
These combined events may be associated with both, an organizational unit
and output data. These associations denote that a received message and the
evaluation of process internal data is needed to determine whether the event
happens.

Acknowledgments This work has been supported by the BMBF funded
project ToolsdBPEL (01ISE08B) and the DFG project Nexus (SFB627). We
thank Wil van der Aalst for the fruitful discussions at BIS 2009.

References

1. Object Management Group: Business Process Modeling Notation, V1.2. (2009)

2. Keller, G., Niittgens, N., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report Heft 89,
Universitat des Saarlandes (1992)

3. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-Driven
Process Chains. In: Process-Aware Information Systems: Bridging People and
Software Through Process Technology. Wiley & Sons (2005) 119-146

4. OASIS: Web Services Business Process Execution Language Version 2.0. (2007)

5. Scheer, A.W.: ARIS-Modellierungs-Methoden, Metamodelle, Anwendungen.
Springer (2003)

6. Mendling, J., Nittgens, M.: EPC markup language (EPML): an XML-based
interchange format for event-driven process chains (EPC). ISeB 4(3) (2006)

7. Mendling, J.: Errors in the SAP Reference Model. BPTrends (June 2006)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Oliver Kopp, Matthias Wieland, and Frank Leymann

. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.

Information Technology 50(2) (February 2008) 122-127

. Wieland, M., Martin, D., Kopp, O., Leymann, F.: SOEDA: A Methodology for

Specification and Implementation of Applications on a Service-Oriented Event-
Driven Architecture. In: BIS 2009. (2009)

Vanhatalo, J., Volzer, H., Koehler, J.: The Refined Process Structure Tree. In:
BPM 2008, Springer (2008)

Garca-Bauelos, L.: Pattern Identification and Classification in the Translation from
BPMN to BPEL. In: On the Move to Meaningful Internet Systems, Springer (2008)
Mendling, J., Lassen, K.B., Zdun, U.: On the Transformation of Control Flow
between Block-Oriented and Graph-Oriented ProcessModeling Languages. IJBPIM
3(2) (October 2008) 96-108

Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR, (2000)

Curbera, F., et al.: Exception Handling in the BPEL4WS Language. In: BPM
2003, Springer (2003)

Decker, G., Mendling, J.: Process Instantiation. Data & Knowledge Engineering
68 (2009) 777-792

Stein, S., Ivanov, K.: EPK nach BPEL Transformation als Voraussetzung fr
praktische Umsetzung einer SOA. In: Software Engineering 2007, GI (2007)
Kopp, O., Unger, T., Leymann, F.: Nautilus Event-driven Process Chains: Syntax,
Semantics, and their mapping to BPEL. In: EPK 2006. (2006)

Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting Services: From Specifi-
cation to Execution. Data & Knowledge Engineering (April 2009)

Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verifi-
cation and Participant Synthesis. In: WS-FM 2007. (2007)

Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data Knowl. Eng 56(1) (2006) 23-40

Kopp, O., Mietzner, R., Leymann, F.: Abstract Syntax of WS-BPEL 2.0. Technical
report, University of Stuttgart, IAAS, Germany (2008)

Kindler, E.,; Kénemann, P., Unland, L.: Difference-based model synchronization in
an industrial MDD process. In: MDTPI 2009. (2009)

Stein, S., Kiihne, S., Ivanov, K.: Business to IT Transformations Revisited. In:
MDE4BPM 2008. (2008)

Wieland, M., et al.: Events Make Workflows Really Useful. Technical report,
University of Stuttgart, IAAS, Germany (2008)

Schmelzle, O.: Transformation von annotierten Geschéftsprozessen nach BPEL.
Master’s thesis, Gottfried Wilhelm Leibniz Universitdt Hannover (2007)

Specht, T., et al.: Modeling cooperative business processes and transformation to a
service oriented architecture. In: CEC 2005. (July 2005) 249-256

van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1) (2003) 5-51
Ziemann, J., Mendling., J.: EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. In: MITIP. (2005)

v.d. Aalst, W.M.P., Bisgaard Lassen, K.: Translating unstructured workflow
processes to readable bpel: Theory and implementation. InfSof 50(3) (2008)
Keller, F., Wendt, S.: FMC: An approach towards architecture-centric system
development. In: ECBS 2003. (2003)

Kopp, O., Eberle, H., Leymann, F., Unger, T.: From Process Models to Business
Landscapes. In: EPK 2007. (2007)

