
Institute of Architecture of Application Systems, 
University of Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

An Event-model for Constraint-based Person-centric
Flows

Tobias Unger, Hanna Eberle, Frank Leymann, Sebastian Wagner

© 2010 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings {INPROC‐2010‐101,
author    = {Tobias Unger and Hanna Eberle and Frank Leymann and Sebastian    

Wagner},
title     = {An Event‐model for Constraint‐based Person‐centric Flows},
booktitle = {Proceedings of the 2010 International Conference on Progress  

in Informatics and Computing (PIC‐2010)},
year      = {2010},
pages     = {927‐‐932},
doi = {10.1109/PIC.2010.5687886},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems



An Event-model for Constraint-based Person-centric
Flows

Tobias Unger, Hanna Eberle, Frank Leymann, and Sebastian Wagner
University of Stuttgart

Universitaetsstr. 38, 70569 Stuttgart, Germany
Email: {firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Over the past years research in pervasive computing
has demonstrated the potential of context-aware and proactive
technologies for improving human work performance and to
ensure that people act compliant according to predefined regula-
tions. Human work can be structured into tasks, whereas a task
is representing an atomic human work entity. A person-centric
flow is an IT-representation of the flow of activities an individual
person is performing. For example the daily care schedule of a
nurse can be understood as the person-centric flow of the nurse.
To be able to effectively guide a person in a complex and highly
dynamic work environment and to react on possible deviations
from the flow the supporting system is required to be aware
of the state of the person-centric-flow. Beside guidance the flow
information can be utilized to check compliance of a persons flow
with prescribed sequences of operation. In this paper we propose
a constraint-based workflow model for person-centric flows and
an event-model which can be used to inform applications about
the state of these flows.

Keywords—Human-centric BPM, Constraint-based Workflow

I. INTRODUCTION

A Person-centric Flow is an IT-representation of the flow of
activities an individual person is performing [1]. For example
the daily care schedule a of nurse can be understood as the
person-centric flow of the nurse. Mostly, these activities are
planned and created by the hospital’s healthcare documentation
and planning system. The IT-representation of such an activity
is called human task. People are informed about their tasks
using worklists.

The person-centric flow is created by enriching the worklist
with flow information, which can be recommendations or
obligations. The person-centric flow can be synchronized with
what the person is doing either explicitly by ticking the tasks
on the worklist or by observing the person using activity
sensing [2]. The other way round, person’s can be provided
with recommendations and instructions how to execute their
tasks based on the flow information which help people e.g.
to save resources or time. This can be done e.g. by calling
their attention to possible errors or to the fact, that the chosen
ordering of the tasks is prohibited. Ambient guidance strategies
provide means to direct and correct humans if necessary, e.g.
if a nurse forgets an important procedure [3]. To be able to
implement ambient guidance the ambient guidance system must
be aware of the work a person has to perform and how this
work should be done. Therefore, the person-centric flow opens
great opportunities to support people in doing their work and
to ensure compliance to certain regulations. The person-centric

flow can be utilized to check whether a person deviates from
her person-centric flow and whether this deviation is tolerable
or not. Applications can be informed about the violation of the
person’s behavior from her person-centric flow using events.
Events are also generated in case a person deviates from her
flow. Imagine a nurse has a person-centric flow which prescribes
as first step to measure the blood pressure of patient A, then to
disinfect her hands, and, finally, to measure the blood pressure
of patient B. If the nurse decides to take the blood pressure of
person B directly after measuring blood pressure A without
disinfecting her hands between these to taks, the nurse deviates
from her person-centric flow in an intolerable way and the
ambient guidance system is informed by a violation event.
The violation information can be used to inform the nurse
that she has to disinfect her hands. Additionally, also tolerable
deviations can be detected. A tolerable deviation would be
to measure blood pressure of patient B, then to disinfect her
hands, and, finally, to measure the blood pressure of person A.
Also in this case, the ambient guidance system can be informed
about the deviation by a deviation event. Such an information
can be used e.g. for providing the nurse with the health record
of person B instead of providing her with the health record of
person A.

The contribution of this work is divided in two parts: First we
present a constraint-based workflow model for person-centric
flows. However, the algorithms for enriching worklists with flow
information in order to create the person-centric flow are out of
this scope of this work. Appropriate algorithms are presented
in [1], [4]–[6]. The second contribution is an event-model for
person-centric flows, which can be used to inform applications
about the state of the person-centric flow. Applications, e.g.
the ambient guidance system, can register for these events.
Afterwards, the flow system informs the application about the
state of the person-centric flow. For example the flow system
sends an event to the ambient guidance system in case the
nurse deviates from the prescribed flow.

The reminder of the paper is as follows: Section II intro-
duces the concept of person-centric flows. In Section III the
architecture for distributing the events of the person-centric-
flow is presented and, finally, in Section IV the events and the
determination of these events is presented. We conclude our
work with a discussion of our approach based on related work
approaches in Section V and with a summary of our results in
Section VI.



PresentPast Future
Person‐

centric flowcentric flow

Business 
Worklist

Process 
Instances

Figure 1. Person-centric Flow

II. PERSON-CENTRIC FLOWS

Definition 1 (Person-centric flow): A person-centric flow
defines a partial ordering over a set of tasks which have to
be performed by one single person. Tasks of a person-centric
flow can be classified in three tenses: past tasks, present tasks,
and future tasks. Past tasks are either completed correctly
or incorrectly and their ordering is known. Present tasks are
tasks that are currently presented in a person’s worklist. Their
ordering is planned by the person but can change dynamically.
Future tasks are tasks which are assumed to be executed in
the future. Both the set of future task as well as their ordering
may change dynamically.

Fig. 1 shows a simple graphical representation of a person-
centric flow. Please note that present and future tasks can be
mixed up within a person-centric flow. Only the task that is
actually executed must be included in the set of present tasks.
Since a person-centric flow is formed implicitly in a person’s
mind it must be predicted by the WfMS in order to utilize the
ordering information. A person cannot be demanded to tell the
WfMS its actual flow. Since tasks appear and disappear in a
high frequency, this would be an additional stress factor. As
a consequence predictions may be wrong. Furthermore, the
person-centric flow paradigm is partly contrary to the existing
workflow paradigm. For example a person-centric flow has no
prescribed flow model as the set of tasks changes dynamically
and so does the ordering of the tasks. Many control flow
patterns like loops are not needed in person-centric flows since
each task is executed once. A single instance of a person-
centric flow is associated to one person. In this paper we rely
on declarative workflows in order to describe a person-centric
flow of a person [7].

A. A Formal Definition for Person-centric Flows

In this Section we present our formalization of person-centric
flows. The formalization bases on the formalization presented in
[8]. Let P be the set of all persons. T M denotes the universe
of all available task models. The runtime instances of task
models are denoted as the set T I = {T M ×N}. Each task in-
stance has a state, where the set of possible states is denoted as
taskState : T I → {⊥,activated,running,completed}. Task
instances with a task state ⊥ denote virtual task instances,
which are going to be created in the future, but nevertheless they
are an important part of the person-centric flow determination.
Each task instance has exactly one person assigned to it, which

is defined by the map: sta f f Assignment : T I →P . If a task
instance execution is started and the task state changes from
activated to running the starting time for that task instance is set.
The starting time of a task instance is later retrieved by the map:
startingTime : T I → (N∪{⊥}). If the task instance changes
to the state completed the completion time is set, which can also
be retrieved by a map: completionTime : T I → (N∪{⊥}).
The set of all constraints is denoted by the set C . Constraints are
defined on task instances, which are assigned to a constraint by
the map: tasksO fConstraint : C → 2T I . There exist several
types of constraints, which can be classified in three different
classes. Unary constraint types define restrictions on one single
task instance, e.g. how many times this instance has to be
executed. If the init constraint was defined on a task model,
an instance of this task model must be the first task that is
executed during workflow execution. The last constraint on the
other hand defines that an instance of the task model where
the constraint was defined on must be the last task that is
executed during workflow execution. Constraints types of the
choice constraint class are used to specify, that a subset of a
set of task instances has to be chosen for execution. Relation
constraints types define the execution order of the instances
of two task instances. The A precedence B constraint is an
example for this constraint class. A more detailed description
of the constraint types can be found in [7], [9].

A person-centric flow is denoted as follows: A person-
centric flow of a person p ∈P at an observable point in time
i ∈ N is a tuple PCFp,i = (PT Ip,i,HT Ip,i,Ci,cstrength,ctype,m),
where PT Ip = {ti|sta f f Assignment(ti) = p∧ taskState(ti) ∈
{activated,running}} denotes the present task instances
of a person and HT Ip = {ti|sta f f Assignment(ti) = p ∧
taskState(ti) = completed} the already completed task in-
stances or history task instances. Ci ⊆ C denotes the set of the
currently existing and to be satisfied constraints. The Ci evolves
over time, always depending on the present task instances and
the history task instances, since the tasks involved in Ci must
be of the present task instances or history task instances of
the PCFp,i. For each constraint in Ci a strength and a type is
specified. The strength notes, whether a constraint is optional or
mandatory. Optional constraints are usually used for guidance
and mandatory constraints are needed to ensure certain qualities
and requirements: cstrength : Ci→{optional,mandatory}. The
type of a constraint obtains one of the three options intention,
guidance or enforcement. Intentional constraints are constraints
that are used to be able to follow the flow a person has in
mind. Guidance constraints are constraints that can be used to
include special guidance constraints (e.g. a recommendation
to measure the heart rate before measuring the blood pressure)
within the person-centric flow. Enforcement constraints are used
e.g. to support a proactive ambient guidance for constraints
which have to be satisfied (e.g. that a nurse hast to disinfect
her hand after washing a patient). Therefore the map ctype :
Ci→{intention,guidance,en f orcement} is defined in order to
assign a constraint with a strength. The constraint set Ci of a
PCFp,i must hold, that if a constraint c in Ci is a constraint of
the intensional type, the strength of the same constraint must be



optional, since intensional constraints are supporting constraints
but not constraints that are enforced. On the other hand, if a
constraint c in Ci is an enforcement constraint the strength of
the same constraint must be mandatory. We define Ci = {c ∈
C |(tasksO fConstraint(c)∈PT Ip,i∪HT Ip,i) and (cstrength(c)=
optional if ctype(c) = intention) and (cstrength(c) = mandatory
if ctype(c) = en f orcement)} The mode of the person-centric
flow is set by m ∈M .

B. Person-centric Flow Execution

A person-centric flow gets executed by the nurse performing
her tasks. If the nurse starts a task the task in the person-centric
flow gets triggered and set to state running. The work a nurse
is performing is evaluated against the constraint set of the
intended person-centric flow. Depending on that evaluation,
the person-centric flow must be either adapted to the real
world, or if the nurse is violating mandatory constraints, the
system generates corrective guidance events. The evaluation
of the person-centric flow is defined as follows. Since the
PCFp,i is executed and its definition changes over time, the
constraint set is evaluated against a time depending constraint
set with a time depending execution state. The execution state
of a PCFp,i for a person p ∈P and a point in time i ∈N
is defined by the task states. The history task instance set
HT Ip,i and the running task instances of PT Ip,i are evaluated
against the constraints. This joined task instances set is called
satisfaction task instances set ST Ip,i, with ST Ip,i = HT Ip,i ∪
{ti|ti ∈ PT Ip,i∧ taskState(ti) = running}. All the tasks of the
ST Ip,i define are running or completed and therefore the task
starting time is specified. Therefore the ST Ip,i can be used
for constraint evaluation, hence there already exists a ordering
between the tasks this set defined by the task instances starting
time. The ordering of the executed task instances denotes the
execution trace of the PCFp,i. The remaining task instances
are the activated or open task instances of PCFp,i, which are
denoted as OT Ip,i = {ti|ti ∈ PT Ip∧ taskState(ti) = activated}.
Based on the OT Ip,i we are able to determine, whether it will
be possible to satisfy Ci, if Ci is violated by the ST Ip,i. A
violated Ci is can be satisfied, if there exists a partial execution
trace or a partial ordering of OT Ip,i∪ST Ip,i, which satisfies Ci.
Therefore we define the constraint evaluation procedure for a
PCFp,i at a certain point in time i as follows:

eval(ST I,OT I,C)=


satis f ied i f ST IP|=C

temporarilyviolated i f (ST I2C)∧(∃t∈2OT I :ST I∪t|=C)

violated otherwise

C. Person-centric Flow Generation Algorithms

Since the person-centric flow may change dynamically
according to the current situation, the constraints must be
re-generated continuously. The prediction algorithms create
a constraint set based on the present tasks PT Ip and past
tasks HT Ip. Formally, a prediction algorithm is a function
prediction(PT Ih,PT Ip) ⊆ C returning the actual valid con-
straint set for the set of tasks.

Algo1
Process
Engine

Task  PCF Application1
(e g Ambient

getPCF

start, complete taskstart, complete task

tasks (pull)

tasks constraints

Manager Manager
(e.g. Ambient 
Guidance)adapted, violated, 

deviated, 
contradicting

tasks (push)

execution, 
constraints

result

Constraint 
Checker

Figure 2. Architecture

Since we are not able to capture the person-centric flow a
person has in mind, we need to find algorithms to determine
the task orderings. Especially history based algorithms are
promising since people often have behavior patterns which
can be detected by history-based algorithms. Also algorithms
operating e.g. on task deadlines without considering the history
(e.g. scheduling algorithms) are appropriated [4]–[6].

III. ARCHITECTURE

The major idea of our approach is to utilize the knowledge
about the person-centric flow and its state in order to improve
applications like ambient guidance. Fig. 2 shows our overall
architecture. The central element is the person-centric flow
manager, which receives the constraints from the plugged in
constraint generation algorithms. We argue that according to
the scenario different constraint generation algorithms will be
necessary (cf. Sec. II-C). For example a healthcare scenario
differs completely from a delivery scenario. Tasks are managed
in a task manger which executes the business process in
cooperation with the process engine.

A constraint checker component evaluates the execution
against the current person-centric flow as well as the person-
centric flow model against itself. The events that are produced
by the constraint checker component are utilized by the
registered ambient guidance components. For example an
ambient guidance system might use the person-centric flow
events to provide the person with directions and guiding the
person pro-actively through all her work. If a person deviates
from the person-centric flow or if she even violates the person-
centric flow an event is thrown by the constraint checker
component. The information contained in this event can be
utilized by the ambient guidance to adapt the guidance. For
example if a person starts another task than predicted, the
ambient guidance attune to the new situation by updating
the guidance information presented to the user. Additionally,
after an execution violation a new generation of the person-
centric flow is triggered. In the case that the person-centric
flow is adapted or the model is self contradicting the constraint
checker throws either an adaptation event or a contradiction
event. The adaptation event indicates that the plans of the
person have changed, which facilitates the reconfiguration of
the ambient guidance component in order to provide the person
with information about tasks according to the changed plans.



IV. EVENT MODEL FOR PERSON-CENTRIC FLOWS

In order to guide people effectively we need information
about the intended person-centric flow of a person. This
encompasses the list of task instances that have to be performed
by a person and the predicted constraints that have to be
met by these task instances. Moreover, information about the
execution state of the person-centric flow have to be gathered
and published (refer to Execution-related Events below), e.g.
whether the execution is deviating from the predicted person-
centric flow or even violating the constraints. In order to avoid
that applications have to periodically request for state changes
in the person-centric flow (e.g. whether the flow was violated),
the person-centric flow manager (PCF Manager) sends events
to the applications if the state of the flow has changed. In
addition, there are also events sent to the PCF Manager. These
are real world events (e.g. if a nurse starts blood pressure
measurement) that are captured using activity recognition. After
the PCF Manager has received such events it triggers the
Constraint Checker that checks that the person behaves as
expected by verifying that the actual valid constraints are met.
If she does not behave as expected an event is sent to the
application by the PCF Manager. The advantages of using
events are that we can evaluate the constraints in a centralized
way and that we are able to inform other components (e.g. the
application) that are interested in these events almost in real
time. Furthermore, it prevents the person-centric flow manager
from being overburdened by answering continuous polls from
the applications.

Deviations and violations are detected by the Constraint
Checker component. It verifies that no inconsistencies emerge
between the constraints and it also ensures that the constraints
are met during the execution of the person-centric flow. The
Constraint Checker is always triggered when tasks change
their state to running or completed and when the constraint or
task model set has changed. Depending on the outcome of the
verifications the Constraint Checker can raise the following
events:

a) Model-related Events:
• Adapted: A person-centric flow is adapted, if the set of

task and/or the set of constraint changes.
• Contradicted: It may happen that new constraints contra-

dict with already existing constraints. If this is the case
the flow is in “contradicted” state. For example if the
intention of a nurse is to wash a patient before taking the
heart rate this may contradict to a rule saying that the
tasks have to be done the other way round. In this case
for example an intention constraint would contradict to
an enforcement constraint.
b) Execution-related Events:

• Satisfied: A person-centric flow is satisfied, if all con-
straints evaluate to true. In other words the person behaves
as predicted and her behavior causes no violation of e.g.
a security rule.

• Deviated: A person-centric flow is in state deviated, if the
person deviated from the predicted behavior. For example

tasks are executed in a different order than predicted.
• Violated: A person-centric flow is in state violated, if

the person violates for example a security constraint.
Technically spoken this means that at least one of the
mandatory constraints is violated.

It has to be clearly stated that our approach only informs
the applications about deviations or violations of the person
from the person-centric flow. We do not prevent a person from
starting tasks which cause a violation of the person-centric
flow. This is due to several reasons: Actions are executed in
the real world. Mostly, if a violation of the person-centric
flow is detected, the person has already started working on a
task. Generally, two reactions are possible. On the one hand
the person is informed about the violation and can decide
whether to stop or continue the work. On the other hand, due
to changing situations, the constraints are changing so that
working on the task would no longer cause a violation of the
person-centric flow. In the latter case, the violation disappears
automatically as soon as the constraints are evaluated the next
time.

A. Model-related Events Generation Implementation
In order to generate model-related events the Constraint

Checker has to validate the consistency of the constraints
models to ensure that there exist no contradictions [7] between
them. In the following an overview is given that describes
how the Constraint Checker detects contradictions. A more
detailed description of these steps can be found in [7]. If any
inconsistency between two or more constraints was detected the
Constraint Checker sends a “Contradicted” event. Since tasks
and constraints are generated dynamically, for each task a task
model is created at runtime. These task models are required by
the constraint validation mechanisms that are described here.
To validate relation, init, last and negation constraints [7] a
constraint network is created and validated. In the following it
is described how this is done.

The relation constraints are transformed to interval relations
of the interval algebra [10] where each task model is represented
by an interval. For instance if a response constraint is defined
between task models A and B it is transformed to the
interval relation A{be f ore,meets}B. In the terms of interval
algebra this means, that interval (task) A has to appear either
immediately (indicated by the meets relation) or anytime before
B (indicated by the before relation). The interval relations that
are created from the relation constraints form a constraint
network like the one that is illustrated in Fig. 3.

A B C
{before, meets}

{before, meets}

{during}

D
{after}

Figure 3. Example Constraint Network

In [10] and [11] reasoning algorithms were introduced that
can be applied on constraint networks. These reasoning algo-
rithms infer transitively the relations between all intervals and



discover contradictions between them. For instance in Fig. 3,
it can be inferred from the relations “C has to be executed
during the execution of B” and “B has to be executed before
D” that C must be executed before D. Moreover, it can be also
inferred that a contradiction exists in the network since A can
not be performed after D but before B. If such contradictions
are detected we can conclude that there exist inconsistencies
between the relation constraints (including the init and last
constraint) were the constraint network was created from.
In [9] a comprehensive overview is provided how to detect
inconsistencies between constraints.

B. Execution-related Events Generation Implementation

To emit execution-related events the Constraint Checker
verifies during the execution of PCFp,i if the constraints are
met. If all constraints are met PCFp,i is in the state satisfied
and a “Satisfied” event is generated. On the other hand, if
one or more of the constraints are violated PCFp,i is in the
temporarily violated or in the violated state. If the violation
of an optional constraint was determined (temporarily or
permanent) the “Deviated” event is emitted. If a mandatory
constraint was violated the “Violated” event is generated.
To perform the verification the Constraint Checker uses the
procedure eval(ST I,OT I,C). In the following it is described for
each constraint how the procedure determines if the constraint
was met.

Init constraint: An init constraint is
• satisfied, if an instance of the task model, where the

constraint was defined on, is the first task of the PCFp,i
that was executed;

• violated, if an instance of another task model, i.e. a task
model where the constraint is not defined on is the first
task of the PCFp,i that was started;

• temporarily violated, if PCFp,i was started but no task
was executed yet, i.e. an instance of the task model where
the init constraint was defined on can still be the first task
that is executed.

Last constraint: A last constraint evaluates to
• satisfied: If an instance of the task model that is associated

with this constraint is executed and no other task of the
PCFp,i is in the state running anymore.

• violated: This constraint can not cause the PCFp,i to
become violated. Even if the user executes an instance
of a task model that is not associated with this constraint
she has always the possibility to start the task that is
associated to the last constraint when no other task is in
the state running.

• temporarily violated: If an instance of the task model was
not started as last task of the PCFp,i.

Existence constraints: It has to be simply counted in the
ST Ip,i how many instances of the task models, where this
constraint was defined on, are in the running or completed
state.
• satisfied: If the number meets the lower and upper bound

that was defined by the constraint.

• violated: If the upper bound concerning the allowed
number of running or completed instances of the task
model was exceeded in ST Ip,i.

• temporarily violated: If the lower bound concerning the
minimum required instances of running or completed
instances of the task model was not met in ST Ip,i yet.

Choice constraints: The choice constraint defines that from
a set of task models a certain number K of them has to be
instantiated and executed. It can be simply checked in ST Ip,i
if instances of the K different task models appear there.
• satisfied: If K or more instances of different task models

from the set are a members of ST Ip,i.
• violated: The choice constraint can not violate PCFp,i.
• temporarily violated: If less than K instances of different

task models from the set are members of ST Ip,i.
Relation constraints: To verify that the relation constraints

were met we are utilizing again the constraint network that
was introduced above. The Constraint Checker determines for
each task that is put into the running and completed state if the
relations of this task to the other tasks in ST Ip,i corresponds
to the interval relations between the task model where the task
was created from and all other task models in the constraint
network. In order to determine the partial order between the task
that was started or completed and the other tasks we express
the relation between the tasks with the point algebra [11] [12]
(this algebra defines a partial order between the start and end
points of a task pair). This enables us to determine the interval
relations between the task and the other tasks. Then it is simply
checked if the determined interval relations match with the
interval relations in the constraint network. The constraint
network in Fig. 3 defines for instance that a during interval
relation must hold between the tasks C and B. If ST Ip,i would
contain the information that task B was completed before D
the during constraint that is represented by the interval relation
would have been violated. However, this approach can only
determine if permanent violations have occurred.
• satisfied: If the relations of the task that was started

or completed and the other tasks in ST Ip,i match with
the interval relations that were defined in the constraint
network.

• violated: If there are any relations between the task that
was started or completed and the other tasks in ST Ip,i that
does not correspond to the interval relations defined by
the constraint network.

• temporarily violated: If there is a sequential relation
constraint defined between the task models A and B and
an instance of A is in the completed state but an instance
of B has not been executed yet. Or if a parallel relation
constraint was defined between A and B and the instances
of these models have not been completed yet. For instance
if a during constraint was defined between A and B and
an instance of A was started after an instance of B but
both tasks were not completed yet.

Negation constraints: As mentioned before negation con-
straints are transformed to the interval relations that represent



the constraint that is negated. If a task is put into running or
completed state it is checked if ST Ip,i contains the forbidden
relation.
• satisfied: If there exists no relation in ST Ip,i between the

task and the other tasks that is forbidden by the negation
constraint.

• violated: If there exists any relation in ST Ip,i between the
task and the other tasks that is forbidden by the negation
constraint.

• temporarily violated: Negation constraints can not violate
PCFp,i temporarily.

V. RELATED WORK

In this work we proposed an event-model for person-centric
flows to be able to apply the concept of person-centric flows for
ambient guidance [3]. Our person-centric flow language [7] is
based upon the interval relations of Allen’s interval algebra [10]
and belongs to the class of declarative workflow languages [8],
[13], [14]. In contrast to other existing declarative languages the
person-centric flow language supports constraints to add support
for temporal restrictions, additionally. Evaluation algorithms to
determine the executions’ compliance with the restrictions of
the allowed behavior as modeled in the person-centric flow can
be analogously defined to the algorithms as presented in [15].
To allow the person-centric flow to be driven by the outside
world, we introduced an event model. In case the execution
of the outside deviates or even violates the prescribed activity
ordering an event is pushed back to, e.g., the application. Event
models in the workflow domain are not new, even though the
application of the event-model for person-centric flows as
presented in this work is different, e.g., there exists an event
model for the workflow language BPEL as presented in [16],
which specifies events that are created during the execution of a
BPEL workflow. WS-HT [17] specifies a model and events for
the human task execution. This human task model and event
specification can be used to extend the event model presented
in this work to provide a more fine-granular view on the task
states and execution.

VI. CONCLUSION

In this paper we introduce the person-centric flows as a
supplementing concept to existing workflow technology. Our
person-centric flow model is based on constraints and, therefore,
provides a large degree of flexibility. A person has the freedom
of decision to decide the execution order of her tasks within
the boundaries of the constraints defined by the person-centric
flow. In addition to the person-centric flow definition we
provide a revised execution architecture and event model.
Thus, deviations or violations of a person executing her person-
centric flow can be detected and distributed using events. Our
architecture fulfills the requirement to reduce communication to
a minimum. We claim that the knowledge provided by a person-
centric flow can be utilized to establish for example ambient
guidance. Our prototype bases on bangkok a BPEL4People
compliant task manager [18]. In order to generate the events
described above, we extend bangkok with a person-centric flow

manager. In future work we will investigate in validating our
prototype in a real world hospital scenario.

ACKNOWLEDGMENT

This research was supported by EU FP7 research grants
213339 (ALLOW) and 216917 (MASTER).

REFERENCES

[1] T. Unger, H. Eberle, and F. Leymann, “Research Challenges
on Person-centric Flow,” in ZEUS, 2010. [Online]. Avail-
able: http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/
Vol-563/paper12.pdf

[2] K. S. Kunze, F. Wagner, E. Kartal, E. M. Kluge, and P. Lukowicz,
“Does Context Matter? - A Quantitative Evaluation in a Real World
Maintenance Scenario,” in Pervasive, 2009, pp. 372–389.

[3] G. Kortuem, F. Kawsar, and B. A. Takrouri, “Flow Driven Ambient
Guidance,” in PerCom 2010, 2010.

[4] H. Schonenberg, B. Weber, B. F. van Dongen, and W. M. P. van der
Aalst, “Supporting Flexible Processes through Recommendations Based
on History,” in BPM, 2008.

[5] R. Han, Y. Liu, L. Wen, and J. Wang, “A Two-Stage Probabilistic
Approach to Manage Personal Worklist in Workflow Management
Systems,” in OTM Conferences (1), 2009, pp. 24–41.

[6] J. Petzold, F. Bagci, W. Trumler, and T. Ungerer, “Comparison of different
methods for next location prediction,” in Euro-Par, 2006.

[7] F. Leymann, T. Unger, and S. Wagner, “On Designing a People-oriented
Constraint-based Workflow Language,” in ZEUS, 2010.

[8] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der
Aalst, “Constraint-based workflow models: Change made easy,” in OTM
Conferences (1), 2007.

[9] S. Wagner, “A Concept of Human-oriented Workflows,”
Diploma Thesis, University of Stuttgart, Germany, January 2010.
[Online]. Available: http://www.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL view.pl?id=DIP-2987&engl=1

[10] J. F. Allen, “Maintaining knowledge about temporal intervals,” Commun.
ACM, vol. 26, no. 11, pp. 832–843, 1983.

[11] M. B. Vilain and H. A. Kautz, “Constraint propagation algorithms for
temporal reasoning,” in AAAI, 1986, pp. 377–382.

[12] P. van Beek, “Exact and approximate reasoning about qualitative temporal
relations,” Ph.D. dissertation, 1990.

[13] M. Pesic, “Constraint-based workflow management systems: Shifting
control to users.” Ph.D. dissertation, Eindhoven University of Technology,
2008.

[14] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative
workflows: Balancing between flexibility and support,” Computer Science
- R&D, vol. 23, no. 2, pp. 99–113, 2009.

[15] R. Lu, S. W. Sadiq, V. Padmanabhan, and G. Governatori, “Using a
temporal constraint network for business process execution,” in ADC,
2006, pp. 157–166.

[16] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, and F. Leymann,
“BPEL Event Model,” University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany,
University of Stuttgart, Institute of Architecture of Application
Systems, Technical Report Computer Science 2006/10, November 2006.
[Online]. Available: http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL view.pl?id=TR-2006-10&engl=1

[17] OASIS, Web Services Human Task Specification Version 1.1,
Committee Draft 06, 2009. [Online]. Available: http://www-128.ibm.
com/developerworks/library/specification/ws-bpel4people/

[18] T. Unger and S. Wagner, Project Bangkok, 2010. [Online]. Available:
http://code.google.com/p/projectbangkok/


