
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{schumm, leymann, streule}@iaas.uni-stuttgart.de

Process Viewing Patterns

David Schumm, Frank Leymann, Alexander Streule

© 2010 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{SchummLS10,
author = {David Schumm and Frank Leymann and Alexander Streule},
title = {Process Viewing Patterns},
booktitle = {Proceedings of the 14th IEEE International EDOC Conference,

EDOC 2010, 25‐29 October 2010, Vitória, Brazil},
year = {2010},
pages = {89‐‐98},
doi = {10.1109/EDOC.2010.16},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Process Viewing Patterns

David Schumm, Frank Leymann, Alexander Streule
University of Stuttgart,

Institute of Architecture of Application Systems,
70569 Stuttgart, Germany

{ Schumm, Leymann, Streule }@iaas.uni-stuttgart.de

Abstract— Business processes represent a fundamental asset of
a company as they describe the core knowledge underlying its
competitive advantage. Tools for modeling and analysis of
business processes have to cope with the increasing complexity
of these processes. A view on a process intends to abstract from
details and make complex processes easier to understand. A
process view results from specific transformations applied to a
process model. In this paper we introduce a metamodel for
process views as well as process viewing patterns which specify
elementary transformations to alter an existing process. The
patterns are presented in a technology independent manner
and can be applied to any process language that can be
represented by a process graph.

Keywords: Process View, Pattern, Model Transformation,
Process Analysis.

I. INTRODUCTION
Advances in the principles, methods and tools for

creation and management of software are often driven by the
necessity of mastering increasing complexity. Several
principles have been well established, such as separation of
the application from the data it processes (data
independence), separation of the application from its
presentation and also abstraction of program code in the
form of object-orientation. As complexity is still increasing,
novel concepts attract more and more interest. The
separation of the application functions from the process logic
that interconnects them seems to be a promising concept.
This separation allows building applications in a loosely
coupled, component-oriented manner. Application functions
can be bundled and offered as a service, either for internal
use or as offer to the outside. This concept shifts the focus
from programming in the small towards programming in the
large [9] and to the process logic respectively. In recent
years, various new terms and approaches have evolved
around this topic, subsumed as business process management
(BPM) [37] and the technical implementation of business
processes, which is referred to as workflows [20]. However,
increasing complexity is a problem in this field as well. In
practice, business processes may have several hundred
activities [35] demanding new methods and concepts for
making complex processes still manageable.

Process views, often also called views on processes (or
views for short) represent a promising set of approaches
addressing this problem. Depending on the problem focus
and interpretation of the particular authors, a process view
allows an abstraction from undesired details [28], is a

separation of concerns [34], or it provides a perspective on a
process which is personalized for a specific user [4]. We
have discovered that process views serve various further
purposes, for instance they can be used for information
filtering, information summarization, information hiding or
for linking of information to a process. One thing the various
approaches on process views have in common is the usage of
model transformation techniques [32] and custom-made
visualization. Most approaches operate on ‘process graphs’,
where nodes represent activities of a business process and
edges represent control dependencies between them.

The meaning of patterns slightly varies in the literature.
In [41] architectural patterns have been proposed which
discuss problems that occur over and over again in the
environment. For each pattern (e.g. “Promenade”) the core of
the architectural solution is described. Additionally, pictures
and diagrams are provided to ease the understanding. Related
to programming, patterns usually document programming
techniques being described as “simple and elegant solutions
to specific problems” [12]. According to [40], a pattern
should capture the problem and the solution, as well as the
reasons why the solution is applicable. In [16] patterns also
cover guidance through the decision-making process for
finding an appropriate solution to a particular problem. As
patterns are usually elaborated by experienced practitioners,
they come with additional information about the motivation
for applying a pattern, the consequences when it is applied,
practical examples, and an implementation.

In [1] however, patterns have a different meaning.
‘Workflow patterns’ are used to capture the expressivity of
different aspects of a workflow language, in other words
which language constructs can be expressed in a particular
workflow language. The patterns presented in our work can
be seen as a synergy between those different meanings. On
the one hand, process viewing patterns describe elementary
solutions to simplify the management and analysis of
complex business processes. On the other hand, they allow
capturing the expressivity of different process view
approaches. Furthermore, they enable benchmarking by
allowing one to systematically check which patterns or
combinations thereof a particular tool supports. For space
reasons we refrain from a complex pattern description as it is
done for instance in [16].

Although process views are gaining momentum, we think
that more work needs to be done concerning the
fundamentals of the overall concepts. Therefore, we have
assembled the existing concepts and approaches and have

distilled them into a unified and readily understandable
representation. The process viewing patterns presented in
this paper have their origin spread over various works and
tools in which they are implicitly applied, i.e. we identified
and observed them, but we did not invent them. The
circumstance that they are frequently used to solve particular
problems qualifies them as meaningful patterns. The
relevance of the patterns is confirmed by their actual
application in research and practice. We make no claim to
provide a complete list of patterns for process viewing. The
patterns we describe represent our abstraction from the
current literature, product evaluations and our results from
own work. Due to space limitations we can neither provide a
complete list of literature nor a list of tools that we have
evaluated.

We argue that the viewing patterns and the generic
metamodel of process views presented in this paper provide
basic principles for process view creation. In the following
we would like to sketch an example of a process view which
can be created using the patterns which we propose in this
work. Let us name this example view ‘Business Perspective’.
This view intends to show a business perspective on a
process by leaving out all technical things and reducing the
process to its essence.

For creating the view we need to define a few
transformation rules. Firstly, we apply some filtering
operations to the process. Therefore we omit all nodes which
are technical, for instance nodes for variable assignment or
input data validation. Next, we omit all parts in the process
related to exceptions (exceptional paths, fault handling, and
compensation handling). In other words we preserve those
structures which are business relevant, i.e., invocations of
programs, human tasks as well as meaningful control
structures. Secondly, we apply operations to summarize the
information. Therefore, we aggregate fully automated
structures (e.g., microflows). Depending on the availability
of augmented (i.e., linked) information, further
transformations can be applied. Human-assisted
augmentation (i.e., tagging) allows the recognition and
subsequently the aggregation of known structures (e.g., an
approval chain). Moreover, runtime augmentation allows
identifying and subsequently omitting paths which are rarely
executed. Thereby, the most frequently taken paths remain in
the process. The actual application of those transformation
rules to a process finally results in the ‘Business
Perspective’. This view can be presented using a graphical
representation, setting the focus on business people’s needs
and fading out technical details or parts only having an effect
in exceptional cases (see Fig. 1). We discuss further
application scenarios for process views in [39].

CBA

Figure 1. Process View Transformation Example:

The Business Perspective.

This paper is organized as follows: Section II specifies a
metamodel for use of process views and subsequently
describes process viewing patterns. In Section III,
application scenarios of the patterns are discussed. Next,
Section IV describes an exemplary application of the
metamodel and the patterns in the context of a particular
process language and viewing purpose. In Section V, state of
the art in the field of process views and related work is
presented. Finally, Section VI summarizes the paper and
characterizes future work.

II. PROCESS VIEWING PATTERNS
In this section, the terminology and metamodel for

process views are presented and elementary process viewing
patterns are introduced. The elementary process viewing
patterns can be composed to obtain more complex
transformations. For instance, the composition of the
structure omission pattern and the structure preservation
pattern described in Section II-B would result in a
transformation that could be named ‘structure extraction’.
We distinguish between four pattern groups that concern
transformations of (i.) process structure, (ii.) presentation,
(iii.) inter-view relation and (iv.) augmentation. This section
does not make any assumptions about the specifics of a
process language. The patterns describe the principle, but
give no information neither how it can nor how it should be
implemented. The description of the patterns is on purpose in
an abstract manner, for allowing an easier transfer to
different process languages and tools. Beyond that, various
different forms of implementation would be conceivable due
to distinct characteristics of different process languages and
ambiguities that occur during the application of the patterns.

A. Process View Metamodel
A metamodel defines constructs and the associated

functions that are supported on them. We distinguish
between the terms regular process R, original process O and
process view V. A regular process complies with the
metamodel of regular processes Mr. The metamodel of
process views Mv is extending the metamodel of regular
processes with additional node and edge types which are
specific for viewing purposes. An original process O
represents the process model that is used as input for the
transformation T, which in turn results in a process view V.
A regular process model is defined by a tuple

 R = (Nt, Ec, Ed) (1)

where Nt is a set of typed nodes, Ec is a set of control
edges that define control dependency between the nodes of
Nt. Nodes represent activities that are carried out in a
business process. The activity is either executed by a human
being (‘human task’) or by a program (e.g., a Web service).
Ed is a set of data edges that define data dependencies
between the nodes of Nt. Each edge has exactly one node as
source and exactly one node as target. Nodes have properties
such as type, identifier and further characteristics which are
of minor importance for this work. Edges have properties
such as name, source, target, and possibly a transition

condition that defines the condition under which control is
passed on. A transition condition is a construct that is present
in various process languages and is required for
implementing ‘dead-path elimination’ [20]. The metamodel
does not contain concepts which are different across the
various process languages (e.g., scoping concepts, fault
propagation, event handling, compensation handling). By not
assuming a specific model for this, the description of the
patterns is made more abstract and easier to transfer to
different languages. Those concepts have to be considered
when implementing support for the patterns for a specific
process language. The metamodel of a process view (see Fig.
2) extends the metamodel of regular processes. It contains all
constructs that are required in order to support all process
viewing patterns presented in this paper. Thus, if only a
subset of the patterns shall be supported, some of the
constructs are obsolete. A process model of a process view V
is defined by a tuple

 V = (Nt, Nab, Nag, Ni, Ec, Ed, Ei) (2)

where Nt, Ec and Ed have the same meaning as in the
process model of a regular process. Nab is a set of abstract
nodes, i.e. nodes in which all properties are erased. Nag is a
set of aggregate nodes, i.e. nodes that consist of multiple
nodes and edges, yet treated as atomic. Ni is a set of inserted
nodes, i.e. nodes that are not contained in the original
process. Inserted nodes can be used as a ‘helping’ construct,
when it is necessary to have a node contained in a process
view that is not reflected by any node in the original process.
Ei is a set of inserted edges, i.e. control edges that are not
contained in the original process. Nodes and edges of Mv are
further extensible by an arbitrary set of additional properties.
Similar to Mr, all kinds of nodes can be connected to each
other with any kind of edges. Depending on the requirements
for consistency (see Subsection II-B) fewer restrictions on
the metamodel are possible by allowing loose edges, i.e.
edges that have either no source or no target that connects
them.

Figure 2. Process View Metamodel Constructs.

A transformation T describes the map of an original
process O into a process view V. The original process can
either comply to Mr (i.e., be a regular process) or to Mv (i.e.,
be a process view already), the latter for creating a view on a
view. For this reason we distinguish between the terms
original process and regular process. A transformation T is
defined as function

 T: O × P × G → V (3)

where O is the original process model. P is an ordered
list of transformation step items I (t, p, c), where t describes
the target set specifying to which constructs in O the pattern
p shall be applied (to which nodes or edges) while using the
configuration c (e.g., consistency required). The target set t
can be specified by a query on the process model or on
augmented information (see Subsection II-E). The order of
the items in P is of importance as T is non-commutative, i.e.
the result of applying patterns in different order can result in
different views. For example, if structures are omitted in a
first transformation step, then they are not contained in the
view which is input for the following transformations. There
is a certain difference to Model-driven Architecture (MDA)
terminology - in MDA a source model is transformed to a
target model. A source model in MDA terminology
corresponds to an original process O in our conceptual
model, and a target model in MDA corresponds to a process
view V. However, we use the term “target” to indicate the
structures in the original process which are to be affected by
a transformation. G is a set of graphical functions that map a
process model to a graphical representation. Basically, G
represents the presentation layer of a process view. In
summary, a process view can be described as presentation of
the result from specific transformations applied to a process
model. In this sense we understand a process viewing pattern
as elementary form of such model transformations.

The graphical functions G are separated from the other
forms of transformations P in order to account for process
view composability. The composition of multiple views can
be performed by successively applying all view
transformations P (i.e., transformations concerning structure,
augmentation and inter-view), before subsequently
presenting the overall result of the transformations. We
assume that tools for presentation of a process model have a
default set of graphical functions that define how a process
has to be visualized. We also assume that we can overwrite
these functions with custom visualization functions, e.g., for
highlighting particular activities. The graphical functions can
thus be composed by subsequently overwriting them in case
they overlap. For instance, a view transformation that defines
that the border of specific nodes should be painted in green
color can be overwritten by another view transformation
which defines that some node borders should be painted in
red color. The graphical elements which are used in the
illustrations of the viewing patterns are shown in Fig. 2. This
figure also explains the semantics of shading and different
style of control edges and data edges, which are used in the
subsequent figures. This is not meant to be a definitive
graphical notation for process views. It is used here
informally as an aid to ease understanding. For easier
referencing, the patterns described in the following are
numbered, for instance (P3) stands for pattern number three.

B. Structure Patterns
Structure patterns describe the most common forms of

process model transformation. They are destructive, i.e. the
process model is physically changed. Therefore, the patterns

are typically applied to a copy of the original process. The
patterns refer to the constructs (nodes and edges) contained
in the metamodel. The corresponding figures illustrate the
application of the patterns on nodes and control edges. The
author of [14] even shows that structural view
transformations can also be applied on data edges and
variables, respectively.

Omission (P1) describes the removal of nodes and edges
(see Fig. 3). By omission of a node, omission and re-curving
of edges connected to this node are implicitly required. That
is why the omission pattern has inherent ambiguities, which
we discuss in Section II-F. Single edges can be omitted as
well when consistency preservation allows this. Consistency
preservation is discussed at the end of this section.

Figure 3. Omission Pattern.

Abstraction (P2) of a node means erasing all properties,
including the type (see Fig. 4). An abstract node allows
stating in a view that something is happening while hiding
on purpose what exactly.

Figure 4. Abstraction Pattern.

Insertion (P3) introduces new (inserted) edges and new
(inserted) nodes that are not contained in the original process
(see Fig. 5). The application of structure patterns, e.g.,
omission, requires in some cases adding new nodes or
control edges (see also Section II-F). This pattern is
necessary for being able to distinguish between original and
new nodes and control edges. Besides, inserted nodes allow
stating in a view that something shall or may happen which
is not happening in the original process model. This is for
instance useful in the context of aspect weaving for viewing
or planning existent or potential variants of a process model.
The pattern for insertion is not common in the field of
process views. However, this pattern is frequently applied in
approaches that are concerned with the creation and
management of constrained process variants, such as
described in [22].

Figure 5. Insertion Pattern.

Aggregation describes the summarization of a set of
nodes to a node of higher order, i.e. an aggregate node. All
edges entering or leaving this set have their target or source
in the aggregate node after the transformation. A difficulty of
applying this pattern is how to define the semantics of an
aggregate node and how to create a meaningful label for it
[15]. For instance, the name of an aggregate can either be

calculated by heuristics, by recognition of structures (e.g.,
using an ontology) or defined manually. We can distinguish
between two aggregation forms depending on the nature of
the target set t.

i.) Connected aggregation (P4) denotes the aggregation
of a connected subgraph into an aggregate node (see Fig. 6a).
This pattern focuses mainly on (but is not limited to) single
entry single exit (SESE) structures, i.e. connected subgraphs
with exactly one entry edge and exactly one exit edge. For a
formal definition of SESE structures please see [35]. If a
subgraph has multiple entries or exits, the outcome of the
transformation may contain control cycles which may be
prohibited by consistency constraints for a particular process
language.

ii.) Disconnected aggregation (P5) describes the
aggregation of multiple arbitrary subgraphs into one
aggregate node (see Fig. 6b). Depending on consistency
requirements the application of this pattern may require
adding inserted edges for viewing transitive control
dependency. Inserted edges represent control dependency in
a view and imply that an edge is not contained in the original
process. This pattern reveals ambiguities which we discuss in
Section II-F.

 (a)

 (b)
Figure 6. Connected (a) and Disconnected (b) Aggregation Pattern.

Alteration (P6) allows changing properties of nodes and
edges, such as type, name, identifier, transition condition or
other properties (see Fig. 7). This pattern can be used as fine-
granular method for abstraction and information hiding.

Figure 7. Alteration Pattern.

Preservation is a set of patterns that is cross-cutting the
patterns concerning structural transformation. Basically, it is
part of the configuration c which specifies how a pattern
should behave. Preservation restricts the structure
transformations, i.e., in some situations the patterns cannot or
can only partially be applied, as otherwise the outcome
would be inconsistent. Implementation of the structure
patterns is easiest when no kind of preservation is required.
If any kind of preservation is required, complexity of the
implementation increases considerably [33]. We distinguish
three kinds of preservation patterns (see Fig. 8).

ap
pr
ov
ed

Figure 8. Preservation Patterns.

Consistency preservation (P7) shall ensure consistency
of the outcome of a pattern application (compare
inconsistency in Fig. 8a). The definition of consistency
varies among different process languages, for instance some
languages require directed, acyclic graphs (DAGs) for
consistency while others also allow non-DAGs. Consistency
may also determine the order of nodes or specify whether
loose edges and unconnected nodes are allowed.

Construct preservation (P8) has implications on the
easiness and flexibility from a user’s point of view, as it
allows setting constraints to structure transformations by
preserving particular constructs (see Fig. 8b). The omission
pattern for instance can thereby also be used for extracting
parts out of a process.

Executability preservation (P9) is desirable when the
process model of the process view shall be executable. This
is for instance the case for a view in which all nodes shall be
omitted that are relevant for debugging only. Preserving
executability includes consistency preservation and
furthermore the process model of the view may only contain
constructs of Mr. As some patterns introduce constructs that
are only contained in Mv, they have to be replaced by
constructs of Mr for preserving executability. For instance,
an abstract node could be replaced by a regular node that
represents a no-operation statement. Fig. 8c shows an icon
for this pattern.

C. Presentation Patterns
In contrast to structure patterns, presentation patterns

operate on the presentation layer of the process model, i.e.
they represent the graphical functions G. Visualization
techniques, such as shown in [17], make the process model
look differently (e.g., to emphasize specific characteristics or
to improve clarity) without physically changing it, i.e., they
are non-destructive. Presentation patterns are applied
subsequently after all other kinds of patterns. In practice,
process languages have many more constructs than shown in
the metamodel in Section II-A, e.g., variables, message types
and a considerable number of properties on the nodes. Those
constructs can be made visible and integrated into the
presentation as well.

Appearance (P10) refers to size, color, levels of grey,
caption, patterning, decoration, shape, border style, contrast,
brightness and transparency of nodes and width, length,
color, levels of grey, caption, decoration, style, arrowhead,
contrast, brightness and transparency of edges of Mv. Further
features are conceivable though. For each of the appearance
features a function α can be defined which specifies the
mapping of node or edge properties to the presentation
characteristics. In former work [31], we have demonstrated a
practical implementation of this pattern for visualizing a
process with the look and feel of a different language. The

example shown in Fig. 9 presents nodes (i.e. activities)
executed by humans with bigger size than program calls and
in addition decorators are added. Light grey shading
represents which of the activities are running in a secured
mode. Furthermore, the shapes for the start node (incoming
edges = 0) and the end node (outgoing edges = 0) are
modified.

Figure 9. Appearance Pattern.

Scheme (P11) considers the whole representation of a
process (see Fig. 10). In many cases a presentation as graph
(a) is useful, whereas for some cases a tree (b) might be
better, although less expressive. The block scheme (c) is well
applicable for block-structured process languages, and the
plain textual scheme (d) is indispensable with respect to
execution details. In [18] it is pointed out that control flow in
block-structured process languages is defined by using
block-structures such as ‘if’ or ‘while’ for branching and
looping, similar to existing programming languages. In
contrast, control flow in graph-oriented process languages is
explicitly defined through control edges between activities.
All those schemes have in common that they still represent
the process model. Other schemes such as a performance
dashboard or a pie chart abstract from the process model
beyond recognition and are thus not listed here.

Figure 10. Scheme Patterns.

Layout (P12) describes how to arrange the artifacts of the
process model in the particular scheme. For graphs at least
three forms are conceivable (see Fig. 11): From left to right
layout (a) is frequently used in applications near to business
and management, while in technical applications from top to
bottom (b) is more common. From right to left (c) could be
requested in areas where written language goes also this
direction, e.g., in Arabic countries. From bottom to the top
(d) is possibly also useful in some scenario, for instance to
show a process in a hierarchy.

Figure 11. Layout Patterns.

Theme patterns specify the theme of information that
should be shown. A process model contains logical
information (P13) about control flow and data flow. In some
process languages data flow is implicitly contained by
variables and access to them, nevertheless it can be made

explicitly visible. In some workflow management systems
even control flow is implicit, for example in Triana which is
data-driven (see http://www.trianacode.org/ for details). This
pattern allows visualizing just control flow, just data flow or
both (see Fig. 12a) at a time. A process model may also
contain organizational information (P14), e.g., the
department of a performer of a human task or a particular
category of a program that is called in the process. The
organizational information can be visualized by categorizing
nodes into distinct pools and swim lanes. This can be
achieved by binding pools and lanes to particular node
attributes. In addition, a process can be further structured
into different phases (see phase A, B, C in Fig. 12b). Other
forms than pools and swim lanes are conceivable for
visualizing custom categories (P15). For instance, when
taking augmentation patterns into account (see Section II-E)
the location of a process participant (see Fig. 12c) or service
deployment information could be used as node positioning or
grouping criterion.

Figure 12. Theme Patterns.

D. Inter-view Patterns
In business process management, the notion of

orchestration and choreography is frequently utilized to
distinguish between control and data flow within a process
(orchestration), and the interaction among processes
(choreography). Inter-view patterns address both by
abstractly describing operations on process views of
orchestrations and choreographies. They have different
expressivity depending on the set-based operations they
support. Therefore, the set-based support for (i.) union, (ii.)
intersection and (iii.) complement can be employed as sub-
categories of the inter-view patterns.

Orchestration inter-view (P16) describes transformations
of multiple process views that share the same original
process O. In the literature this pattern is also denoted as
view integration [23]. Union combines two process views
according to their inherent relation in the original process.
Intersection can be seen as lowest common denominator
between two process views. Complement creates a process
view by omitting all parts of the original process that match
the input process view. It is important to note that the
original process may be a process view itself. Fig. 13 shows
the inter-view union pattern on orchestration level.

Figure 13. Inter-view Union on Orchestration Level.

Choreography inter-view (P17) represents
transformations of process views stemming from different

view union on choreography level. In terms of process
research, union is equivalent to process merging [19].
Intersection describes the effective business protocol
between two processes. Taking the complement on
choreography level is not applicable.

Figure 14. Inter-view Union on Choreography Level.

E. Augmentation Patterns
already contained in a process

mo
Besides the information
del (nodes, node properties and edges), additional

information is helpful for viewing a process tailored to
specific needs. We can distinguish three patterns (see
Fig. 15) for augmenting a view with additional information.

Figure 15. Augmentation Patterns.

Runtime information (P18) describes the augmentation
wit

tomatic
tec

) addresses human
kno

ion of some patterns may comprise
am

h information related to current or former execution(s) of
a process (see Fig. 15a). This may encompass mined
information (number of executions, average execution
duration, cost, etc.), monitoring information (current status
of instance x1, status of all instances of process model x,
etc.), organizational details about the performer of a task,
deployment information, or context information (workload,
service or human geolocation, network traffic, etc.).

Calculated information (P19) considers au
hniques such as pattern recognition, deadlock detection,

particular heuristics and so forth (see Fig. 15b). Technically,
the augmentation pattern is likely to be realized by creating a
set of references between the node or edge identifier and the
identifier of the additional information.

Human-assisted augmentation (P20
wledge about the process (see Fig. 15c). This ranges

from semantic annotations, the classification of
confidentiality levels over organizational information like
roles of process participants up to annotation of compliance
constraints [8]. These constraints might for instance state for
which activities encrypted interaction is required. Our
research suggests that especially the usage of ontologies has
manifold benefits for fully automated view transformations.

F. Ambiguities
The applicat
biguities of the resulting view. Omission, for example,

may produce various different views when the omission
targets synchronization or branching nodes and control
dependency shall be preserved (see Fig. 16a). The problem
becomes even harder when conditional control edges have to
be handled. The outcome of the transformation is depending original processes. Fig. 14 shows an example of the inter-

on consistency constraints, user’s choice (driven by intended
use), or pre-defined settings (i.e. best practice).

 (a)

 (b)

Figure 16. Ambiguous Transformation Results of Omission (a)

The application of the aggregation pattern reveals
am

III. APPLICATION SCENARIOS

he patterns presented in this paper are elementary forms
of

and Aggregation (b).

biguities as well, as shown in Fig. 16b. The number of
possible solutions increases when conditional control edges
are affected, demanding for an efficient method for
disambiguation. In addition, the combined application of
patterns is problematic: when runtime augmentation for
showing the execution state of a process instance (see
Fig. 15a) is applied in combination with aggregation (see
Fig. 6) or omission (see Fig. 3), it might be unclear how to
present the current execution state of the nodes, or require a
relaxation of semantics. Another issue arises due to various
possible forms of implementation. The inter-view patterns,
for instance, give a lot of room for interpretation, and for
implementation respectively. Achieving unique
transformations across different implementations and
therefore defining predictable transformation results is quite
improbable as two different implementations (and users) will
most likely disambiguate differently. The discussed
ambiguities can either be resolved automatically using pre-
defined resolution mechanisms or manually by user
enquiries.

T
process view transformations. In the following we present

a concrete scenario for their application, namely a process
view for process instance management: When it becomes
clear that a process instance is “not in good shape”, which
can for example be measured with Key Performance
Indicators, the question “Who is to blame?” arises. Another
scenario is that for some cases it is also interesting to know
who is in charge of the technical support for a service that
faulted in the process. A viewing scenario that provides a
solution to this requires first of all augmentation of the

process with runtime information (P18) that provides the
status of a particular instance. This augmentation step also
needs to augment the nodes in a process with the “owners”.
For service calls an owner is the bound provider as well as
the corresponding technical support; for human tasks it is a
staff contact and the corresponding supervisor contact (e.g.,
mail or phone). The presentation of this augmented process
shows the status of the instance using decorators (P10). The
responsibilities can be shown using swimlanes which are
determined by the responsible owners (theme, P14).
Advanced applications can provide additional interactive
functionality, e.g., when right-clicking a decorator, a menu
for notification and escalation could pop up as illustrated in
Fig. 17.

?
Figure 17. Exemplary Process View: Who is in Charge?

In this paper, we did not explicitly state which of the
presented patterns can be used to address which particular
problem. In fact, these patterns present solutions for
reoccurring problems arising in many different contexts.
However, there is no one-to-one relationship between the
patterns we proposed and particular problems. The patterns
can be combined in many different ways in order to create
process views for various different tasks. Especially when
augmenting a process model with additional information, it
makes sense that the combination of the elementary patterns
enables the creation of a flexible and powerful instrument.
Let us assume that we define a process view in an ad-hoc
manner, in order to find out which activities are most
expensive and therefore likely to be outsourced to a company
performing them cheaper: In a first step we classify ‘internal’
activities which cannot be outsourced anyway (human-
assisted augmentation, P20), see Fig. 18 (left). Following
that, we omit these activities (P1), see Fig. 18 (center). Then,
we set the function that calculates the visible size of the
nodes (presentation, P10) in proportion to the effective costs
of the activities (runtime augmentation, P18). The resulting
ad-hoc view (see Fig. 18, right) helps to reveal the activities
which are feasible for outsourcing.

internalinternal

internal

omit internal
matters

augment,
adjust size

Figure 18. Ad-hoc Process View: Which Activities could be Outsourced?

Many application scenarios for process viewing patterns
in

o
sim

business process management are conceivable. Basically,
they can be used to support the management of business
processes in all stages of the business process life cycle.

In process design, view transformations can be applied t
plify a process by filtering information (omission, P1) or

summarizing information (aggregation, P4, P5). In order to

ensure a consistent and well-formed outcome the
preservation of particular properties is essential (consistency,
P7; construct, P8; executability, P9). Process views can for
instance be used for abstract process modeling, for the
creation of public views on a private process (see
Section IV), and for the extraction of process structures. In
process deployment, view transformation can simplify the
management of configurations by information linking.
Deployment configurations (e.g., related to security) are
typically separated from the process. An augmentation step
(runtime augmentation, P18) can combine this information
with the process and present this information to the user
(theme, P13). In process execution, to the best of our
knowledge, view transformations are rarely used at the
moment. Structure patterns as well as augmentation patterns
can be applied to customize a running instance of a process
though. However, the application of these patterns during
process execution reveals problems known from process
instance migration. In process monitoring and analysis, view
transformations can be used to link information about the
current status of single or multiple instances to the model of
the process (runtime augmentation, P18). Additionally,
analysis algorithms can provide further information, e.g.
about frequently taken paths (calculated augmentation, P19).
Presentation patterns (P10-P15) provide a means to visualize
this linked information. In addition, general purpose views
can be composed with other view transformations. This
means that they are applicable as views on other views.

In this section we have shown a usage context for some
of t

ation of the

the presented metamodel and process viewing patterns.

rcing
e transformation can

transformation step evaluates the transformation
ansformation functions,

he patterns we proposed. Furthermore, we have discussed
how viewing patterns can be used to provide assistance in the
tasks related to process management. For further details
concerning application scenarios of process viewing patterns
please refer to [39], in which we elaborate known uses of the
patterns along the business process management life cycle.

IV. APPLICATION EXAMPLE: PUBLIC VIEWS FOR
BUSINESS PROCESS OUTSOURCING

This section discusses an exemplary applic
presented metamodel and the patterns in the context of a
particular process language and viewing purpose. The
Business Process Execution Language (BPEL) [27] already
defines a metamodel for public views, namely ‘Abstract
BPEL’, which is intended for creating templates, and for
publishing visible behavior and constraints for valid
interactions while hiding complexity and internal
information. The metamodel of Abstract BPEL introduces
‘opaque’ activities and tokens (‘##opaque’) which are in
terms of process viewing patterns equivalent to abstract
nodes and alteration to pre-defined values. We can utilize a
subset of the presented patterns to support this viewing
scenario: omission, abstraction, alteration, consistency
preservation, construct preservation and human-assisted
augmentation. In the work of [33] we created a process
viewing framework which supports the generation of
Abstract BPEL processes to support business process
outsourcing, based on these patterns. In the following we
discuss the key aspects of this framework and its relation to

A. Public View Generation Principle
The generation of a public view for process outsou

requires two preparation steps before th
be carried out. The first preparation step implements the
human-assisted augmentation pattern. In this step constructs
(i.e. any artifact of the process model) of the original process
O are manually tagged. A taxonomy of pre-defined tags
allows classifying the confidentiality level of the artifacts in
a process (e.g. confidential, private, public). This information
can be used to specify the target set t in an easy to use
manner that requires no in-depth technical knowledge. Thus,
every construct which is meant to be affected by this high-
level mechanism has to be manually tagged.

The second step comprises the definition of the
transformation items I (t, p, c) which make up P. As a
reminder, the target set t indicates which constructs should
be transformed, the pattern p specifies which transformation
pattern to apply, and the configuration c specifies the settings
for the transformation. Eventually, the transformation T that
implements the patterns takes the tagged original process and
the transformation items as input. It applies the particular
transformations to the target constructs as specified in the
transformation items and thereby creates a process view V.
For instance, the transformation items could state that all
constructs which have been tagged as confidential or private
(P20) have to be omitted (P1) during the view
transformation. The resulting view hides internal information
and can be shared with a business partner. For each business
partner a different public view can be generated which only
contains the parts which are relevant for that particular
partner.

B. Process Model Transformation
The

items and performs the requested tr
i.e., it applies the patterns to the targeted parts of the input
process. A frequent requirement is the alteration of attributes
of constructs. For instance, the name of an activity can reveal
information (e.g. about the organizational structure of the
company) which should be hidden from a business partner.
Our implementation supports the alteration pattern for fine-
granular modification of attributes or values of attributes.
Furthermore, the BPEL specification supports so-called
opaque tokens. The value ‘##opaque’ can therefore be used
in alteration to hide only the value of an attribute but not the
attribute definition itself. Our implementation also accounts
for the abstraction pattern by transforming regular activities
into so-called opaque activities, when requested in the
transformation items (e.g. to show a business partner that
“something” happens). For obtaining clean processes
cleaning functions are necessary. Probably some constructs
contained in an abstract view do not serve any purpose. For
example, some variables might no longer be required
because corresponding activities have been omitted or
abstracted. Our implementation foresees a set of pre-defined
post-processing functions to remove such constructs. In [33]
we discuss more technical details and show a full view
generation in a travel agency scenario. There a travel agency
generates different public views for each of its business

partners (hotels, airlines). Our prototype is based on the open
source modeling tool Eclipse BPEL Designer [10]. The code
changes for supporting ‘Abstract BPEL’ have already been
contributed to the community.

V. RELATED WORK
The notion of process views has originally been

introduce e processes [7].
Due to t ness process

e
(BP

com

 describe elementary
amental
pressive

d
pro

BPEL-based transformation). In
our

was partially funded by
the COMPAS project ww.compas-ict.eu)
under the EU 7th e ICT Objective.
Ma

. Kiepuszewski, A. Barros.
Workflow Patterns. In: Distributed and Parallel Databases, 14(1):5–
51, Springer, 2003.

d for the management of softwar
he growing acceptance of busi

management, nowadays a large body of works considering
process views exists. Process views are applied for several
use cases, such as for providing a perspective on a process
that is personalized for specific needs of a user [4]. The
authors of [2] show an application of process views in a
mobile communication scenario. They propose using views
for providing alternative presentations, data views, and
customized processes depending on the target mobile device.
In proposing ‘architectural views’ for the separation of
concerns, [34] introduces process views in a manner quite
different to other approaches, which typically make use of
omission and aggregation of the nodes in a process graph.
Process views for inter-organizational collaboration are
investigated in [5]. A cross-cutting problem when creating a
view is the preservation of consistency during
transformation. The authors of [21] for example elaborate on
preservation of activity order. Recently, also automatic
techniques for targeting of transformations are being
investigated, as shown in [28]. Commercial vendors offer
support for views as well: [30] for instance provides views
on functions, organization, data and control. In [6] basic
classifications of process views have been proposed. Most
notably in this work is the distinction between ready-only
and updateable views, and between intra-process and inter-
process views. Regarding the classification of process views
also works related to model transformation in general are
relevant. In particular, taxonomies for model transformations
(such as discussed in [42] or [36]) can be used to classify a
view transformation, e.g. to state whether a process view can
be created automatically or if user intervention is required.

Concepts of views are investigated for a growing number
of process languages. In [26] they are applied to the block-
structured parts of the Business Process Execution Languag

EL) [27], whereas in [13] viewing concepts are
transferred to Event-driven Process Chains (EPC). The
application of viewing concepts for managing access control
within process diagrams in the Business Process Modeling
Notation (BPMN) [24] is presented in [6]. In [3] views are
applied on software processes represented by Petri Nets. In
this work the authors generate reusable building blocks using
the patterns for omission and inter-view union on
orchestration level. The authors of [11] apply process views
for generating business protocols for block-structured
process languages (similar to UML Activity Diagrams).

Other fields of research such as visualization techniques,
especially process visualization techniques [17], are slightly
moving towards the concept of process views. The [4] R. Bobrik, T. Bauer, M. Reichert: Proviado - Personalized and

Configurable Visualizations of Business Processes. Proceedings of
the 7th International Conference on Electronic Commerce and Web
Technologies (EC-Web), Springer, 2006.

munity around generic graph transformation is gradually
stepping up to process views as well [25]. Mining
techniques, such as shown in [38], also provide a source of

ideas for this field of research by identifying recurring
templates of control flow. Further reading can be found in
analyses of process views [29], [43]. In addition, an analogy
to views in data bases is drawn in [23].

VI. CONCLUSION AND FUTURE WORK
The patterns presented in this paper

forms of process model transformations. The fund
contributions of this work comprise an ex
metamodel for process views and a clear illustration of the
elementary process viewing patterns. Moreover, we have
discussed application scenarios and we have exemplified a
mapping of patterns and the metamodel to a concrete process
language. The abstraction into patterns makes the discussion
of the features of a process view approach easier and it
makes the specification of requirements for an
implementation more precise. It also allows characterizing
the expressivity of an approach or benchmarking of a tool.

A central problem in our research is how to handle
compliance [8]. Managing compliance requires performing
profound and traceable changes on process models an

viding an according visualization for process
management and auditing reasons. Therefore, we investigate
methods and concepts for extracting, highlighting and fading
out particular parts of a process that are subject to
compliance. Process viewing patterns provide the
fundamentals for this task.

In this work, we have shown the application of process
viewing patterns to process graphs and have demonstrated
their feasibility in practice (

 future work we are going to investigate the use of the
presented patterns and combinations thereof in business
scenarios concerning process analysis, modeling,
deployment, and monitoring. Further usage scenarios like the
analysis of service networks or other graph-based
applications are conceivable as well.

ACKNOWLEDGMENT
The work published in this article

 (FP7-215175, w
Framework Programm

ny thanks go to Tobias Anstett, Oliver Kopp and Mirko
Sonntag for the helpful discussions.

REFERENCES
[1] W. van der Aalst, A. ter Hofstede, B

[2] D.K.W. Chiu, S.C. Cheung, E. Kafeza, H.F. Leung. A Three-Tier
View-Based Methodology for M-Services Adaptation. In: IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, IEEE Systems, Man, and Cybernetics Society, 2003.

[3] D. Avrilionis, P.Y. Cunin, C. Fernström: OPSIS: a View Mechanism
for Software Processes which Supports their Evolution and Reuse.
Proceedings of the 18th International Conference on Software
Engineering (ICSE), IEEE Computer Society, 1996.

[5] I. Chebbi, S. Dustdar, S. Tata. The View-based Approach to Dynamic
Inter-organizational Workflow Cooperation. In: Data & Knowledge
Engineering, 56(2):139–173, Elsevier, 2006.

[6] M. Chinosi. Representing Business Processes: Conceptual Model and

osi/files/PhD/MicheleC

asati, V. D'Andrea, S. Strauch, D. Schumm, F

rnational Conference

ct. Eclipse BPEL Designer, 2010.

oftware. Addison-Wesley Longma

es

Bobrik: Konfigurierbare Visualisierung kom

nal of Systems and Software, 79

s: Designing,

tive Oriented Business Process

in, D. Wutke, F. Leymann. The Difference Between

, 2009.

roach. In: Information System

ocess Models in Large Pr

 Process Design by View Integr

Process M

iques (GT-VMT), pre-proceedings, EASST, 2009.

s

usiness Process Execution

2 IEEE Enterprise

zation – Use Cases, Challenges, Solutions. Proceedings of the

h BPMN. Grid and Pervasive

anagement. John Wiley &

sität Stuttgart, Fakultät Informatik, Elektrotechnik und

s Process Models though SESE

orkshop on

-Perspective Metrics. Proceedings of

erns in Business Process Management.

of Programming

niversity Press, USA,

in Theoretical Computer Science, 152:125–142,

ages. Proceedings of the 14 Euromicro International

of th

Design Methodology. PhD Thesis, Università degli studi
dell'Insubria, Varese, Italy, 2008. .
http://www.dicom.uninsubria.it/~michele.chin
hinosi_PhD.pdf

[7] W. Deiters, V. Gruhn, H. Weber: Software Process Evolution in
Melmac. In: The Impact of CASE Technology on Software
Processes. pp. 301-326. World Scientific, 1994.

[8] F. Daniel, F. C .

Dis

Leymann, E. Mulo, U. Zdun, S. Dustdar, S. Sebahi, F. de Marchi,
M.S. Hacid. Business Compliance Governance in Service-Oriented
Architectures. Proceedings of the 23rd IEEE Inte

Inte

on Advanced Information Networking and Applications (AINA),
IEEE Press, 2009.

[9] F. DeRemer, H. Kron. Programming in the Large versus
Programming in the Small. Proceedings of the International
Conference on Reliable Software, ACM New York, 1975.

[10] Eclipse BPEL Proje .
Computing Workshops: 4th International Workshop on Workflow
Management (ICWM), IEEE Press, 2009.

[32] T. Stahl, M. Völter, K. Czarnecki. Model-driven Software
Development: Technology, Engineering, M

http://www.eclipse.org/bpel/
[11] R. Eshuis, P. Grefen. Constructing Customized Process Views. In:

Data & Knowledge Engineering, 64(2):419– 438, Elsevier, 2008.

n,

S
[12] E. Gamma, R. Helm, R. Johnson. Design Patterns. Elements of

Reusable Object-Oriented S
1995.

[13] F. Gottschalk, M. Rosemann, W. van der Aalst. My Own Proc s:
In

Providing Dedicated Views on EPCs. In: EPK, pages 156–175,
Gesellschaft für Informatik, 2005.

[14] R. plexer

driven SOA. Proceedings of the International Working Conference on
Business Process and Services Computing (BPSC), pages 105-124,
Gesellschaft für Informatik, 2007.

[35] J. Vanhatalo, H. Völzer, F. Leymann. Faster and more focused
Control-flow Analysis for Busines

Prozessmodelle. PhD thesis, University of Ulm, 2008.
[15] O. Maqbool, H. Babri: Automated Software Clustering: An Insight

using Cluster Labels, In: The Jour
(2006):1632–1648, Elsevier, 2006.

[16] G. Hohpe, B. Woolf. Enterprise Integration Pattern Deco

Building, and Deploying Messaging Solutions. Addison-Wesley
Longman, 2003.

[17] S. Jablonski, M. Goetz. Perspec GeneVisualization. BPM Workshops: Workshop on Business Process
Design (BPD), Springer, 2007.

[18] O. Kopp, D. Mart
Graph-Based and Block-Structured Business Process Modelling
Languages. In: Enterprise Modelling and Information Systems. Vol.
4(1), Gesellschaft für Informatik

[19] J. Küster, J. Koehler, K. Ryndina: Improving Business Process
Models with Reference Models in Business-Driven Development.
BPM Workshops: 2nd International Workshop on Business Process
Design (BPD), Springer, 2006.

[20] F. Leymann, D. Roller. Production Workflow – Concepts and
Techniques. Prentice Hall, 2000.

[21] D. Liu, M. Shen. Workflow Modeling for virtual Processes: an Order-
preserving Process-view App s,

Pr

28(6):505–532, Elsevier, 2003.
[22] B. Weber, M. Reichert: Refactoring Pr ocess Conference (PLoP), Addison-Wesley, 1996.

[41] C. Alexander, S. Ishikawa, M. Silverstein. A Pattern Language:
Towns, Buildings, Construction. Oxford U

Repositories. Proceedings 20th Intl. Conf. on Advanced Information
Systems Engineering (CAiSE'08), Springer, 2008.

[23] J. Mendling, C. Simon. Business ation. 1997.
[42] T. Mens, P. van Gorp. A Taxonomy of Model Transformations. In

Electronic Notes
BPM Workshops: Workshop on Business Process Design (BPD),
Springer, 2006.

[24] Object Management Group (OMG). Business odeling Elsevier, 2006.
[43] M. Vasko, S. Dustdar. A View Based Analysis of Workflow

Modeling Langu th

Notation Version 1.2. OMG Standard, 2009.
[25] 8th International Workshop on Graph Transformation and Visual

Modeling Techn

[26] X. Zhao, C. Liu, W. Sadiq, M. Kowalkiewicz, S. Yongchareon. WS-
BPEL Business Process Abstraction and Concretisation. Proceeding

e 14th International Conference on Database Systems for
Advanced Applications, Springer, 2009.

[27] Organization for the Advancement of Structured Information
Standards (OASIS). Web Services B
Language Version 2.0. OASIS Standard, 2007.

[28] A. Polyvyanyy, S. Smirnov, M. Weske. Process Model Abstraction:
A Slider Approach. Proceedings of the 1 th

tributed Object Conference (EDOC), IEEE Computer Society,
2008.

[29] S. Rinderle, R. Bobrik, M. Reichert, T. Bauer. Business Process
Visuali

rnational Conference on Enterprise Information Systems (ICEIS),
pages 204–211, INSTICC Press, 2006.

[30] A.W. Scheer, K. Schneider. ARIS – Architecture of Integrated
Information Systems. Springer, 2005.

[31] D. Schumm, D. Karastoyanova, F. Leymann, J. Nitzsche. On
Visualizing and Modelling BPEL wit

ons, 2006.
[33] A. Streule. Abstract Views on BPEL Processes. Diploma thesis no.

2889, Univer
formationstechnik, 2009. ftp://ftp.informatik.uni-

stuttgart.de/pub/library/medoc.ustuttgart_fi/DIP-2889/DIP-2889.pdf
[34] H. Tran, U. Zdun, S. Dustdar. View-based and Model-driven

Approach for Reducing the Development Complexity in Process-

mposition. Proceedings of the 5th International Conference on
Service-Oriented Computing (ICSOC), Springer, 2007.

[36] K. Czarnecki, S. Helsen. Classification of Model Transformation
Approaches. Proceedings of the 2nd OOPSLA W

rative Techniques in the Context of the Model Driven
Architecture, Anaheim, 2003.

[37] M. Weske: Business Process Management: Concepts, Languages,
Architectures. Springer, 2007.

[38] C. Günther, W. van der Aalst. Fuzzy Mining – Adaptive Process
Simplification Based on Multi
the 5th International Conference on Business Process Management
(BPM), Springer, 2007.

[39] D. Schumm, T. Anstett, F. Leymann, D. Schleicher. Applicability of
Process Viewing Patt

oceedings of the International Workshop on Models and Model-
driven Methods for Service Engineering (3M4SE 2010), in
conjunction with the 14th IEEE International EDOC Conference
(EDOC 2010), IEEE Computer Society Press, 2010.

[40] G. Meszaros, J. Doble. MetaPatterns: A Pattern Language for Pattern
Writing. Proceedings of the 3rd Pattern Languages

Conference on Parallel, Distributed, and Network-Based Processing
(PDP) pages 293–300, IEEE Computer Society, 2006...

	I. Introduction
	II. Process Viewing Patterns
	A. Process View Metamodel
	B. Structure Patterns
	C. Presentation Patterns
	D. Inter-view Patterns
	E. Augmentation Patterns
	F. Ambiguities

	III. Application Scenarios
	IV. Application Example: Public Views for Business Process Outsourcing
	A. Public View Generation Principle
	B. Process Model Transformation

	V. Related Work
	VI. Conclusion and Future Work
	Acknowledgment
	References

	cover-IEEE.pdf
	Foliennummer 1

