

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence
Pfaffenwaldring 7a
70569 Stuttgart
publications@simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de

M. Sonntag1 D. Karastoyanova1 E. Deelman2

Bridging The Gap Between Business And Scientific
Workflows

Stuttgart, December 2010

1 Institute of Architecture of Application Systems (IAAS)
University of Stuttgart,
Universitaetsstrasse 38
70569 Stuttgart, Germany
{sonntag, karastoyanova}@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

2 Information Science Institutes (ISI)
University of Southern California
Admiralty Way 4676
90292 Marina Del Rey, California, USA
deelman@isi.edu
http://www.isi.edu

Abstract Due to their different target applications business and scientific workflow systems provide
different sets of features to their users. Significant amount of research is currently being done to employ
the business workflow technology in the scientific domain. This usually means extending the workflow
language and thus the modeling tool and execution engine. In this paper we aim to bring business and
scientific workflows together in order to exploit the advantages of both. We explore the interplay between
business and scientific workflows in the context of human interactions with the management of workflow
execution. We present an approach and implementation based on BPEL and Pegasus and show that the
approach can be beneficial to scientists.

Keywords Scientific workflows, Business workflows, Human tasks, Pegasus, BPEL.

Reference Sonntag, M., Karastoyanova, D., and Deelman, E. (2010) Bridging The Gap Between Business
And Scientific Workflows. In: Proceedings of the 6th IEEE International Conference on e-Science, IEEE
Computer Society.

© IEEE Computer Society
The original publication is available at: http://www.computer.org/

http://www.iaas.uni-stuttgart.de/�
http://www.isi.edu/�
http://www.computer.org/�

Bridging The Gap Between Business And Scientific
Workflows

Humans In The Loop Of Scientific Workflows

Mirko Sonntag, Dimka Karastoyanova
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

{sonntag, karastoyanova}@iaas.uni-stuttgart.de

Ewa Deelman
Information Science Institutes

University of Southern California
Marina Del Rey, USA

deelman@isi.edu

Abstract—Due to their different target applications business and
scientific workflow systems provide different sets of features to
their users. Significant amount of research is currently being
done to employ the business workflow technology in the scientific
domain. This usually means extending the workflow language
and thus the modeling tool and execution engine. In this paper we
aim to bring business and scientific workflows together in order
to exploit the advantages of both. We explore the interplay
between business and scientific workflows in the context of
human interactions with the management of workflow execution.
We present an approach and implementation based on BPEL and
Pegasus and show that the approach can be beneficial to
scientists.

Scientific workflows, business workflows, human tasks,
Pegasus, BPEL

I. INTRODUCTION
The success of workflow management systems (WfMS) in

business scenarios recently resulted in the introduction of
workflows to scientific calculations, simulations, and
experiments. Scientists and scientific applications impose new
requirements on the employed workflow technology. That is
the main reason why scientific WfMSs do not utilize existing
workflow systems of the business domain [1] and why these
two categories of WfMSs developed. Both have their strengths
and weaknesses and right to exist. Business WfMSs are usually
based on agreed-upon standards in order to facilitate
communication between different software systems and
companies. The workflow logic is control flow-driven and
includes constructs to specify paths and conditions. Typically, a
business workflow implements a company’s product or service.
That means a robust execution is of utmost importance because
a customer pays for it. The trend is to attempt to include as
many automated steps as possible in workflows, however only
some services can be offered fully automatically. An
integration of human tasks (HTs) into a business workflow is
therefore common. Business WfMSs do not natively support
the specification of explicit data flow, the exact reproducibility
of workflows, or processing of data streams—to name some of
the disadvantages when being applied in the scientific domain.
Scientific WfMSs often deal with huge amounts of data and/or
complex calculations and hence utilize large storage capacities

and computing resources. That is why scientific workflows are
often executed in a cluster or Grid environment. A scientific
workflow solves a particular scientific problem and is often
itself subject to scientific research. Since data are at the center
of scientific applications, scientific workflows are typically
data flow-driven and do not possess rich control flow
structures. They resemble batch processing programs and
hence do not distinguish between workflow models and
workflow instances. Moreover scientific workflows are time
consuming. Usually scientific WfMSs are limited in
functionality for HTs in workflows, fault handling,
transactions, or quality of service features.

Recent efforts are carried out to introduce the business
workflow technology to the scientific domain [2, 3, 4, 5]. This
approach is only natural because of the numerous advantages
this mature technology brings. But there is obviously a gap
between the features business workflows provide and the
requirements scientists and scientific applications have [1].
Business WfMSs therefore need a set of thorough extensions
when being applied to the scientific domain, which involves
great development efforts. In this paper, we therefore want to
investigate another, different approach. We combine business
and scientific workflows to harness the advantages of both of
them and to eventually close the gap between them. Our work
is driven by the fact that despite the employment of scientific
WfMSs the scientists still have to conduct manual tasks. These
tasks can be tedious and often require a specific execution
order. Thus, they introduce many sources of failures, e.g.
setting up working directories for the computations, choosing
runtime properties and parameters for experiments/simulations,
setting environment variables, or starting servers. Often, these
tasks are carried out on a Linux command line, which is
especially difficult for users untrained in Linux. There is a
great potential to automate and supervise such tasks by a
workflow. Of course, human intervention is still needed for
information that cannot be automatically derived, e.g. the
configuration of experiment properties. But even during
experiment execution HTs may be needed, e.g. to control the
convergence of results and to decide about the proceedings of
the experiment accordingly. To the best of our knowledge none
of the scientific WfMSs supports the integration of humans in
workflows in an automated fashion, with the exception of uni-

The authors M.S. and D.K. would like to thank the German Research
Foundation (DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology (EXC 310/1) at the University of
Stuttgart. E.D.’s work was supported by the National Science Foundation
under grant #OCI-0722019.

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0722019�

directional notifications, such as email to the user. This renders
business workflows with their HT capabilities a perfect
candidate for the supervision of these tasks. HTs are only one
of the advantages that business workflows bring into this
setting. Another benefit is the specification of fault handling
actions within a workflow. It can be used to model behavior
that is executed when an error occurs. Typically, different fault
handling behavior can be defined for different faults.
Furthermore, it is common that (parts of) business processes
are carried out as transactions (units of work) where either all
or none of the activities are executed successfully. In case of a
failure within a transaction already completed work is undone
(or compensated, in long-running transactions). Scientific
workflows can also benefit from these transaction concepts.
Compensating behavior could be to clean up the execution
environment by moving or deleting files/directories for a safe
re-execution of an experiment.

In this paper we present a concept for the interplay of
business and scientific workflows. We show that such an
engineering approach can cover a broader set of requirements
of scientists and scientific applications and also what it means
for a user to employ two (or more) workflow systems in one
setting. We discover and discuss advantages, challenges and
limitations of the approach. In order to show its practical
relevance we have developed a prototype that implements the
presented concept. It is based on the Business Process
Execution Language (BPEL) [6] as business workflow
technology and on Pegasus [7] as scientific WfMS. Although
the prototype is based on these two concrete technologies, the
concepts are broadly applicable.

The paper is organized as follows. Section 2 shows related
work on HT capabilities of scientific and business WfMSs.
Section 3 presents considerations that need to be taken into
account when combining business and scientific workflows.
Section 4 introduces the conceptual architecture to realize this
approach. Section 5 presents the prototype for the concept;
Section 6 summarizes the work and draws conclusions.

II. RELATED WORK
Pegasus, Triana [8], Kepler [9], Taverna [10], and GriCoL

[11] are popular and representative scientific WfMSs. Pegasus
is a compiler for scientific workflows that optimizes the
workflows for an execution in Grid environments by Condor
DAGMan [12]. GriCoL is a scientific workflow system
specialized for an execution in Grids and for a parallel
processing of tasks in a pipeline mode. Triana, Kepler and
Taverna are modeling tools and execution engines for scientific
workflows. None of these systems provides features to specify
HTs in workflows. Triana, Kepler and Taverna workflows can
invoke Web services (WSs) and hence it would be possible to
wrap human behavior by WSs. But they enable only
synchronous WS invocations and do not allow specifying
callback operations. A HT wrapped by a synchronous WS
operation is not viable in practice because scientists would
have to complete a HT before a connection timeout occurs
(which is usually 60 seconds). In business workflow
management, integration of humans into workflows is
common. BPEL4People [13] is a BPEL extension that
prescribes how to incorporate human activities into BPEL

workflows. BPMN [14] also foresees activities that are carried
out by humans (manual and user tasks). However, neither
BPEL nor BPMN natively fulfil requirements important for the
execution of scientific applications, such as explicit data flow
or pipeline/stream processing. IBM’s BPM Suite [15] and
Oracle’s SOA Suite [16] also support the integration of human
behavior into workflows (in fact, they rely on BPEL as the
workflow language). In case handling [17] and declarative
workflow systems [18] humans play an important role to carry
out tasks and steer case/workflow execution. However, these
systems lack native support of mechanisms crucial for
scientific applications such as an execution in distributed
environments or exact reproducibility of workflows.

III. COMBINING BUSINESS AND SCIENTIFIC WORKFLOWS
Scientific workflow systems support scientists in the

development and execution of scientific applications. The main
benefit is gained through automated and parallel execution of
tasks. Another advantage of many scientific workflow systems
is the built-in ability to execute jobs on Grids or clusters. This
is far beyond the capabilities of typical scientific applications
implemented by scripting languages like Ant and Make or by
programming languages like Fortran where Grid support must
be integrated by the programmer himself. Business workflow
systems focus on different aspects. Rich control flow structures
are needed to cover all possible eventualities. This incorporates
methods for handling faults and spanning transactions. It is also
common to have tasks in the course of action that can only be
carried out by humans. Usually, business processes incorporate
the execution of manual tasks, even though the workflow itself
is executed and managed automatically.

Figure 1. Covering the requirements of scientific applications

Obviously, scientific applications can benefit from the
features provided by business workflow technology. In e-
Science, there is a need to allow humans to steer their
experiments and at the same time to increase robustness by
means of appropriate fault handling and compensation
mechanisms. Figure 1 illustrates a set of requirements of
scientific applications (mainly taken from [19]) and how it is
covered by scientific and business workflows. Note that we do
not claim the set to be complete. Additionally, how the
requirements are covered by business and scientific WfMSs
shows only trends and cannot be generalized for all existing
systems. The mapping in Figure 1 is based on our knowledge
about BPEL, BPMN, Triana, Kepler, Taverna, Pegasus, and
GriCoL. It reveals the gap between the capabilities of business

and scientific workflows and the discrepancy between the
available support for those requirements and the support
required by scientific applications.

There are two ways to leverage the strengths of the
different technologies. One way is to concentrate either on a
scientific or business workflow management system and
incorporate extensions that cover the missing features. This is
the most common path of existing work [2, 3, 4, 5, 20].
Although this would be a holistic approach, it would entail
great efforts in re-implementing features already realized in the
other domain. In this paper, we focus on the second possibility,
namely to investigate an engineering approach that combines
existing scientific and business workflow technologies in order
to harness their full set of advantages. That means we try to
bridge the gap between business and scientific workflows by
bringing the advantages of both ways together.

Figure 2. Relationship of business workflows, scientific workflows, and
scientific applications in the proposed approach

The design is to have a business workflow system on top of
one or more scientific workflow systems (Figure 2). That
means this approach makes use of a business workflow to
supervise the execution of scientific workflows that make use
of one or more scientific applications. All three levels together
can be seen as a scientific experiment or simulation. The
business workflow reflects the life cycle of scientific
experiments [21], i.e. setup of the environment; modeling,
preparation, execution and monitoring as well as redesign of
the scientific workflow; collecting and presenting results; and
cleanup of the environment. Therefore the business WfMS
executes and thus steers the whole process of scientific
experimenting. The scientific WfMS only serves the execution
phase of this life cycle and carries out the scientific workflow.

A. Benefits
The approach of incorporating scientific workflows into

business workflows can yield a number of advantages. (1)
Several steps in the life cycle of scientific workflows are
conducted by humans. Integrating this human behavior into the
supervising business workflows as HTs is a major benefit of
the approach. HTs exactly prescribe what kind of information
is needed from the scientist at what time. This promises to
generate fewer failures due to human behavior, e.g. wrong
configuration of the execution environment. (2) The

supervising business workflow can automate manual tasks such
as a tedious setup of the execution environment (e.g.
installation of Grid clients, creation of directories, or staging
files). (3) It is possible to add a GUI for scientists on top of the
scientific workflow system which is especially useful for
systems without GUI. (4) In business workflow management a
main feature is the concept of workflow models and their
instances/executions that follow the model. A workflow is
modeled once and can be executed several times, even in
parallel on a single engine. For communication or
administration of workflow instances correlation mechanisms
are applied that uniquely identify a workflow instance with the
help of properties or IDs. In the scientific domain, this
model/instance concept can be used to realize parameter
sweeps. Existing scientific WfMSs (e.g. Kepler, Triana)
usually do not distinguish between models and instances
(except Wings [22], e.g.). When combining business and
scientific workflows, this disadvantage can be discarded by the
instance management and correlation mechanism of business
WfMSs. One steering business workflow may compose many
scientific workflows, which would support multi-scale or
multi-physics simulations. (5) Fault handling is part of the
business workflows and there are multiple best practices in
terms of modeling tool and execution engine support. These
can be utilized for scientific experiments by employing them
into the supervising workflows—an enormous benefit for the
scientists. In case of a failure fault handling behavior is
triggered automatically and can carry out steps to retry
erroneous activities, to undo their effects, or to achieve the
desired goal another way. Other advantages of the business
workflows are (6) rich auditing mechanisms that can be used as
provenance information and (7) the persistent storage of
execution data that yields a robust execution of workflows.

B. Interactions With Scientific Applications
The employment of a scientific workflow system shifts the

interactions of scientists with a scientific application towards
the scientific workflow system. That means the workflow
system wraps the target applications by using their interfaces
and provides its own interface to scientists. Scientific
applications are no longer accessed directly by the user but
indirectly through the scientific workflow. Similarly, when
bringing business workflows into play, they are acting as a
wrapper for the scientific WfMSs. Again, interactions of users
with the overall system are shifted another layer up and are
controlled and steered by the business workflow. This effect
can simplify the work with the system from the user
perspective: details about the interaction with scientific
applications/WfMSs can be hidden (e.g. creation/copying of
files/directories), new features can be introduced (e.g.
automatic fault handling), and it is possible to orchestrate (and
thus work with) many scientific applications or scientific
workflows while dealing with a single business WfMS only.

Figure 3 illustrates this setup. There are three categories of
interactions according to the three types of employed
applications. The scientific application contains the domain
logic of the respective scientific experiment/simulation. It
implements formulae, solver, or visualization of (intermediate)
results, i.e. it calculates and processes the relevant scientific

data. Main interactions with a scientific application are its
installation, its invocation with the input data and the
inspection of created results. Examples of the latter can be
examining the final results after execution or investigating the
convergence of results during execution. Depending on the
concrete application it is also possible to infer a runtime status
from the quantity of results, i.e. to monitor the application. This
technique can be applied to scientific applications that produce
intermediate results (e.g. for each time step of a calculation).

Figure 3. Categories of interactions between users and the scientific
application

Scientific workflows steer the execution of a scientific
calculation and can incorporate several applications, such as an
FEM solver or a filter for images to detect shapes of objects.
Scientific workflows typically deal with invocation of and data
provision to scientific applications, collecting results, and
transforming data. There are cases where scientific workflows
even provision needed applications on the fly (usually in Grid
environments) [23]. Installation and setup of the scientific
workflow system can be seen as part of the user interaction
with it. Additionally, workflows need to be modeled and
configured (e.g. specifying the Grid resources to use).
Configuration happens prior to execution and hence is
independent of scientific results. Other interactions are
triggering workflow execution, monitoring of the workflow
(e.g. which step is currently carried out on which resource?)
and manually correcting faults/problems.

Four main types of interaction can be observed between
scientists and an employed business workflow system. First of
all, the system needs to be installed. However, it is also
possible to rely on an existing installation and to simply deploy
the needed workflow on the engine. This setting may be the
case in virtual environments like Grids or Clouds where a
virtual machine with an installed workflow engine is already
available. Additionally, the scientist can start the execution of
the business workflow (that serves as a supervisor to the
scientific workflow(s)). This is usually done by providing input
or simply starting the workflow (which is essentially sending a
message to the workflow system) which creates a new instance
of the business workflow. Monitoring of the workflow status
enables the user to see the current status of the overall
simulation or experiment (i.e. the current phase in the life cycle
of the scientific workflow). Monitoring of business workflows
is typically realized in a graph-based fashion that reflects the

control flow logic of the workflow. That way even
inexperienced users can follow the progress easily. Finally, the
scientists deal with work items issued by the business
workflows. These HTs are used to incorporate human
intelligence into the flow where an automatic processing is not
possible or appropriate, e.g. the specification of parameters for
the execution of scientific applications, the decision about
convergence of results, or appropriate reactions on failures.

IV. CONCEPTUAL ARCHITECTURE
So far, we have presented our theoretical consideration

about combining business and scientific workflow technology
in order to cover the full set of requirements of scientific
applications. This section introduces the concept for a practical
realization of the idea (Figure 4). A scientist usually unifies a
domain specialist, programmer, and administrator in a single
role [2]. That is why we foresee a single GUI as part of the
overall architecture that assists scientists in the tasks to be
conducted around a simulation. These tasks are installation and
configuration of the target runtime environment (1), modeling
scientific workflows (2), configuration of workflow models (3),
specification of parameters (4) and input data (5) for single
workflow runs, execution of workflows (6), visualization of
result files (7), visualization of the runtime status of the
experiment (8), making decisions about the proceedings of the
experiment, for example based on the convergence of
(intermediate) results (9), and deciding on the actions to handle
faults (10). Note that the ingredients of the GUI are not
components but rather actions of the scientist that are supported
by the GUI. Many of these actions are HTs that require input
data or decisions by a human being. The GUI needs to provide
functionality to feed a workflow to the scientific workflow
system. Although the GUI can assist the scientist in setting up
the environment, the concept cannot relieve the scientist from
all technical tasks. At least the GUI and workflow engine need
to be installed or configured. But there are implementations
where a pre-configured GUI and workflow engine with
deployed workflows can be shipped in an easy-to-use
installation bundle that only needs to be unpacked and started.
This is by far simpler than setting up a scientific workflow
system and additional Grid clients (e.g. Globus Toolkit).

The business workflow engine runs the processes
coordinating the execution of scientific experiments and
simulations. Several different coordination processes are
needed. Each is tailored to an employed scientific workflow
system because the systems have different interfaces,
parameters, configuration options, etc. The processes
coordinate the steps that need to be conducted to achieve the
scientific goal. That means they prescribe the order and
dependencies of actions, or the format of data, they automate
tasks, and they catch and handle faults that occur during
scientific workflow execution.

The employed scientific workflow system and scientific
applications are leveraged to solve a more complex and holistic
problem. That means the scientific applications solve partial
issues of the overall problem and read and produce result files.
The scientific workflows control the execution order of the
applications and transfer the needed data to and from
executables (i.e. they need reading access to result files). For

the coordination of scientific experiments by business
processes it is helpful that a scientific workflow system
provides an API that allows a business process to control it, e.g.
with operations to load and start workflows and that signal
failures during execution. However, if such an API is not
offered, it is possible to integrate a scientific workflow system
with an integration technique of any kind suitable for the
available infrastructure, e.g. WSs or messaging adapters [24].

Figure 4. Conceptual architecture of the system

It is important to note that correct correlation between GUI,
business workflows, scientific workflows, scientific
applications, and result files is a must (Figure 4, correlation is
shown by lines with round endings). The GUI can control
several business workflows in parallel and hence needs to store
correlation information in order to pass data to the correct
instance. As mentioned earlier, the business workflow reflects
the life cycle of scientific workflows. Each business workflow
instance is therefore associated with one or more scientific
workflow models (i.e. with a particular scientific problem),
which reflects the modeling phase of the life cycle.
Additionally, a business workflow instance can correspond to
several workflow instances (i.e. experiment executions) in the
execution and monitoring phase. Over the scientific workflow
instances the business workflow instance is able to access
information about an experiment run, such as execution time,
errors, or results. The correlation between business and
scientific workflows strongly depends on the employed
scientific workflow system and its mechanism to uniquely
identify workflow models and instances (to use the terms of
conventional workflow technology). This might be by means of
a model name and instance identifiers, or by names of files and
directory paths, for example. A scientific workflow instance
has to know where and how to invoke scientific applications
and where the result files are stored. In some cases these

applications may even be downloaded and installed on-the-fly.
Since scientific workflows are usually long-running, the
business and scientific workflow system may communicate
asynchronously. This imposes the requirement on the scientific
workflow adapter to store correlation tokens of the invoking
business workflow in order to respond to the correct instance.

V. COORDINATING PEGASUS WITH BPEL PROCESSES
We implemented the presented concept with two popular

representatives for the domain of business and scientific
workflow management, namely BPEL and Pegasus. The
developed prototype proves the applicability of the concept in
practice. However, the concept’s generality allows an
implementation with different technologies and systems, e.g.
Kepler or Taverna. The main difference of Pegasus to the
mentioned systems is that these are both a modeling tool and an
execution engine rolled into one. Pegasus provides distinct
tools for modeling and execution of scientific workflows. For a
demonstration of the prototype consider [25]. The prototype
can deal with arbitrary Pegasus workflows. Our tests are based
on the black-diamond workflow of a Pegasus tutorial.

A. Why BPEL?
There are several reasons that make BPEL a good choice

for the business workflow domain representative: (1) With the
BPEL extension BPEL4People [13] and the specification WS-
Human Task (WS-HT) [26] the integration of HTs and
notifications into a workflow is enabled. Humans can interact
with the workflow over a GUI, the HT client. In our scenario
this will relieve scientists from typing commands in a Linux
console as is required by Pegasus. Another possibility to
implement HTs in BPEL is via usual WS calls. This approach
suffers from the lack of features, e.g. a standard API for the HT
client or the definition of user roles, but would be sufficient for
our use case. (2) BPEL relies on WSs as activity
implementation. That means the coordinating BPEL process
can run on an arbitrary machine and communicate with the
Pegasus (or Kepler, etc.) server over the network. Installation
and configuration of the server can be carried out from remote
sites. Even different scientific WfMS servers can be used for
different scientific workflow runs. Additionally, the HT client
used for the communication between scientists and the BPEL
engine can be hosted on any machine in the network. This
decreases the installation effort for a scientist to the HT client
only. (3) Since BPEL also supports an asynchronous
communication model, the number of exchanged messages in
the system is minimal. No polling is needed to query the status
of Pegasus. A scientific workflow is triggered with a one-way
message and the BPEL process is then waiting for the response.
Moreover, an asynchronous communication does not limit the
runtime of an invoked operation through a timeout of an
established session. This is especially useful because the
triggered scientific workflows can run for a long time. Other
advantages of BPEL are (4) the rich set of control flow
structures such as the if or repeat activity, (5) its ability to
handle faults on the workflow level by fault handlers, or (6) its
transaction concept to carry out tasks in an all-or-nothing
manner with the help of compensation handlers. Finally, (7)
BPEL engines are usually shipped with a monitoring tool or

publish events that can be used to implement a monitor. Such a
monitor is useful for scientists because it visualizes the current
status of the workflow at a glance.

B. System Description
Figure 5 illustrates the architecture of our prototype that

coordinates the Pegasus workflow system with the help of a
BPEL process. The four parts that are distinguished by dotted
lines can represent different machines. As these machine
borders are only logical, the components can run on the same
machine (which is not recommended due to memory needs).
The Grid resources execute DAG jobs. These jobs are
submitted to the sites via Condor. Pegasus, DAGMan and
Condor are running on another machine (usually termed the
submit host). Additionally, we need a WS wrapper that makes
Pegasus’ API accessible to BPEL. Although Pegasus’ API is
rich enough to trigger scientific workflow planning and
execution, another WS is needed that offers operations on the
file system, e.g. to read result files or to prepare the workflow
execution directory. A BPEL engine executes the coordinating
BPEL process. All communication between the GUI and the
Pegasus site is routed through the engine. The running BPEL
process instances “know” the current system or experiment
state. The GUI is the component the scientists interact with. It
mainly provides scientists with information about the system
status and asks for input (see Section IV). Part of the GUI is a
callback WS for an asynchronous communication with the
BPEL process. It receives messages for new HTs or for the
status of the process instance. Both GUI and BPEL engine hold
their runtime status persistently in a database.

Figure 5. Main components of the system and their logical distribution
among machines

C. BPEL process
Figure 6 illustrates a simplified view of the BPEL process

used in our prototype. This “scientist’s view” omits data
transformation activities and activities of little importance for
the scientist. The workflow is geared towards the two main
phases of the Pegasus workflow life cycle, planning and
execution. During planning Pegasus automatically transforms
the DAX (an abstract workflow where tasks are not bound to
executables and execution sites) to a concrete, executable
DAG. This transformation is based on information provided by
a user or prior workflow runs: the DAX, properties, parameters,
a catalog of participating sites, of files, and of executables.

Currently, the BPEL workflow supports the specification of the
three catalogs by the scientist which is reflected by the three
parallel HTs. After that the workflow invokes the Pegasus
planning service. The result of the planning—either the created
DAG or an error message in case of an unsuccessful
planning—is passed to the GUI where the scientist can decide
about running, re-planning, or aborting the workflow.

Figure 6. BPEL workflow for coordination of Pegasus planning and
execution in BPMN notation

In order to execute a workflow Pegasus submits the DAG
to DAGMan, which executes the jobs according to the
workflow logic. Since the executed workflows may be long-
running, we designed the BPEL workflow to invoke Pegasus
asynchronously and to provide a callback operation for the
result notification. After the workflow execution the scientist
can decide by means of a HT to finish the experiment, to repeat
execution, or to re-plan the workflow. The decision is based on
the result files that were created. That means the scientist
controls the convergence of the calculated results. For a
repeated execution Pegasus submits the rescue DAG to
DAGMan. This is Pegasus’ built-in mechanism to handle
runtime faults. With two different events the scientist can
request further runtime information. “Check Condor Queue”
delivers the content of condor execution queue. “Check Status”
shows the status of the job that is currently executed. There is a
global fault handler definition that catches all kinds of faults. It
notifies the scientist about the fault. In the future, more

sophisticated fault handling logic can be added such as re-
planning or re-executing the scientific workflow.

The current BPEL workflow requires a correct setup for the
Pegasus server, workflow directory, and properties file as well
as already staged input files. However, these and other tasks
can be easily integrated into the workflow later on. This is
actually one of the advantages of implementing the supervision
logic as a workflow. Nevertheless, the current workflow is an
example of how to combine business and scientific workflows
and covers some of the interactions of scientists with scientific
applications as shown in Figure 3: execution and result
inspection of category A; configuration (in parts), execution,
monitoring, error handling (in parts) of category B; and
invocation, HTs, and monitoring of category C.

Figure 7. Start scientific workflow menu. Pegasus and BPEL engine location
can be chosen.

Figure 8. Monitoring view of workflows. Status of activities is signaled by
different colors. For legibiliy of this gray-scale image icons where added to
activities (no icon/gray = inactive, sand clock/blue = running, check/green =

successful). The scientist can choose a workflow from the list above.

D. Implementation Details
We implemented the GUI as a Web application based on

Java Server Pages and Servlets. That way it is possible to setup
the GUI and the BPEL engine once on a server and use it from

different desktops without installation of client software other
than a browser. The GUI provides user management
functionality so that it can be used by different users in parallel.
A MySQL database (DB) is used as persistence layer to store
user data, HTs, and workflow information. Apache Tomcat is
taken as Web application server to host the GUI. The callback
and Pegasus WS are implemented based on the WS engine
Apache Axis2. For execution of BPEL processes we chose the
Apache Orchestration Director Engine (ODE) 2.0, an open
source BPEL engine. Communication between the HT client,
BPEL engine, and Pegasus WS is conducted with SOAP
messages over HTTP. The scientist can start a new experiment
using the GUI. He/She can choose between different
workflows that are already available on the Pegasus server
(Figure 7). After starting a scientific workflow the monitoring
view of the coordinating BPEL process is displayed. This
monitoring enables scientists to see which tasks are running
and whether user input is required (see Figure 8). By clicking
on a task, the GUI opens it to be dealt with by the scientist
(Figure 9). The GUI already takes care of the input that can be
provided by the scientist, e.g. checking whether the execution
site names in the site and transformation catalog coincide.

Figure 9. Human task view. The scientist can choose a task to work on from
the list of assigned tasks above.

In Section IV we explained that a multi-level correlation
mechanism is needed. The prototype implements unique
identification of a BPEL workflow instance via the creation
timestamp of a new instance and the name of the user that
started the instance. Messages from the GUI to the BPEL
engine have to carry these properties to be routed to the correct
workflow instance. Correlation between BPEL workflow
instance and the DAX is achieved via the DAX’s directory and
filename. The BPEL workflow instance addresses the DAG
with the directory it is created in during planning. Although it
may not be running yet, this DAG can be considered a
workflow instance from the Pegasus perspective because (1) its
directory is also used for storing runtime information, and (2)
re-planning the DAX creates a new directory for the DAG.
Realizing the correlation between BPEL and Pegasus
workflows was straight-forward due to Pegasus’ concept of
unique directories for workflows. We realized Pegasus’ run
method as one-way operation in the WS wrapper. The invoking

BPEL engine does not have to keep an open HTTP session
until the Pegasus workflow finishes. The WS wrapper instead
listens on the Condor queue and sends a notification to the
BPEL process if the queue is empty of particular workflow job
ids (i.e. if the scientific workflow is finished).

E. Restrictions of the Prototype
Observing the convergence of results by the user is

currently restricted to final results. It is desirable to enable
users to inspect intermediary results and based on these decide
about the proceedings of the experiment. Apache ODE does
not implement the extension BPEL4People yet. We solved this
problem by realizing the assignment of work items to users via
WS invocations. The GUI’s callback WS provides an
appropriate operation. For our purposes this solution is
sufficient. Additionally, we had to create a workaround for
requesting Pegasus’ status and Condor’s queue status from the
GUI. ODE’s event handler does not run in version 2.0 so that
we could not route these requests through the BPEL process.
The GUI therefore communicates directly with the Pegasus
server for these requests. Propagation of events of the BPEL
workflow from the engine to the GUI is realized by WS calls
within the workflow. This is a simple and working solution but
should be substituted by native BPEL engine events in future in
order to decouple the monitoring tool from this specific BPEL
workflow. In total, the implemented prototype covers several of
the GUI features as shown in Figure 4 like parts of aspects 3
and 6 through 10. The rest is open for future work.

VI. CONCLUSIONS
Business and scientific workflow systems were developed

for completely different application areas and provide different
functionality. Hence, they cover different requirements of
scientists and scientific applications when being employed for
scientific simulations and experiments. In many prior works the
capabilities of business workflows to implement scientific
applications were investigated. In this paper we followed a
novel approach, namely the integration of business and
scientific workflow systems. This approach is characterized by
a good price performance ratio compared to the way of
extending one of the technologies by features of the other. We
presented a concept that places business on top of scientific
workflows supervising the scientific workflow life cycle. In
particular this introduces HTs, fault handling and transaction
features to scientific applications and is therefore beneficial to
the scientific community. A prototypical implementation with
BPEL and Pegasus showed the feasibility of the concept in
practice. But the approach also has weaknesses. It is strongly
dependent on the functionality of the API of the employed
scientific workflow system. Limited functionality could be
extended with the help of appropriate adapters but in some
cases requires a lot of additional effort. HTs are difficult to be
integrated into the execution phase of the scientific workflows
as they are typically not part of the scientific workflow. This
again depends on the richness of the scientific workflow’s API.
In summary we can say that bringing business and scientific
workflow technology together can create a benefit to scientists
and scientific applications. It may prevent from re-
implementing functionality of the other workflow domain.

REFERENCES
[1] M. Sonntag et al., “The Missing Features of Workflow Systems for

Scientific Computations,” Proceedings of the 3rd Grid Workflow
Workshop (GWW), Paderborn, Germany, 2010.

[2] M. Sonntag and D. Karastoyanova, “Next Generation Interactive
Scientific Experimenting Based On The Workflow Technology,” 21st
IASTED International Conference on Modelling and Simulation, Banff,
Canada, July 2010.

[3] D. Akram et al., “Evaluation of BPEL to scientific workflows,” 6th IEEE
International Symposium on Cluster Computing and the Grid, 2006.

[4] B. Wassermann et al., “Sedna: A BPEL-based environment for scientific
workflow modeling,” in: Workflows for e-Science: Scientific
Workflows for Grids, I. Taylor et al., Eds. Springer, 2007.

[5] I. Wassink et al. , “Designing workflows on the fly using e-BioFlow,”
Int’l Conf. on Service Oriented Computing, Stockholm, Sweden, 2009.

[6] OASIS, “Web services business process execution language (BPEL)
version 2.0,” OASIS Standard, April 11th, 2007, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[7] Deelman et al., “Pegasus: mapping scientific workflows onto the grid,”
Proc. of 2nd European AcrossGrids Conf., Springer, 2004, pp. 11-20.

[8] Taylor et al.: “The Triana workflow environment: architecture and
applications,” in: Workflows for e-Science: Scientific Workflows for
Grids, I. Taylor et al., Eds. Springer, 2007.

[9] Ludaescher et al, “Scientific workflow management and the Kepler
system,” Concurrency and Computation: Practice and Experience, vol.
18, 2006.

[10] et al., “Taverna: a tool for building and running workflows of services,”
Nucleic Acids Research, vol. 34, Web Server issue, 2006.

[11] Currle-Linde et al., “GriCoL: a language for scientific grids,” Proc. 2nd
IEEE Int’l Conf. on e-Science and Grid Computing, 2006

[12] Condor DAGMan, http://www.cs.wisc.edu/condor/dagman.
[13] A. Agrawal et al., “WS-BPEL extension for people (BPEL4People),“

Version 1.0, 2007.
[14] OMG, “Business process modeling notation (BPMN) Version 2.0 Beta

2,” OMG Document, Number dtc/2010-05-03,
http://www.omg.org/spec/BPMN/2.0/Beta2/PDF/.

[15] IBM BPM Suite, http://www-01.ibm.com/software/info/bpm/.
[16] Oracle SOA Suite,

http://www.oracle.com/us/technologies/soa/soa-suite/.
[17] W.M.P. v. d. Aalst et al., “Case handling: a new paradigm for business

process support,” Data and Knowledge Engineering, 53(2), 2005.
[18] W.M.P. van der Aalst et al., “Declarative workflows: balancing between

flexibility and support,” Computer Science – R&D 23(2), 2009.
[19] Y. Gil et al., “Examining the challenges of scientific workflows,” IEEE

Computer, 40(12), 2007.
[20] R. Barga and D.B. Gannon, “Scientific versus business workflows,” in

Workflows for e-Science: Scientific Workflows for Grids, I. Taylor, E.
Deelman, D.B. Gannon, M. Shields, Eds. Springer, 2007.

[21] B. Ludaescher et al., “Scientific workflows: business as usual?,” 7th Int’l
Conf. on Business Process Management (BPM), 2009.

[22] Y. Gil et al., “Assisting scientists with complex data analysis tasks
through semantic workflows,” AAAI Fall Symposium Series on
Proactive Assistant Agents, Arlington, VA, November 2010.

[23] G. Juve and E. Deelman, “Resource provisioning options for large-scale
scientific workflows,” 3rd Int’l Workshop on Scientific Workflows and
Business Workflow Standards in e-Science, Indianapolis, USA, 2008.

[24] G. Hohpe and B. Woolf, “Enterprise integration patterns: designing,
building, and deploying messaging solutions,” Addison-Wesley, 2003.

[25] M. Sonntag et al., “BPEL4Pegasus: Combining Business and Scientific
Workflows,” Prototype demo, http://www.iaas.uni-
stuttgart.de/institut/mitarbeiter/sonntag/indexE.php

[26] A. Agrawal et al., “Web services human task (WS-HumanTask),”
Version 1.0, 2007.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�
http://www.cs.wisc.edu/condor/dagman�
http://www.omg.org/spec/BPMN/2.0/Beta2/PDF/�
http://www-01.ibm.com/software/info/bpm/�
http://www.oracle.com/us/technologies/soa/soa-suite/�
http://wings.isi.edu/node/papers/gil-etal-aaaifss10.pdf�
http://wings.isi.edu/node/papers/gil-etal-aaaifss10.pdf�
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/sonntag/indexE.php�
http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/sonntag/indexE.php�

