
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

MC-Cube: Mastering Customizable Compliance
in the Cloud

Tobias Anstett, Dimka Karastoynova, Frank Leymann, Ralph Mietzner,
Ganna Monakova, Daniel Schleicher, Steve Strauch

@inproceedings{Anstett2009,
 author = {Anstett, Tobias and Karastoyanova, Dimka and Leymann, Frank and
 Mietzner, Ralph and Monakova, Ganna and Schleicher, Daniel and
 Strauch, Steve},
 title = {MC-Cube: Mastering Customizable Compliance in the Cloud},
 booktitle = {Proceedings of the 7th International Joint Conference on Service
 Oriented Computing},
 year = {2009},
 pages = {592-606},
 doi = {10.1007/978-3-642-10383-4_43},
 series = {Lecture Notes in Computer Science (LNCS)},
 volume = {5900},
 publisher = {Springer Berlin Heidelberg}
}

:

Institute of Architecture of Application Systems

© 2009 Springer-Verlag Berlin Heidelberg.
The original publication is available at www.springerlink.com
See also LNCS-Homepage: http://www.springeronline.com/lncs

http://www.springerlink.com/
http://www.springeronline.com/lncs

MC-Cube: Mastering Customizable Compliance
in the Cloud

Tobias Anstett, Dimka Karastoyanova, Frank Leymann, Ralph Mietzner, Ganna
Monakova, Daniel Schleicher, and Steve Strauch

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract. Outsourcing parts of a company’s processes becomes more
and more important in a globalized, distributed economy. While archi-
tectural styles and technologies such as service-oriented architecture and
Web services facilitate the distribution of business process over several
departments, enterprises and countries, these business processes still need
to comply with various regulations. These regulations can be company
regulations, national, or international regulations. When outsourcing
IT-functions, enterprises must ensure that the overall regulations are
met. Therefore they need evidence from their outsourcing partners that
supports the proof of compliance to regulations. Furthermore it must
be possible to enforce the adherence to compliance rules at partners.
In this paper we introduce so-called compliance interfaces that can be
used by customers to subscribe to evidence at a provider and to enforce
regulations at a provider. We introduce a general compliance architecture
that allows compliance to be monitored and enforced at services deployed
in any emerging cloud delivery model.

1 Introduction and Motivation

Service-oriented architecture has emerged as the architectural style that allows to
recursively compose services that are run in a distributed fashion on heterogeneous
infrastructures. Service-oriented systems are often used in conjunction with
business process execution engines to build cross-organizational IT-support for
the business processes in and across enterprises.

With upcoming service delivery models such as infrastructure as a service
(IaaS), platform as a service (PaaS) and software as a service (SaaS) enterprises
can outsource computing and middleware resources to the cloud and use them
“on demand”. This allows enterprises to focus on their core competencies that
may not lie in the acquisition and management of an IT infrastructure. As a
consequence from financial and other scandals in the last years, companies are
faced with more and more regulations that they need to obey to. These regulations
range from internal regulations, such as business ethics or sustainability rules to
external regulations, such as privacy laws that need to be obeyed or frameworks
such as BASEL II [3] or SOX [21] that regulate financial transactions.

Many of these regulations mandate enterprises to provide enough evidence to
auditors so that those auditors can judge whether regulations have been obeyed
or violated. In the case of outsourced IT services, the gathering of evidence can be
partially delegated to the outsourcing provider. However, some regulations still
hold an enterprise (or even the CEO of an enterprise) liable even if an outsourcing
provider violated a regulation. Furthermore as complex business processes can be
partially supported by IT systems running at different providers and in the own
data-center, the evidence must later be aggregated to provide a comprehensive
view on the whole business process.

In this paper we deal with cross-organizational business processes that use
services provided at multiple outsourcing providers in multiple delivery models.
In such a setting, compliance to regulations is of utmost importance and has
implications on the IT-infrastructure of both providers and consumers of services.
Thus there is a need to monitor and possibly enforce the execution of business
processes due to a service-level agreement [10], reached between client and
provider before. Therefore we introduce the notion of a compliance interface that
allows enterprises to gather evidence from providers as well as enforce rules on
these providers. We show that providers must allow their clients to customize the
evidence they provide depending on the regulations the client has to be compliant
with. The approach presented in this paper is very flexible and does not focus on
a certain legal framework. However, specific focus is paid on outsourcing parts of
applications, which must maintain the overall compliance rules imposed on the
whole application.

We introduce a running example in Section 2 that will be used while presenting
the main contributions of the paper. We then describe the requirements and
architecture for a general compliance framework that we gathered from the case
studies in various projects (Section 3). We apply this framework to different
delivery models in Section 4. In Section 5 we then discuss how the compliance
interfaces could be realized. We show a prototypical implementation in Section
6, compare our approach to other approaches in Section 7 and finish with a
conclusion and an outlook to future work that we plan in the field.

2 Running Example

In [2] we investigated how security and trust issues affect the execution of WS-
BPEL [17] processes in the cloud and discussed requirements on the middleware
supporting the execution of WS-BPEL processes in the different cloud delivery
models. In contrast, in this paper we investigate how compliance of business
processes can be ensured during outsourcing.

Therefore we introduce the example of a fictional EU-based company manu-
facturing and shipping drugs named Pharmazon. Figure 1 illustrates a simplified
view on the business process that Pharmazon follows when selling drugs.

Of course the company Pharmazon and its business processes have to comply to
several European laws and national laws for example concerning production, dis-
tribution, advertising and labeling of medical products for human and veterinary

order received

order accepted

drugs produced

delivery confirmed

order confirmed

order refused

invoice written

received payment

packaged

Pharmazon Shipping
Company

received for shipping

shipped

[not solvent] [solvent]

Solvency Check

if order exceeds
€10.000

do 1st solvency check

do 2nd solvency check

[yes]

[no]

[not solvent] [solvent]

Fig. 1. Simplified view on Pharmazon’s business process

use [6]. For example, Pharmazon must be compliant to directive 2001/83/EC [22]
of the European Parliament and Council, which deals among other things with
the advertising of medicinal products for humans. Their business processes also
have to be compliant to their own internal regulations. Examples for such internal
rules are: ’Every time an order is received, a solvency check has to be done. If
the amount exceeds e 10.000 a second solvency check has to be done by a person
different from the first one’ or ’Every order has to be delivered within 24 hours’.

Pharmazon is forced to maintain lower costs to stay competitive. The first
step in reducing cost is to reduce the enormous shipping costs to non European
countries by subcontracting pharmaceutical companies in the US and Asia Pacific
countries. Furthermore parts of the business process such as the above mentioned
solvency check have to be outsourced.

While outsourcing parts of the business (process) it must be ensured that the
outsourcee still complies with the European, national or internal regulations that
formerly were ensured by the company itself. Thus Pharmazon has to have the
possibility to check, whether the outsourcee complies to the given regulations
imposed on Pharmazon’s processes.

In this paper we will use the example with focus on the internal regulations
mentioned above, ensuring that the outsourced solvency check is made as defined
and the cross-cutting business concern of orders delivered within 24 hours is
achieved.

3 Requirements and Resulting Architecture

As mentioned in Section 1 it is required that a specified set of compliance
constraints is ensured during a business process execution.

Hardware

Middleware

MApplications S EEn

A
En
S
M
E
A

:
:
:
:
:

enforcing service
signaling service
monitoring service
enforcement service
assessment service

Fig. 2. Abstract Compliance Supporting Architecture / Infrastructure

Figure 2 presents an abstract architecture using compliance services to enable
the control and assessment of compliance. Here the term En is a shortcut
for enforcing service, S for signaling service, M for monitoring service, E for
enforcement service and A for assessment service. The architecture as well as
terms used in this paper are based on the research work [14] in the European
Community’s FP7 project MASTER 1.

In the following each compliance service is described in detail:
Signaling Service: Provides evidence in form of events emitted on action

state changes. An example of an action state can be state ready, denoting that an
action is ready to be executed, state running, denoting that an action is currently

1 http://www.master-fp7.eu

executing or a state completed, denoting that an action was executed. Signaling
services can be implemented at any level of abstraction where events must be
emitted, e.g. at application, platform middleware or hardware level. Logically
they are however related to a certain business process behavior as evidence to
prove the satisfaction of constraints.

Runtime Monitoring Service: Aggregates events based on its situation
information, payload or any other data, which can be resolved using an external
service (such as a database entry lookup or a Web service call). Thus, runtime
monitoring services can also be viewed as complex event processing, for short
CEP [15], services. Depending on the aggregation rules, events may either provide
evidence for a compliant execution of the process or the detection of a constraint
violation.

Enforcement Service: In order to prevent a violation the enforcement service
reacts to an event denoting a possible threat of violation and guides (controls)
the system in such a way that the invalid state (the state, which violates the
constraint) cannot be reached. In case of a detected violation the goal of the
reactive process is to transfer the system from the current invalid state into a
valid one. This can be done through the compensation of the actions, which
caused the invalid state transfer. If such compensation is not possible, other
actions can be taken to minimize the impact of the violation on the business
value. In both cases, an enforcement process is an orchestration of services, which
are able to influence the state of the system. Note that the actual execution
of the services can only be influenced if corresponding enforcement capabilities
are provided by the corresponding middleware. For example a process can be
terminated from the outside only if the engine provides an interface supporting a
terminate operation. A component providing such enforcement capabilities is in
the following called enforcing service.

Assessment Service: Assess the satisfaction of constraints as well as the
effectiveness of the implemented enforcement process.

Because compliance concerns may vary between different business processes
an infrastructure realizing the presented architecture has to allow dynamic con-
figuration of its services. Compliance policies allow to describe the configuration
of the compliance services required to monitor and enforce a certain compliance
constraint. The configuration can be divided into the following blocks: i) de-
scription of the signals (events) required to monitor the behavior of the system,
ii) description of the monitoring rule (predicate), which allows detection of the
violation or a violation threat, iii) description of the reactive and preventive
actions and iv) description of the assessment function.

When translating compliance regulations to compliance policies, for short doing
compliance regulations refinement, the responsible person has to take decisions
about the granularity of events, where they occur and where and how they can
be aggregated to express the required semantics. Depending on the capabilities of
the underlying execution environment these events can be emitted and aggregated
at different levels. For example an event denoting the read access to a specific
database resource could be emitted by the database using its trigger mechanism,

by a service that provides an interface to the database functionality or by the
business process that initiated the access. Furthermore the required signaling
and runtime monitoring capabilities can be part of the business process itself,
implemented as internal controls, or provided as compliance services. Reactions
to certain events, e.g. to enforce the satisfaction of constraints, may be realized
by single operation calls or require more complex reactive processes. In Section 5
we present a concrete example using the running example of Section 2.

4 Refining the General Architecture to Cloud Delivery
Models

One of the biggest challenges of mastering compliance in the cloud is that the
customer is not able to transfer its obligations regarding compliance regulations
to the outsourcing provider. This section discusses the requirements as well as
responsibilities of customer and provider in outsourcing scenarios. We describe
the requirements for the following three categories of delivery models, namely
infrastructure as a service (IaaS), platform as a service (PaaS) and software as a
service (SaaS).

4.1 IaaS

In this delivery model a customer basically rents the required hardware from an
IaaS provider. Like in the traditional on-premise model, he has to take care for
configuring the platform and application on his own. Amazon Elastic Compute
Cloud (Amazon EC2) 2 is a prominent example of an infrastructure as a service.
The configuration of the platform includes the installation of operating system,
platform middleware such as database management system (DBMS), enterprise
service bus (ESB) or a BPEL engine, and application. In the following compliance
services are considered as a specialized platform middleware. Although only
responsible for providing the hardware the provider may also provide signaling,
monitoring and enforcement capabilities for its hardware. A provider may offer
these compliance services as agreed in the service agreements with the customer.
He may also require compliance services for ensuring his own compliance. E.g. he
has to check that his hardware works as expected and furthermore is not abused
to run illegal software like file sharing servers.

Using IaaS a customer will always trust his own installation and therefore does
not have to worry about the validity of the events generated by this software.

4.2 PaaS

The PaaS model offers both, the infrastructure (hardware) as well as the platform
middleware to deploy applications. The customer neither has to take care for

2 http://aws.amazon.com/ec2/

reserving hardware resources nor for configuring the platform. Google’s App
Engine3 is an example of platform as a service.

In PaaS the customer has to specify his functional and non-functional re-
quirements to the provider and the provided infrastructure. While the functional
requirements might for example only specify the need for a certain type of mid-
dleware, the non-functional part includes the specification of the compliance
requirements on the provided middleware or even hardware. For example the
customer might specify that the BPEL engine, which is part of the platform, must
be able to send events about the actual state of process instances. Furthermore
the engine must allow to enforce certain actions on process instances and must
therefore provide a specific enforcement interface. If the customer is for example
interested in using monitoring or enforcement services, he has to provide its
configuration using the compliance policies. The provider is in charge of installing
and executing these policies on his middleware in a similar way he would have
to do it when deploying a BPEL process on a BPEL engine. Thus policies can
be considered at the level as BPEL processes, which realize applications. This
allows PaaS providers to offer monitoring, enforcement and assessment services
in a SaaS delivery model. Because signaling and enforcing services are bound to
specific platform middleware they can not be outsourced independently of that
platform middleware.

In contrast to the IaaS model, the provider may not be able to offer all the
required information or services to the customer or even may decide to offer
only a limited subset of information he could generate for use by its customers.
Thus the customer is constrained to the offered granularity and semantics of
the provided events as well as monitoring and enforcement capabilities of the
provider.

One of the main deficiencies of using PaaS in this context is the perceived
lack of trust, that events provided to the customer are authentic. Because
everything except the business process model and its explicitly generated events
are hosted, the customer must trust his provider. There are several ways to
increase the trust level. On the one hand the trust level could be increased by
applying more complex monitoring rules, which execute additional checks on the
middleware or even hardware event level. On the other hand there is need for a
compliance certification agency to increase trust and allow chains of trust similar
to Verisign’s 4 role and functionality in the Internet. Certification agencies might
base their certificates on audits of the assured compliance, refined compliance
policies and the implementation of compliance services. This also leads to the
need for trusted middleware.

4.3 SaaS

Software as a service provides different customers the functionality of an appli-
cation that is completely hosted in the cloud. The user does not have to worry
about the required infrastructure or setting up and configuring the platform.

3 http://appengine.google.com
4 http://www.verisign.com

When recalling the presented compliance architecture, which is mainly based
on the presence of signaling services to provide evidence, the concept of variability
becomes very important not only for SaaS but also for the other delivery models.
The set of supported events must be made available to the user at each level of
abstraction. These abstraction levels should support but not be limited to the
categorization used throughout this paper, namely hardware, platform middleware
and application, but also introduce more convenient perspectives such as resources,
actions and states. Based on a the provided compliance capabilities the customer
should be able to define the compliance policies.

5 Technical Architecture

In this section we discuss how the signaling and enforcement capabilities can
be described. For this purpose we extend the model described in [5], which is
based on relations between actions, resources, services and events. As motivated
in Section 1 and discussed in Section 3 the customer requires evidence of the
behavior of the actual executed business process. This behavior is defined by
the set of actions being executed and their ordering relations. Thus the behavior
can be represented by and reconstructed from event traces [1] [24] [23]. An event
basically represents a specific execution state of the process or an action within
the process and contains additional payload information such as resources.

The description of the signaling capabilities contains the following information:

– actions the service performs
– states an action supports, e.g. [7] describes the states BPEL activities support
– resources the service uses
– events emitted on action state change
– resource/information an event may contain
– event properties such as event timestamps

The description of the enforcement capabilities contains the following informa-
tion:

– enforcement actions the service performs. The enforcement actions are specific
actions, which can be used to influence the service execution.

– resources on which the enforcement action is performed
– end point reference (EPR) of the enforcement action to enable action invoca-

tion

Figure 3 illustrates the model for describing signaling and enforcement ca-
pabilities. The relation onState is an abstract relation, which can be subtyped
with the relations onStarted, onRunning, onFaulted, onTerminated, onCompleted,
depending on the states the corresponding action supports. Note that because an
enforcement action is a subtype of the general action concept, events also can be
emitted on the state changes of the enforcement action. Note also that because
action is a subtype of a resource, an enforcement action can be executed on

another action, e.g. an enforcement action block can be executed on action check.
A signaling policy is a serialization of the events of a concrete instance of this
model. An enforcement policy is a serialization of all actions of type Enforcemen-
tAction. If both customer and provider specify their requirements/capabilities
using the same model with domain specific actions and resources, two signaling
as well as enforcement policies can be matched using policy matching algorithms
(for example that of WS-Policy [26]) to determine if the service provider provides
sufficient evidence and actions for external control.Model

Action

Resource

Event

on

onState

properties

SupportedStates

contains

Service

performs

emits

uses

subtypeOf

Enforcement
Action

offers Human
Service

Final

EPR

Fig. 3. Signaling and Enforcement Model

As described in Section 2 Pharmazon decided to outsource the solvency check
part of its business process. To be compliant with internal regulations, Pharmazon
wants to ensure that the check action is performed twice in case the order exceeds
e 10.000 and that these check operations are performed by different persons. Thus,
Pharmazon requires events every time a check action was executed, denoting the
completion of this action, on action state completed, containing information about
the person who executed this action. Figure 4 shows an example of a solvency
check process signaling and enforcement description offered by an SaaS provider.

Note, that this model does not describe the structure of the solvency check
process. The provider can in addition describe the structure of the process using
existing standards, such as abstract BPEL [17].

In general there are two options to bind to a service: i) dynamic binding and
ii) static binding. Dynamic binding as defined in [26] is based on the operations
publish, find and bind. A service requestor finds a service by providing its
requirements to the discovery facility, which is responsible for matching service
descriptions as well as policies. If a service matching the required capabilities
is found, the service requestor binds itself to the service to use it. Because the
customer also has to subscribe to the events he described within his signaling
policy the bind step has to include the subscription to the events using the
compliance interface offered by the provider. A compliance interface has to
provide the following operations, which could be implicitly contained in the
service description (WSDL [26]) or offered as a standalone service:

Check
<Action>

CustomerInfo
<Resource>

on

onStart

timestamp

{Started, Completed}

containsInfo

performs

emits

uses

performsonComplete

CheckCompleted
<Event>

timestamp
uses

CheckStarted
<Event>

containsInfo Redo
<EnforcementAction>

offers

Worker
<HumanService>

on

SolvencyCheck
<Service>

Final

EPR1

Fig. 4. Signaling capabilities of the service provider

– getSignalingCapabilities(service) returns the signaling policy for the specified
service

– getEnforcementCapabilities(service) returns the enforcement policy for the
specified service

– subscribeTo(service, event) subscribes to a specific event of the service

Static binding assumes that a suitable service was already found and only the
subscription to signaling events has to be done manually. For example a SaaS
provider could offer a graphical user interface to describe an abstract view on
the business process including signaling and enforcement capabilities available
for this process. The customer can use the offered tooling to select the events he
wants to subscribe to and the provider automatically performs the subscription
in the background. Especially in SaaS delivery models this approach might be
interesting because providers already allow customers to customize the provided
business processes using variability descriptors [16].

However, which of the discussed approaches is used, the events, a customer
has subscribed to, have to be monitored to provide evidence for a compliant
execution of the process or the detection of a constraint violation. In Pharmazon’s
case it has to be ensured that every time an order exceeds e 10.000 two check
operations are performed by different persons.

Using the provided description of the signaling capabilities, the monitoring
rule for the seperation of duties (SoD) objective can be specified as follows:

∀r ∈ SolvencyCheck ∃e1, e2 ∈ CheckCompleted :

(e1.pid = r.pid) ∧ (e2.pid = r.pid) ∧ (e1 6= e2) ∧ (e1.Worker 6= e2.Worker)

where pid denotes the id of the current process instance run. This rule states
that at least two different events of type CheckCompleted should be available
for every run of the SolvencyCheck service. This implies that the action Check
must be performed at least twice for every process run. In addition, the above

condition requires the two actions being executed by different workers. In our
case this rule must only be fulfilled if the order amount exceeds e 10.000. Because
the order sum is not directly available from the event payload of the provided
events, this information has to be extracted on the customer’s side before the
solvency check service is invoked. Assuming that an additional event e3 of type
SolvencyCheckInvoked containing order sum and the process ID is sent to the
monitoring component by the Pharmazon process before the solvency check is
invoked, the above rule can be rewritten as follows:

∀e3 ∈ SolvencyCheckInvoked(e3.sum > 10.000) → ∃e1, e2 ∈ CheckCompleted :

e1.pid = e3.pid ∧ e2.pid = e3.pid ∧ (e1 6= e2) ∧ (e1.Worker 6= e2.Worker)

If the separation of duties criteria was not met by the provider, Pharmazon
can for example enforce the compliance of its process by invoking a reactive
process, which enforces a redo on one of the check activities.

If the outsourcing provider always executes the check operation twice and the
check operations are performed by different persons, then the monitoring rule
is not violated. Because checking things twice may take significant longer than
not doing so, Pharmazon’s business process has to wait longer for the reply of
solvency checks made for orders less than e 10.000. Because Pharmazon has to
be also compliant to its internal regulation Every order has to be delivered within
24 hours this might not be applicable. Thus another monitoring policy is needed
to express the relation between the order volume, time available and checks to be
performed. This policy could trigger an enforcement process, which either skips
the activity waiting for the result of the solvency check if the order is less than
e 10.000, and the first check evaluated to true, or changes the shipping partner
or method to a faster one depending on the time left.

6 Implementation Aspects

In this section we show a prototype, which fulfills the requirements of Section 3
and can be used to implement the described architecture.

We extended the Apache ODE BPEL engine 5 with the capability of sending
events to the outside. Apache ODE supports BPEL 2.0 process models.

Figure 5 shows where the BPEL engine is placed in a compliance supporting
architecture. It also shows the signaling service (S) and the enforcing service
(En), which are part of the engine. The enforcing service provides operations to
for example influence the running processes on the engine.

During the execution of a process the BPEL engine produces many events and
stores them in an internal database called the audit trail. These events can be
used to check compliance concerns. In order to fulfill the requirement of emitting
events to the outside, the engine has been extended with two Web services.
The first one is a publish-subscribe Web service, which provides operations to

5 http://ode.apache.org

Hardware

Apache Ode

BPEL Process

SaaS

PaaS

IaaS

En S

En
S
M

:
:
:

enforcing service
signaling service
monitoring serviceM

Events

Audit trail

Fig. 5. Placement of BPEL engine in a compliance supporting architecture

subscribe to certain events occurring during process execution. For technical
details of the subscription mechanism we refer to [25]. The second Web service is
a signaling Web service. It sends the events as SOAP messages to the subscribers.
These events are based on the common base event model proposed by IBM 6.
This model for example comprises information of the service, which sent a certain
event and in what situation it was sent.

In [7] a static event model for BPEL is proposed. In this context static means,
that every activity has a static set of events and one could subscribe to all
events at any time. There is no way of constraining the events, which are visible
outside of the BPEL engine. This document also contains definitions of all events,
which can be emitted during execution of a BPEL activity. This is useful for
subscriptions to certain events of a particular activity.

To process the events emitted by a BPEL engine a monitoring service (M)
could for example subscribe to certain events to check the validity of the running
processes in the BPEL engine. If a violation has occurred a new event can be
issued to a so called enforcement service. The enforcement service then could
carry out reactive actions in order to respond to compliance violations. Actions,
which react to a compliance violation, can for example stop the business process
running in the domain of the business partner. Such actions could also be modeled
in a business process. This process is then called a reactive process.

The life cycle management operations, ODE provides, can be used as enforce-
ment capabilities. ODE is capable of pausing, resuming, terminating, and deleting
of process instances. So this prototype can be used as an enforcement component
specified in Section 3. The engine is also capable of blocking a process instance
when a certain event has occurred. This is in some cases useful when a decision
has to be made before the process could continue.

For example, if someone has placed an order to buy drugs from Pharmazon
exceeding the price of e 100.000 the process will be blocked and an event will be
emitted notifying the enforcement service. The engine then can be unblocked by
the enforcement by invoking a reactive process, which then takes the necessary
actions to unblock the process.

6 http://www.ibm.com/developerworks/library/specification/ws-cbe/

7 Related Work

Outsourcing is a technique used in process re-engineering in order to optimize or
improve business processes in terms of optimization according to different criteria.
Additionally it can be used as a mechanism for adapting business processes.
The outsourcing of applications can be implemented using different techniques,
which depend on the paradigms and technology used for implementing these
applications. One of the approaches used to enable outsourcing of processes is
process splitting. In the field of Web services compositions approaches have been
created for outsourcing service compositions in order to optimize the processes
they implement with respect to organizational resources or infrastructure per-
formance. E.g. the approach in [12] enables splitting of BPEL processes into
so-called partitions, which can be run as stand-alone processes on different BPEL
engines at different locations/organizations in such a manner that the overall
semantics of the original business process is maintained. The work in [4] reports
on another approach for splitting service compositions in an optimal manner
according to criteria like execution time, response time, cost etc. The approach
allows for splitting a composition in the so-called strata and is based on the
concept of stratified transactions, while the communication among strata is
enabled via a queuing infrastructure (MOM in general). This approach views
a service composition as a transaction and all the tasks of a composition - as
nested transactions. The resulting stratified compositions maintain the original
logic but improve its performance. The work introduces several algorithms for
optimal stratification of service compositions. Multiple coordination protocols for
partitioned/split processes exist and they are dependent on the approach used
for the splitting. Worth mentioning are the WS-BA [18], which is a part of the
WS protocol stack; for the above mentioned approaches there are corresponding
coordination protocols based on either WS-Coordination Infrastructure [13] or on
other coordination mechanisms. To enable the communication among the parts
of a global process that run at different locations and hence be able to coordinate
these partitions/fragments each service composition engine needs to provide
information about events related to the life-cycle of process instances. Usually,
an engine implements an event model, which is used to publish information for
the purposes of monitoring; this has been used for enabling monitoring [9], adap-
tation [16] [8] [9] and a framework for coordination of service compositions [11].
These are all examples of the use of the events published by the engine, based on
an event model. The existence of such an model is crucial also for enabling the
outsourcing of parts of service-based applications and enabling their compliance.
Compliance to a global process logic in the area of process splitting has been
enabled by design in the approaches presented in [12] and [4]. Compliance of
processes to a process model has been enabled by the work of [19] for the case
of adaptation by means of model evolution. The difference with respect to the
subject of compliance between this approach and the one we present here is that
our approach focuses on ensuring compliance of process instances, whereas the ap-
proach of [20] enables the compliance or correctness of adaptation/modifications
on the process model level only.

8 Conclusion and Future Work

In this paper we presented MC-Cube, an approach to deal with compliance
requirements in cross-organizational applications build upon a service-oriented
architecture. We introduced compliance interfaces as a means to allow subscribers
of services to customize the evidence they need from a provider. On the other
hand when enforcing compliance at an oursourcing provider the enforcement part
of the compliance interface can be used. We introduced a general architecture for
outsourcing and compliance and mapped this infrastructure to different delivery
models such as IaaS, PaaS and SaaS. We described a prototype that shows how
the presented concepts can be applied to a BPEL engine that can then be used
at providers to offer customizable compliance to their customers. In future work
we will extend this work to describe how suitable services that offer the required
compliance can be automatically discovered. We will also investigate in detail
how changes to compliance requirements will affect running applications and how
this affects the underlying middleware (such as BPEL engines).

Acknowledgments

The work published in this article has partially received funding from the Euro-
pean Community’s 7th Framework Programme Information Society Technologies
Objective under the COMPAS project7 contract no. FP7-215175, the MASTER
project8 contract no. FP7-216917 and under the Network of Excellence S-Cube9

contract no. FP7-215483.

References

1. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow
Logs. In In Sixth International Conference on Extending Database Technology,
1998.

2. T. Anstett, F. Leymann, R. Mietzner, and S. Strauch. Towards BPEL in the Cloud:
Exploiting Different Delivery Models for the Execution of Business Processes. In
IWCS’2009, 2009.

3. Basel Committee on Banking Supervision. International Convergence of Capital
Measurement and Capital Standards. 2006.

4. O. Danylevych, D. Karastoyanova, and F. Leymann. Optimal Stratification of
Transactions. In ICWS’2009, 2009.

5. U. Flegel, F. Kerschbaum, P. Miseldine, G. Monakova, R. Wacker, and F. Leymann.
Insider Threats in Cybersecurity And Beyond. Springer, New York, To Appear in
2009.

6. J. W. Gordon E. Appelbe. Dale and Appelbe’s pharmacy law and ethics. Pharma-
ceutical Press, 2005.

7 http://www.compas-ict.eu
8 http://www.master-fp7.eu
9 http://www.s-cube-network.eu

7. D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and F. Leymann. BPEL
Event Model. Technical Report Computer Science 2006/10.

8. D. Karastoyanova and F. Leymann. BPEL’n’Aspects: Adapting Service Orchestra-
tion Logic. In ICWS’2009, 2009.

9. D. Karastoyanova, F. Leymann, J. Nitzsche, B. Wetzstein, and D. Wutke. Parame-
terized BPEL Processes: Concepts and Implementation. In IWCS’2009, 2006.

10. A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. J. Netw. Syst. Manage., 11(1):57–81,
2003.

11. R. Khalaf, D. Karastoyanova, and F. Leymann. Pluggable Framework for Enabling
the Execution of Extended BPEL Behavior. In WESOA’2007, 2007.

12. R. Khalaf and F. Leymann. A Role-based Decomposition of Business Processes
using BPEL. In ICWS’2006.

13. R. Khalaf and F. Leymann. Coordination Protocols for Split BPEL Loops and
Scopes. Technical Report Computer Science 2007/01.

14. V. Lotz, E. Pigout, P. M. Fischer, D. Kossmann, F. Massacci, and A. Pretschner.
Towards Systematic Achievement of Compliance in Service-Oriented Architectures:
The MASTER Approach. Wirtschaftsinformatik, 2008.

15. D. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Longman, Amsterdam, 2002.

16. R. Mietzner and F. Leymann. Generation of BPEL Customization Processes for
SaaS Applications from Variability Descriptors. In IEEE SCC, 2008.

17. OASIS. Web Services Business Process Execution Language Version 2.0 – OASIS
Standard, 2007.

18. OASIS. Web Services Business Activity (WS-BusinessActivity) Version 1.2 –
OASIS Standard, 2009.

19. M. Reichert and P. Dadam. ADEPT flex - Supporting Dynamic Changes of
Workflows Without Loosing Control. Journal of Intelligent Information Systems,
1998.

20. M. U. Reichert and S. B. Rinderle. On Design Principles for Realizing Adaptive
Service Flows with BPEL. In EMISA’2006, 2006.

21. P. Sarbanes and M. Oxley. Sarbanes-Oxley Act of 2002. The Public Company
Accounting Reform and Investor Protection Act. Washington DC: US Congress,
2002.

22. The European Parliament and the Council of the European Union. Directive
2001/83/EC of the European Parliament and the Council. Official Journal of the
European Communities, 311, 2001.

23. W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A. J. M. M. Weijters. Workflow mining: A survey of issues and approaches.
Data Knowl. Eng., 2003.

24. W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 2004.

25. T. van Lessen, F. Leymann, R. Mietzner, J. Nitzsche, and D. Schleicher. A
Management Framework for WS-BPEL. In ECOWS’2008, 2008.

26. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web
Services Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-
BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005.

	cover-Springer
	Foliennummer 1

	mccube

