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Abstract—Due to their different target applications business and 
scientific workflow systems provide different sets of features to 
their users. Significant amount of research is currently being 
done to employ the business workflow technology in the scientific 
domain. This usually means extending the workflow language 
and thus the modeling tool and execution engine. In this paper we 
aim to bring business and scientific workflows together in order 
to exploit the advantages of both. We explore the interplay 
between business and scientific workflows in the context of 
human interactions with the management of workflow execution. 
We present an approach and implementation based on BPEL and 
Pegasus and show that the approach can be beneficial to 
scientists. 

Scientific workflows, business workflows, human tasks, 
Pegasus, BPEL 

I. INTRODUCTION 
The success of workflow management systems (WfMS) in 

business scenarios recently resulted in the introduction of 
workflows to scientific calculations, simulations, and 
experiments. Scientists and scientific applications impose new 
requirements on the employed workflow technology. That is 
the main reason why scientific WfMSs do not utilize existing 
workflow systems of the business domain [1] and why these 
two categories of WfMSs developed. Both have their strengths 
and weaknesses and right to exist. Business WfMSs are usually 
based on agreed-upon standards in order to facilitate 
communication between different software systems and 
companies. The workflow logic is control flow-driven and 
includes constructs to specify paths and conditions. Typically, a 
business workflow implements a company’s product or service. 
That means a robust execution is of utmost importance because 
a customer pays for it. The trend is to attempt to include as 
many automated steps as possible in workflows, however only 
some services can be offered fully automatically. An 
integration of human tasks (HTs) into a business workflow is 
therefore common. Business WfMSs do not natively support 
the specification of explicit data flow, the exact reproducibility 
of workflows, or processing of data streams—to name some of 
the disadvantages when being applied in the scientific domain. 
Scientific WfMSs often deal with huge amounts of data and/or 
complex calculations and hence utilize large storage capacities 

and computing resources. That is why scientific workflows are 
often executed in a cluster or Grid environment. A scientific 
workflow solves a particular scientific problem and is often 
itself subject to scientific research. Since data are at the center 
of scientific applications, scientific workflows are typically 
data flow-driven and do not possess rich control flow 
structures. They resemble batch processing programs and 
hence do not distinguish between workflow models and 
workflow instances. Moreover scientific workflows are time 
consuming. Usually scientific WfMSs are limited in 
functionality for HTs in workflows, fault handling, 
transactions, or quality of service features. 

Recent efforts are carried out to introduce the business 
workflow technology to the scientific domain [2, 3, 4, 5]. This 
approach is only natural because of the numerous advantages 
this mature technology brings. But there is obviously a gap 
between the features business workflows provide and the 
requirements scientists and scientific applications have [1]. 
Business WfMSs therefore need a set of thorough extensions 
when being applied to the scientific domain, which involves 
great development efforts. In this paper, we therefore want to 
investigate another, different approach. We combine business 
and scientific workflows to harness the advantages of both of 
them and to eventually close the gap between them. Our work 
is driven by the fact that despite the employment of scientific 
WfMSs the scientists still have to conduct manual tasks. These 
tasks can be tedious and often require a specific execution 
order. Thus, they introduce many sources of failures, e.g. 
setting up working directories for the computations, choosing 
runtime properties and parameters for experiments/simulations, 
setting environment variables, or starting servers. Often, these 
tasks are carried out on a Linux command line, which is 
especially difficult for users untrained in Linux. There is a 
great potential to automate and supervise such tasks by a 
workflow. Of course, human intervention is still needed for 
information that cannot be automatically derived, e.g. the 
configuration of experiment properties. But even during 
experiment execution HTs may be needed, e.g. to control the 
convergence of results and to decide about the proceedings of 
the experiment accordingly. To the best of our knowledge none 
of the scientific WfMSs supports the integration of humans in 
workflows in an automated fashion, with the exception of uni-
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directional notifications, such as email to the user. This renders 
business workflows with their HT capabilities a perfect 
candidate for the supervision of these tasks. HTs are only one 
of the advantages that business workflows bring into this 
setting. Another benefit is the specification of fault handling 
actions within a workflow. It can be used to model behavior 
that is executed when an error occurs. Typically, different fault 
handling behavior can be defined for different faults. 
Furthermore, it is common that (parts of) business processes 
are carried out as transactions (units of work) where either all 
or none of the activities are executed successfully. In case of a 
failure within a transaction already completed work is undone 
(or compensated, in long-running transactions). Scientific 
workflows can also benefit from these transaction concepts. 
Compensating behavior could be to clean up the execution 
environment by moving or deleting files/directories for a safe 
re-execution of an experiment. 

In this paper we present a concept for the interplay of 
business and scientific workflows. We show that such an 
engineering approach can cover a broader set of requirements 
of scientists and scientific applications and also what it means 
for a user to employ two (or more) workflow systems in one 
setting. We discover and discuss advantages, challenges and 
limitations of the approach. In order to show its practical 
relevance we have developed a prototype that implements the 
presented concept. It is based on the Business Process 
Execution Language (BPEL) [6] as business workflow 
technology and on Pegasus [7] as scientific WfMS. Although 
the prototype is based on these two concrete technologies, the 
concepts are broadly applicable. 

The paper is organized as follows. Section 2 shows related 
work on HT capabilities of scientific and business WfMSs. 
Section 3 presents considerations that need to be taken into 
account when combining business and scientific workflows. 
Section 4 introduces the conceptual architecture to realize this 
approach. Section 5 presents the prototype for the concept; 
Section 6 summarizes the work and draws conclusions. 

II. RELATED WORK 
Pegasus, Triana [8], Kepler [9], Taverna [10], and GriCoL 

[11] are popular and representative scientific WfMSs. Pegasus 
is a compiler for scientific workflows that optimizes the 
workflows for an execution in Grid environments by Condor 
DAGMan [12]. GriCoL is a scientific workflow system 
specialized for an execution in Grids and for a parallel 
processing of tasks in a pipeline mode. Triana, Kepler and 
Taverna are modeling tools and execution engines for scientific 
workflows. None of these systems provides features to specify 
HTs in workflows. Triana, Kepler and Taverna workflows can 
invoke Web services (WSs) and hence it would be possible to 
wrap human behavior by WSs. But they enable only 
synchronous WS invocations and do not allow specifying 
callback operations. A HT wrapped by a synchronous WS 
operation is not viable in practice because scientists would 
have to complete a HT before a connection timeout occurs 
(which is usually 60 seconds). In business workflow 
management, integration of humans into workflows is 
common. BPEL4People [13] is a BPEL extension that 
prescribes how to incorporate human activities into BPEL 

workflows. BPMN [14] also foresees activities that are carried 
out by humans (manual and user tasks). However, neither 
BPEL nor BPMN natively fulfil requirements important for the 
execution of scientific applications, such as explicit data flow 
or pipeline/stream processing. IBM’s BPM Suite [15] and 
Oracle’s SOA Suite [16] also support the integration of human 
behavior into workflows (in fact, they rely on BPEL as the 
workflow language). In case handling [17] and declarative 
workflow systems [18] humans play an important role to carry 
out tasks and steer case/workflow execution. However, these 
systems lack native support of mechanisms crucial for 
scientific applications such as an execution in distributed 
environments or exact reproducibility of workflows. 

III. COMBINING BUSINESS AND SCIENTIFIC WORKFLOWS 
Scientific workflow systems support scientists in the 

development and execution of scientific applications. The main 
benefit is gained through automated and parallel execution of 
tasks. Another advantage of many scientific workflow systems 
is the built-in ability to execute jobs on Grids or clusters. This 
is far beyond the capabilities of typical scientific applications 
implemented by scripting languages like Ant and Make or by 
programming languages like Fortran where Grid support must 
be integrated by the programmer himself. Business workflow 
systems focus on different aspects. Rich control flow structures 
are needed to cover all possible eventualities. This incorporates 
methods for handling faults and spanning transactions. It is also 
common to have tasks in the course of action that can only be 
carried out by humans. Usually, business processes incorporate 
the execution of manual tasks, even though the workflow itself 
is executed and managed automatically.  

 

Figure 1.  Covering the requirements of scientific applications 

Obviously, scientific applications can benefit from the 
features provided by business workflow technology. In e-
Science, there is a need to allow humans to steer their 
experiments and at the same time to increase robustness by 
means of appropriate fault handling and compensation 
mechanisms. Figure 1 illustrates a set of requirements of 
scientific applications (mainly taken from [19]) and how it is 
covered by scientific and business workflows. Note that we do 
not claim the set to be complete. Additionally, how the 
requirements are covered by business and scientific WfMSs 
shows only trends and cannot be generalized for all existing 
systems. The mapping in Figure 1 is based on our knowledge 
about BPEL, BPMN, Triana, Kepler, Taverna, Pegasus, and 
GriCoL. It reveals the gap between the capabilities of business 

 



and scientific workflows and the discrepancy between the 
available support for those requirements and the support 
required by scientific applications. 

There are two ways to leverage the strengths of the 
different technologies. One way is to concentrate either on a 
scientific or business workflow management system and 
incorporate extensions that cover the missing features. This is 
the most common path of existing work [2, 3, 4, 5, 20]. 
Although this would be a holistic approach, it would entail 
great efforts in re-implementing features already realized in the 
other domain. In this paper, we focus on the second possibility, 
namely to investigate an engineering approach that combines 
existing scientific and business workflow technologies in order 
to harness their full set of advantages. That means we try to 
bridge the gap between business and scientific workflows by 
bringing the advantages of both ways together. 

 

Figure 2.  Relationship of business workflows, scientific workflows, and 
scientific applications in the proposed approach 

The design is to have a business workflow system on top of 
one or more scientific workflow systems (Figure 2). That 
means this approach makes use of a business workflow to 
supervise the execution of scientific workflows that make use 
of one or more scientific applications. All three levels together 
can be seen as a scientific experiment or simulation. The 
business workflow reflects the life cycle of scientific 
experiments [21], i.e. setup of the environment; modeling, 
preparation, execution and monitoring as well as redesign of 
the scientific workflow; collecting and presenting results; and 
cleanup of the environment. Therefore the business WfMS 
executes and thus steers the whole process of scientific 
experimenting. The scientific WfMS only serves the execution 
phase of this life cycle and carries out the scientific workflow. 

A. Benefits 
The approach of incorporating scientific workflows into 

business workflows can yield a number of advantages. (1) 
Several steps in the life cycle of scientific workflows are 
conducted by humans. Integrating this human behavior into the 
supervising business workflows as HTs is a major benefit of 
the approach. HTs exactly prescribe what kind of information 
is needed from the scientist at what time. This promises to 
generate fewer failures due to human behavior, e.g. wrong 
configuration of the execution environment. (2) The 

supervising business workflow can automate manual tasks such 
as a tedious setup of the execution environment (e.g. 
installation of Grid clients, creation of directories, or staging 
files). (3) It is possible to add a GUI for scientists on top of the 
scientific workflow system which is especially useful for 
systems without GUI. (4) In business workflow management a 
main feature is the concept of workflow models and their 
instances/executions that follow the model. A workflow is 
modeled once and can be executed several times, even in 
parallel on a single engine. For communication or 
administration of workflow instances correlation mechanisms 
are applied that uniquely identify a workflow instance with the 
help of properties or IDs. In the scientific domain, this 
model/instance concept can be used to realize parameter 
sweeps. Existing scientific WfMSs (e.g. Kepler, Triana) 
usually do not distinguish between models and instances 
(except Wings [22], e.g.). When combining business and 
scientific workflows, this disadvantage can be discarded by the 
instance management and correlation mechanism of business 
WfMSs. One steering business workflow may compose many 
scientific workflows, which would support multi-scale or 
multi-physics simulations. (5) Fault handling is part of the 
business workflows and there are multiple best practices in 
terms of modeling tool and execution engine support. These 
can be utilized for scientific experiments by employing them 
into the supervising workflows—an enormous benefit for the 
scientists. In case of a failure fault handling behavior is 
triggered automatically and can carry out steps to retry 
erroneous activities, to undo their effects, or to achieve the 
desired goal another way. Other advantages of the business 
workflows are (6) rich auditing mechanisms that can be used as 
provenance information and (7) the persistent storage of 
execution data that yields a robust execution of workflows. 

B. Interactions With Scientific Applications 
The employment of a scientific workflow system shifts the 

interactions of scientists with a scientific application towards 
the scientific workflow system. That means the workflow 
system wraps the target applications by using their interfaces 
and provides its own interface to scientists. Scientific 
applications are no longer accessed directly by the user but 
indirectly through the scientific workflow. Similarly, when 
bringing business workflows into play, they are acting as a 
wrapper for the scientific WfMSs. Again, interactions of users 
with the overall system are shifted another layer up and are 
controlled and steered by the business workflow. This effect 
can simplify the work with the system from the user 
perspective: details about the interaction with scientific 
applications/WfMSs can be hidden (e.g. creation/copying of 
files/directories), new features can be introduced (e.g. 
automatic fault handling), and it is possible to orchestrate (and 
thus work with) many scientific applications or scientific 
workflows while dealing with a single business WfMS only. 

Figure 3 illustrates this setup. There are three categories of 
interactions according to the three types of employed 
applications. The scientific application contains the domain 
logic of the respective scientific experiment/simulation. It 
implements formulae, solver, or visualization of (intermediate) 
results, i.e. it calculates and processes the relevant scientific 

 



data. Main interactions with a scientific application are its 
installation, its invocation with the input data and the 
inspection of created results. Examples of the latter can be 
examining the final results after execution or investigating the 
convergence of results during execution. Depending on the 
concrete application it is also possible to infer a runtime status 
from the quantity of results, i.e. to monitor the application. This 
technique can be applied to scientific applications that produce 
intermediate results (e.g. for each time step of a calculation). 

 

Figure 3.  Categories of interactions between users and the scientific 
application 

Scientific workflows steer the execution of a scientific 
calculation and can incorporate several applications, such as an 
FEM solver or a filter for images to detect shapes of objects. 
Scientific workflows typically deal with invocation of and data 
provision to scientific applications, collecting results, and 
transforming data. There are cases where scientific workflows 
even provision needed applications on the fly (usually in Grid 
environments) [23]. Installation and setup of the scientific 
workflow system can be seen as part of the user interaction 
with it. Additionally, workflows need to be modeled and 
configured (e.g. specifying the Grid resources to use). 
Configuration happens prior to execution and hence is 
independent of scientific results. Other interactions are 
triggering workflow execution, monitoring of the workflow 
(e.g. which step is currently carried out on which resource?) 
and manually correcting faults/problems. 

Four main types of interaction can be observed between 
scientists and an employed business workflow system. First of 
all, the system needs to be installed. However, it is also 
possible to rely on an existing installation and to simply deploy 
the needed workflow on the engine. This setting may be the 
case in virtual environments like Grids or Clouds where a 
virtual machine with an installed workflow engine is already 
available. Additionally, the scientist can start the execution of 
the business workflow (that serves as a supervisor to the 
scientific workflow(s)). This is usually done by providing input 
or simply starting the workflow (which is essentially sending a 
message to the workflow system) which creates a new instance 
of the business workflow. Monitoring of the workflow status 
enables the user to see the current status of the overall 
simulation or experiment (i.e. the current phase in the life cycle 
of the scientific workflow). Monitoring of business workflows 
is typically realized in a graph-based fashion that reflects the 

control flow logic of the workflow. That way even 
inexperienced users can follow the progress easily. Finally, the 
scientists deal with work items issued by the business 
workflows. These HTs are used to incorporate human 
intelligence into the flow where an automatic processing is not 
possible or appropriate, e.g. the specification of parameters for 
the execution of scientific applications, the decision about 
convergence of results, or appropriate reactions on failures.  

IV. CONCEPTUAL ARCHITECTURE 
So far, we have presented our theoretical consideration 

about combining business and scientific workflow technology 
in order to cover the full set of requirements of scientific 
applications. This section introduces the concept for a practical 
realization of the idea (Figure 4). A scientist usually unifies a 
domain specialist, programmer, and administrator in a single 
role [2]. That is why we foresee a single GUI as part of the 
overall architecture that assists scientists in the tasks to be 
conducted around a simulation. These tasks are installation and 
configuration of the target runtime environment (1), modeling 
scientific workflows (2), configuration of workflow models (3), 
specification of parameters (4) and input data (5) for single 
workflow runs, execution of workflows (6), visualization of 
result files (7), visualization of the runtime status of the 
experiment (8), making decisions about the proceedings of the 
experiment, for example based on the convergence of 
(intermediate) results (9), and deciding on the actions to handle 
faults (10). Note that the ingredients of the GUI are not 
components but rather actions of the scientist that are supported 
by the GUI. Many of these actions are HTs that require input 
data or decisions by a human being. The GUI needs to provide 
functionality to feed a workflow to the scientific workflow 
system. Although the GUI can assist the scientist in setting up 
the environment, the concept cannot relieve the scientist from 
all technical tasks. At least the GUI and workflow engine need 
to be installed or configured. But there are implementations 
where a pre-configured GUI and workflow engine with 
deployed workflows can be shipped in an easy-to-use 
installation bundle that only needs to be unpacked and started. 
This is by far simpler than setting up a scientific workflow 
system and additional Grid clients (e.g. Globus Toolkit). 

The business workflow engine runs the processes 
coordinating the execution of scientific experiments and 
simulations. Several different coordination processes are 
needed. Each is tailored to an employed scientific workflow 
system because the systems have different interfaces, 
parameters, configuration options, etc. The processes 
coordinate the steps that need to be conducted to achieve the 
scientific goal. That means they prescribe the order and 
dependencies of actions, or the format of data, they automate 
tasks, and they catch and handle faults that occur during 
scientific workflow execution. 

The employed scientific workflow system and scientific 
applications are leveraged to solve a more complex and holistic 
problem. That means the scientific applications solve partial 
issues of the overall problem and read and produce result files. 
The scientific workflows control the execution order of the 
applications and transfer the needed data to and from 
executables (i.e. they need reading access to result files). For 

 



the coordination of scientific experiments by business 
processes it is helpful that a scientific workflow system 
provides an API that allows a business process to control it, e.g. 
with operations to load and start workflows and that signal 
failures during execution. However, if such an API is not 
offered, it is possible to integrate a scientific workflow system 
with an integration technique of any kind suitable for the 
available infrastructure, e.g. WSs or messaging adapters [24]. 

 

Figure 4.  Conceptual architecture of the system 

It is important to note that correct correlation between GUI, 
business workflows, scientific workflows, scientific 
applications, and result files is a must (Figure 4, correlation is 
shown by lines with round endings). The GUI can control 
several business workflows in parallel and hence needs to store 
correlation information in order to pass data to the correct 
instance. As mentioned earlier, the business workflow reflects 
the life cycle of scientific workflows. Each business workflow 
instance is therefore associated with one or more scientific 
workflow models (i.e. with a particular scientific problem), 
which reflects the modeling phase of the life cycle. 
Additionally, a business workflow instance can correspond to 
several workflow instances (i.e. experiment executions) in the 
execution and monitoring phase. Over the scientific workflow 
instances the business workflow instance is able to access 
information about an experiment run, such as execution time, 
errors, or results. The correlation between business and 
scientific workflows strongly depends on the employed 
scientific workflow system and its mechanism to uniquely 
identify workflow models and instances (to use the terms of 
conventional workflow technology). This might be by means of 
a model name and instance identifiers, or by names of files and 
directory paths, for example. A scientific workflow instance 
has to know where and how to invoke scientific applications 
and where the result files are stored. In some cases these 

applications may even be downloaded and installed on-the-fly. 
Since scientific workflows are usually long-running, the 
business and scientific workflow system may communicate 
asynchronously. This imposes the requirement on the scientific 
workflow adapter to store correlation tokens of the invoking 
business workflow in order to respond to the correct instance. 

V. COORDINATING PEGASUS WITH BPEL PROCESSES 
We implemented the presented concept with two popular 

representatives for the domain of business and scientific 
workflow management, namely BPEL and Pegasus. The 
developed prototype proves the applicability of the concept in 
practice. However, the concept’s generality allows an 
implementation with different technologies and systems, e.g. 
Kepler or Taverna. The main difference of Pegasus to the 
mentioned systems is that these are both a modeling tool and an 
execution engine rolled into one. Pegasus provides distinct 
tools for modeling and execution of scientific workflows. For a 
demonstration of the prototype consider [25]. The prototype 
can deal with arbitrary Pegasus workflows. Our tests are based 
on the black-diamond workflow of a Pegasus tutorial.  

A. Why BPEL? 
There are several reasons that make BPEL a good choice 

for the business workflow domain representative: (1) With the 
BPEL extension BPEL4People [13] and the specification WS-
Human Task (WS-HT) [26] the integration of HTs and 
notifications into a workflow is enabled. Humans can interact 
with the workflow over a GUI, the HT client. In our scenario 
this will relieve scientists from typing commands in a Linux 
console as is required by Pegasus. Another possibility to 
implement HTs in BPEL is via usual WS calls. This approach 
suffers from the lack of features, e.g. a standard API for the HT 
client or the definition of user roles, but would be sufficient for 
our use case. (2) BPEL relies on WSs as activity 
implementation. That means the coordinating BPEL process 
can run on an arbitrary machine and communicate with the 
Pegasus (or Kepler, etc.) server over the network. Installation 
and configuration of the server can be carried out from remote 
sites. Even different scientific WfMS servers can be used for 
different scientific workflow runs. Additionally, the HT client 
used for the communication between scientists and the BPEL 
engine can be hosted on any machine in the network. This 
decreases the installation effort for a scientist to the HT client 
only. (3) Since BPEL also supports an asynchronous 
communication model, the number of exchanged messages in 
the system is minimal. No polling is needed to query the status 
of Pegasus. A scientific workflow is triggered with a one-way 
message and the BPEL process is then waiting for the response. 
Moreover, an asynchronous communication does not limit the 
runtime of an invoked operation through a timeout of an 
established session. This is especially useful because the 
triggered scientific workflows can run for a long time. Other 
advantages of BPEL are (4) the rich set of control flow 
structures such as the if or repeat activity, (5) its ability to 
handle faults on the workflow level by fault handlers, or (6) its 
transaction concept to carry out tasks in an all-or-nothing 
manner with the help of compensation handlers. Finally, (7) 
BPEL engines are usually shipped with a monitoring tool or 

 



publish events that can be used to implement a monitor. Such a 
monitor is useful for scientists because it visualizes the current 
status of the workflow at a glance. 

B. System Description 
Figure 5 illustrates the architecture of our prototype that 

coordinates the Pegasus workflow system with the help of a 
BPEL process. The four parts that are distinguished by dotted 
lines can represent different machines. As these machine 
borders are only logical, the components can run on the same 
machine (which is not recommended due to memory needs). 
The Grid resources execute DAG jobs. These jobs are 
submitted to the sites via Condor. Pegasus, DAGMan and 
Condor are running on another machine (usually termed the 
submit host). Additionally, we need a WS wrapper that makes 
Pegasus’ API accessible to BPEL. Although Pegasus’ API is 
rich enough to trigger scientific workflow planning and 
execution, another WS is needed that offers operations on the 
file system, e.g. to read result files or to prepare the workflow 
execution directory. A BPEL engine executes the coordinating 
BPEL process. All communication between the GUI and the 
Pegasus site is routed through the engine. The running BPEL 
process instances “know” the current system or experiment 
state. The GUI is the component the scientists interact with. It 
mainly provides scientists with information about the system 
status and asks for input (see Section IV). Part of the GUI is a 
callback WS for an asynchronous communication with the 
BPEL process. It receives messages for new HTs or for the 
status of the process instance. Both GUI and BPEL engine hold 
their runtime status persistently in a database.  

 

Figure 5.  Main components of the system and their logical distribution 
among machines 

C. BPEL process 
Figure 6 illustrates a simplified view of the BPEL process 

used in our prototype. This “scientist’s view” omits data 
transformation activities and activities of little importance for 
the scientist. The workflow is geared towards the two main 
phases of the Pegasus workflow life cycle, planning and 
execution. During planning Pegasus automatically transforms 
the DAX (an abstract workflow where tasks are not bound to 
executables and execution sites) to a concrete, executable 
DAG. This transformation is based on information provided by 
a user or prior workflow runs: the DAX, properties, parameters, 
a catalog of participating sites, of files, and of executables. 

Currently, the BPEL workflow supports the specification of the 
three catalogs by the scientist which is reflected by the three 
parallel HTs. After that the workflow invokes the Pegasus 
planning service. The result of the planning—either the created 
DAG or an error message in case of an unsuccessful 
planning—is passed to the GUI where the scientist can decide 
about running, re-planning, or aborting the workflow. 

 

Figure 6.  BPEL workflow for coordination of Pegasus planning and 
execution in BPMN notation 

In order to execute a workflow Pegasus submits the DAG 
to DAGMan, which executes the jobs according to the 
workflow logic. Since the executed workflows may be long-
running, we designed the BPEL workflow to invoke Pegasus 
asynchronously and to provide a callback operation for the 
result notification. After the workflow execution the scientist 
can decide by means of a HT to finish the experiment, to repeat 
execution, or to re-plan the workflow. The decision is based on 
the result files that were created. That means the scientist 
controls the convergence of the calculated results. For a 
repeated execution Pegasus submits the rescue DAG to 
DAGMan. This is Pegasus’ built-in mechanism to handle 
runtime faults. With two different events the scientist can 
request further runtime information. “Check Condor Queue” 
delivers the content of condor execution queue. “Check Status” 
shows the status of the job that is currently executed. There is a 
global fault handler definition that catches all kinds of faults. It 
notifies the scientist about the fault. In the future, more 

 

 



sophisticated fault handling logic can be added such as re-
planning or re-executing the scientific workflow. 

The current BPEL workflow requires a correct setup for the 
Pegasus server, workflow directory, and properties file as well 
as already staged input files. However, these and other tasks 
can be easily integrated into the workflow later on. This is 
actually one of the advantages of implementing the supervision 
logic as a workflow. Nevertheless, the current workflow is an 
example of how to combine business and scientific workflows 
and covers some of the interactions of scientists with scientific 
applications as shown in Figure 3: execution and result 
inspection of category A; configuration (in parts), execution, 
monitoring, error handling (in parts) of category B; and 
invocation, HTs, and monitoring of category C. 

 

Figure 7.  Start scientific workflow menu. Pegasus and BPEL engine location 
can be chosen. 

 

Figure 8.  Monitoring view of workflows. Status of activities is signaled by 
different colors. For legibiliy of this gray-scale image icons where added to 
activities (no icon/gray = inactive, sand clock/blue = running, check/green = 

successful). The scientist can choose a workflow from the list above. 

D. Implementation Details 
We implemented the GUI as a Web application based on 

Java Server Pages and Servlets. That way it is possible to setup 
the GUI and the BPEL engine once on a server and use it from 

different desktops without installation of client software other 
than a browser. The GUI provides user management 
functionality so that it can be used by different users in parallel. 
A MySQL database (DB) is used as persistence layer to store 
user data, HTs, and workflow information. Apache Tomcat is 
taken as Web application server to host the GUI. The callback 
and Pegasus WS are implemented based on the WS engine 
Apache Axis2. For execution of BPEL processes we chose the 
Apache Orchestration Director Engine (ODE) 2.0, an open 
source BPEL engine. Communication between the HT client, 
BPEL engine, and Pegasus WS is conducted with SOAP 
messages over HTTP. The scientist can start a new experiment 
using the GUI. He/She can choose between different 
workflows that are already available on the Pegasus server 
(Figure 7). After starting a scientific workflow the monitoring 
view of the coordinating BPEL process is displayed. This 
monitoring enables scientists to see which tasks are running 
and whether user input is required (see Figure 8). By clicking 
on a task, the GUI opens it to be dealt with by the scientist 
(Figure 9). The GUI already takes care of  the input that can be 
provided by the scientist, e.g. checking whether the execution 
site names in the site and transformation catalog coincide.  

 

Figure 9.  Human task view. The scientist can choose a task to work on from 
the list of assigned tasks above. 

In Section IV we explained that a multi-level correlation 
mechanism is needed. The prototype implements unique 
identification of a BPEL workflow instance via the creation 
timestamp of a new instance and the name of the user that 
started the instance. Messages from the GUI to the BPEL 
engine have to carry these properties to be routed to the correct 
workflow instance. Correlation between BPEL workflow 
instance and the DAX is achieved via the DAX’s directory and 
filename. The BPEL workflow instance addresses the DAG 
with the directory it is created in during planning. Although it 
may not be running yet, this DAG can be considered a 
workflow instance from the Pegasus perspective because (1) its 
directory is also used for storing runtime information, and (2) 
re-planning the DAX creates a new directory for the DAG. 
Realizing the correlation between BPEL and Pegasus 
workflows was straight-forward due to Pegasus’ concept of 
unique directories for workflows. We realized Pegasus’ run 
method as one-way operation in the WS wrapper. The invoking 

 

 

 



BPEL engine does not have to keep an open HTTP session 
until the Pegasus workflow finishes. The WS wrapper instead 
listens on the Condor queue and sends a notification to the 
BPEL process if the queue is empty of particular workflow job 
ids (i.e. if the scientific workflow is finished).  

E. Restrictions of the Prototype 
Observing the convergence of results by the user is 

currently restricted to final results. It is desirable to enable 
users to inspect intermediary results and based on these decide 
about the proceedings of the experiment. Apache ODE does 
not implement the extension BPEL4People yet. We solved this 
problem by realizing the assignment of work items to users via 
WS invocations. The GUI’s callback WS provides an 
appropriate operation. For our purposes this solution is 
sufficient. Additionally, we had to create a workaround for 
requesting Pegasus’ status and Condor’s queue status from the 
GUI. ODE’s event handler does not run in version 2.0 so that 
we could not route these requests through the BPEL process. 
The GUI therefore communicates directly with the Pegasus 
server for these requests. Propagation of events of the BPEL 
workflow from the engine to the GUI is realized by WS calls 
within the workflow. This is a simple and working solution but 
should be substituted by native BPEL engine events in future in 
order to decouple the monitoring tool from this specific BPEL 
workflow. In total, the implemented prototype covers several of 
the GUI features as shown in Figure 4 like parts of aspects 3 
and 6 through 10. The rest is open for future work.  

VI. CONCLUSIONS 
Business and scientific workflow systems were developed 

for completely different application areas and provide different 
functionality. Hence, they cover different requirements of 
scientists and scientific applications when being employed for 
scientific simulations and experiments. In many prior works the 
capabilities of business workflows to implement scientific 
applications were investigated. In this paper we followed a 
novel approach, namely the integration of business and 
scientific workflow systems. This approach is characterized by 
a good price performance ratio compared to the way of 
extending one of the technologies by features of the other. We 
presented a concept that places business on top of scientific 
workflows supervising the scientific workflow life cycle. In 
particular this introduces HTs, fault handling and transaction 
features to scientific applications and is therefore beneficial to 
the scientific community. A prototypical implementation with 
BPEL and Pegasus showed the feasibility of the concept in 
practice. But the approach also has weaknesses. It is strongly 
dependent on the functionality of the API of the employed 
scientific workflow system. Limited functionality could be 
extended with the help of appropriate adapters but in some 
cases requires a lot of additional effort. HTs are difficult to be 
integrated into the execution phase of the scientific workflows 
as they are typically not part of the scientific workflow. This 
again depends on the richness of the scientific workflow’s API. 
In summary we can say that bringing business and scientific 
workflow technology together can create a benefit to scientists 
and scientific applications. It may prevent from re-
implementing functionality of the other workflow domain.  
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