
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wieland, goerlach, schumm, leymann}@iaas.uni-stuttgart.de

Interaction Choreography Models in BPEL:
Choreographies on the Enterprise Service Bus

Oliver Kopp, Lasse Engler, Tammo van Lessen,
Frank Leymann, Jörg Nitzsche

© 2011 Springer-Verlag.
See also CCIS-Homepage: http://www.springer.com/series/7899

@inproceedings{BPELgold,
 author = {Oliver Kopp and Lasse Engler and Tammo van Lessen and
 Frank Leymann and J\”{o}rg Nitzsche},
 title = {Interaction Choreography Models in {BPEL}:
 Choreographies on the Enterprise Service Bus. },
 booktitle = {S-BPM ONE 2010 - the Subjectoriented BPM Conference (CCIS)},
 year = {2011},
 series = {Communications in Computer and Information Science},
 volume = {138},
 publisher = {Springer-Verlag}
}

:

Institute of Architecture of Application Systems

Interaction Choreography Models in BPEL:
Choreographies on the Enterprise Service Bus

Oliver Kopp, Lasse Engler, Tammo van Lessen,
Frank Leymann, and Jörg Nitzsche∗

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract Interactions between services may be globally captured by
choreographies. We introduce BPELgold supporting modeling interaction
choreography models using BPEL. We show the usage of BPELgold in an
enterprise service bus to ensure an executed message exchange complies
with a pre-defined choreography.

1 Introduction

Choreographies capture the interaction between services on a global perspective [1].
The behavior of services taking part in the choreography may be expressed by an
abstract process, which in turn models the public visible behavior. A choreography
model interconnects the communication activities of each abstract process and
hence forms an interconnection model. The second paradigm offered to model
choreographies is the interaction model paradigm. Here, a send/receive message
exchange is modeled as an atomic activity. The public visible behavior of each
participant is not shown any more. Details are presented in Sect. 2.

BPEL [2] and BPEL4Chor [3] are currently the only two choreography ap-
proaches tightly integrated in the Web service stack. In this paper, we present
BPELgold as a complement to BPEL4Chor: BPEL4Chor supports the intercon-
nection-based modeling approach and BPELgold supports the interaction-based
modeling approach. “gold” is an abbreviation for global definition emphasizing
the global process consisting of interactions. We show that BPELgold fulfills
all requirements put on a choreography language. Subsequently, we show how
BPELgold can be integrated in an enterprise service bus to make it choreography-
aware. By aligning BPELgold with established standards in the field of Web
service (e.g., BPEL, WSDL, XML), existing tooling as well knowledge may be
reapplied in a BPELgold setting.

On the one hand, choreographies capture the interaction between services
on a global perspective. On the other hand, an enterprise service bus (ESB) is
an standard-based integration platform [4]. For instance, all messages sent by
a service are routed through the ESB, which selects the appropriate endpoint.

∗ This work was supported by funds from the European Commission (contract
no. 215175 for the FP7-ICT-2007-1 project COMPAS)

2 Oliver Kopp et al.

Typically, an ESB is not aware of the choreography the service implementers
agreed upon before executing the services. This paper introduces the concept of
a choreography-aware enterprise service bus. A choreography-aware enterprise
service bus can detect violations of the choreography and can react accordingly.
Possible reactions include the interruption of the message transfer and informing
the participants that an error occurred in the choreography. For that purpose,
an extended choreography model can be modeled, which specifies reactions to
erroneous situations.

Consequently, this paper is structured as follows: Section 2 presents an
overview on the two choreography modeling paradigms. Subsequently, Sect. 3
introduces the choreography language BPELgold. It is evaluated against require-
ments on choreography languages in Sect. 4. The concept and implementation
of a choreography-aware enterprise service bus is presented in Sect. 5. Section 6
presents an overview on related work in the field of compliance with respect to
choreographies. Finally, Sect. 7 concludes and provides and outlook on future
work.

2 Choreography Modeling Paradigms

We use a choreography dealing with investment proposals as illustration. A cus-
tomer talks to a financial consultant. The consultant recommends an investment
and hands over an investment proposal including information material. Govern-
mental regulations require a time-window of at least 24 hours for the customer
to decide on the investment. After 24 hours have passed, the customer may sign
a contract. It is not allowed to receive a signature from the customer beforehand.
Figure 1 models the choreography using the interconnection model paradigm.
The notation used is the Business Process Model and Notation BPMN 2.0 [5].
The public visible behavior of each participant is modeled using a BPMN pool.
The communication elements are connected by message flows. The intermediate
event with the arrow label denotes that the choreography continues in the case
the customer votes for the investment. The choreography may also be expressed
using the interaction model paradigm. Figure 2 presents the choreography using
the BPMN 2.0 choreography notation. Here, pairs of sending and receiving el-
ements are collapsed into one choreography task. The gray shaded participant
is the participant receiving the message. The event-based gateway denotes that
the decision whether to accept or reject the proposal is made available to the
consultant by the respective message.

The expressiveness of the two modeling paradigms “interaction-based mod-
eling” and “interconnection-based modeling” is different [6]. On the one hand,
interconnection models allow modeling of incompatible processes or even pro-
cesses for which no partner exists [7]. For instance, service A waits for a message,
but service B never sends that message. Decker and Weske [8] identified 8 anti-
patterns which can be expressed by interconnection models, but not in interaction
models. Wolf [7] studies the existence of partners for services, which is called
“controllability”. On the other hand, interaction models may introduce constraints,

Interaction Choreography Models in BPEL 3

Figure 1. Investment Choreography: Interconnection Model (BPMN 2.0 Collab-
oration)

Send
Investment
Proposal
Customer

Consultant

Accept
Proposal

Customer

Consultant

Reject
Proposal

Customer

Consultant
[24h]

Figure 2. Investment Choreography: Interaction Model (BPMN 2.0 Choreogra-
phy)

which need to be locally enforced in interconnection models by adding additional
communication that is not captured in the original interaction model [9]. This
property is called “local enforceability”. For instance, if service A sends a message
to service B and the interaction model demands that subsequently service C
sends a message to service D, service C has to know when service B has received
the message. “Realizability” is an even stronger requirement, which demands that
all conversations produced by the interaction model must also be produced by
the corresponding interconnection models [10]. Lohmann and Wolf [11] showed
that the property of realizability is equal to the property of controllability.

Although the expressiveness of the two modeling paradigms is not equal,
there exist mappings from interaction models to interconnection models and
vice versa: Zaha et al. [9] present an approach of mapping interaction models
to interconnection models. As shown above, not all interaction models can
be mapped to interconnection models. Kopp et al. [12] show that sound and
safe BPMN models following the interconnection style and containing control
flow without exception handling can be mapped to interaction BPMN models
(iBPMN [13]). Having BPELgold at hand, the approaches may be adapted to map
BPEL4Chor models to BPELgold models and thus being able to switch between
the two modeling paradigms.

4 Oliver Kopp et al.

Decker et al. [14] show 10 requirements put on choreography languages. An
evaluation using this requirements shows whether a language is suitable for
choreography modeling. Decker et al. [14] use these requirements to evaluate
current choreography languages including WS-CDL [15] and BPEL4Chor [3].
The result is, that WS-CDL fails in modeling an a priori unknown number
of participants and that the integration with orchestration languages such as
BPEL [2] is not given. BPEL4Chor on the other hand, fulfills all requirements.
These requirements themselves are mainly based on the service interaction
patterns [16]. These patterns list possible interactions between business processes.
We use the requirements to evaluate BPELgold and present them together with
the evaluation of BPELgold in Sect. 4.

BPMN 2.0 offers both the interconnection model paradigm (“BPMN col-
laborations”) and the interaction model paradigm (“BPMN choreography”).
Decker et al. [17] show the integration of BPMN interconnection models and
BPEL4Chor. There is currently no study about the integration of BPMN 2.0
interaction models and BPEL4Chor or BPELgold. This study is out of scope of
this paper as we focus on BPELgold and its integration in an enterprise service
bus. A first evaluation of BPMN 2.0 showed that it still does not support the
exchange of participant references between partners. Thus, BPEL4Chor and
BPELgold are ahead of BPMN 2.0 in this regard. A detailed evaluation of BPMN
2.0 and a comparison to BPELgold are our ongoing work.

3 BPELgold

BPEL4Chor extended BPEL to a choreography language supporting interconnec-
tion models. Thereby, a participant topology and a grounding artifact has been
added. We re-use these extensions to create a interaction choreography modeling
language based on BPEL.

A participant topology provides a view on the participants and the connections
between them. It consists of a list of participant types, a list of participants,
and a list of message links. Each participant type is associated with a BPEL
process describing the public visible behavior of this type. Thus, this artifact
is called “participant behavior description”. Concrete participants are listed
subsequently. Each is linked to a participant type and thus specifying its behavior.
BPEL4Chor also supports sets of participants, which enables modeling of an a
priori unknown number of participants in a choreography. Each participant in a
set is merely a reference to a concrete participant. In case a message is received
from a participant not being in the set, it is added to the set. Finally, the message
links connect communication activities of two participant behavior descriptions.
It also lists the name of the message being sent and the participant references
contained in the message (which may be empty).

BPEL4Chor is not bound to concrete WSDL service definitions: partnerLinks,
portTypes, and operations are not specified in the communication activities.
Instead, the message links establish the connection to the partner. When a
BPEL4Chor choreography is executed, the choreography description itself is not

Interaction Choreography Models in BPEL 5

executed, but services implementing the behavior described by the participant
behavior descriptions. The services may be realized using BPEL, but they are
not required to do so. Nevertheless, the service needs to know about WSDL
information to be able to communicate with the partner service. This information
is provided by the grounding document. Here, a mapping from a message link
to a portType/operation pair is provided. This is then used to generate an
abstract BPEL process for each participant behavior description, where the
required partnerLinks are generated [14]. The abstract BPEL processes are
not executable by themselves. Internal activities such as assign activities or
invokations of internal services have to be added.

3.1 Participant Topology

BPELgold reuses the concept of the participant topology, but changes the way
of the description of the interaction. Instead of specifying the behavior of each
participant separately, an abstract BPEL process providing the interaction is
used. A reference to the process is provided in the topology by the attribute
gld:interactionDescription.

Figure 3 presents the topology for the investment choreography. First, the
different participant types “Consultant” and “Customer” are enumerated. Subse-
quently, the concrete participants “consultant” and “customer” of the respective
types are declared. In the participants element, multiple participantSet

elements may occur. Here, additional participants can be listed. The semantics
is that the participant are contained in the set. Here, a participant is merely a
reference to a participant in the set instead of a concrete participant. In case
a message is received from one participant out of a possible set of participants,
the reference to this participant is added to the set at the receivers’ side. The
list of participants and participant sets is followed by a list of message links. In
the investment choreography, there are three send/receive message exchanges
leading to three message links. Each message link takes a name, a sender, and a
receiver attribute. The name is unique and required for identification in the
interaction description. Additionally, a message link can take a participantRefs

attribute enabling the transfer of participant references. The attribute sender

may be replaced by the attribute senders, where a set of possible senders may
be specified. This enables modeling of an a priori unknown set of participants.
The sender may send a reference to himself to enable a reply back to him. In
case the reference is included in a set, this reference is added to the set at the
receiver’s side.

The participantSet element may be annotated with a forEach attribute.
This attribute indicates, that the referenced forEach iterates over the respective
sets. The current iterator is provided by a forEach attribute at a participant
reference contained in the set. This enables sending a message to multiple
participants. forEach is an activity of BPEL, which is used for iterating over a set
in a sequential or parallel way. The concrete action has to be modeled as activity
nested in the forEach activity. In case of BPELgold this is the gld:interaction

activity.

6 Oliver Kopp et al.

<topology name="investment" gld:interactionDescription="inv:interactions">
<participantTypes>

<participant name="Consultant" />
<participant name="Customer" />

</participantTypes>
<participants>

<participant name="consultant" type="Consultant" />
<participant name="customer" type="Customer" />

</participants>
<messageLinks>

<messageLink name="investmentProposal"
sender="consultant" receiver="customer" />

<messageLink name="acceptance"
sender="customer" receiver="consultant" />

<messageLink name="rejection"
sender="customer" receiver="consultant" />

</messageLinks>
</topology>

Figure 3. Investment Choreography: BPELgold Participant Topology

3.2 Interaction Description

The main building block of the interaction description is the gld:interaction

activity. This activity is embedded as an extensionActivity in the BPEL
process. BPELgold uses one abstract BPEL process to capture the interactions
between the participants. An abstract BPEL process always follows an abstract
process profile. BPELgold introduces two profiles: (i) The “Abstract Process
Profile for Basic Interaction Models” and (ii) the “Abstract Process Profile for
Extended Interaction Models”. The basic profile enables specification for the
interactions between the participants and hence provides a true global view. The
extended profile allows additional communication starting from or targeted to
the global observer. A global observer observes the interactions made by the
participants of the choreography. In our case, this global observer is the enterprise
service bus.

The “Abstract Process Profile for Basic Interaction Models” forbids the usage
of BPEL’s standard communication activities and only allows gld:interaction
as communication activity. Hence, only the interaction between participants can
be modeled and the modeled process does not require an active global observer.
As the global observer has to track the choreography and uncertainty should not
be modeled, the profile requires that the expressions of conditions must be based
on data derived from exchanged messages and that all modifications from the
message receipt to the condition are modeled. For instance, required variable
assignment activities have to be modeled. The requirement ensures that the
global observer can evaluate the conditions for itself and thus properly keeps
track of the choreography. Opaque activities and attributes are allowed as long
as they do not infer with that requirement.

The “Abstract Process Profile for Extended Interaction Models” allows for
modeling the interactions between participants. In addition, the global observer
may actively participate in the choreography. Reasons include a communication of
faults in the choreography execution to participants, which are not notified of the
faults otherwise. Besides gld:interaction activities, the common BPEL com-

Interaction Choreography Models in BPEL 7

munication activities are allowed. BPEL4Chor’s rules forbidding partnerLink,
portType, and operation still apply. In addition, the sender or receiver of such
a communication activity must be the GOLDobserver, which also must be listed
as participant in the participant topology. For these communication activities,
the message links specified by BPEL4Chor have to be used. The GOLDobserver
participant must not be used in message links referred to in gld:interaction

activities. As a consequence, this profile mixes interaction models and intercon-
nection models together: The interaction between the participants is modeled
using the interaction paradigm and the interaction between the global observer
and the participants is modeled using the interconnection paradigm. The reason
is that the global observer takes a special role in the choreography as it knows
the status of the choreography and can also react accordingly if a participant
does not comply with the choreography or even disappears. A detailed discussion
is provided in Sect. 5.

The extended interaction models defines three standard faults:
gld:interactionInitiationFault, gld:interactionCompletionFault, and
gld:choreographyViolation. A gld:interactionInitiationFault is raised
if the interaction cannot be initiated by the sending participant. Reasons in-
clude that the participant itself crashed and does not recover, or that message
sending activity is on a dead path in the process and will never be executed. A
gld:interactionCompletionFault is raised if the message cannot be received
by the targeted participant. Reasons include that the participant crashed and
does not recover, a communication fault to the receiver occurred, or that the
message receiving activity is on a dead path in the process and will never be exe-
cuted. Finally, a gld:choreographyViolation fault is raised if the CSB detects
a violation of the choreography. The reason is a message which is sent but not
allowed in the choreography definition.

A gld:interaction activity itself refers to a message link by the messageLink
attribute. The referred message link in turn states from which participant to
with other participant the message is sent. This indirection is inherited from
BPEL4Chor, where the connection between participants is also made at the
participant topology. The reuse enables a seamless integration with BPEL4Chor
described in Sect. 3.3. The child element correlations denotes the correlations
used in the interaction. Both the sender and the receiver use the same correlation
set. Each set may be initiated (yes) or an initiation may be forbidden (no). In
case it is unsure, whether the set has already been initiated, the value join may
be used. These options are derived from the BPEL specification, where the same
values are specified. BPELgold introduces the attributes senderInitiate and
receiverInitiate to enable a specification of the sender’s and the receiver’s
behavior according to correlation. The attribute value is transformed to the
initiate attribute of the respective communication activity in the respective
participant behavior description. The attribute may take the additional value n/a
to indicate that the correlation set is not used at the respective participant. For
instance, in our scenario, the customer is not required to use a correlation set as
he executes a receive/send message exchange only. Finally, an gld:interaction

8 Oliver Kopp et al.

<process>
<sequence>

<extensionActivity>
<gld:interaction messageLink="investmentProposal">

<correlations>
<correlation set="cor" gld:senderInitiate="yes"

gld:receiverInitiate="n/a" />
</correlations>

</gld:interaction>
</extensionActivity>
<wait for="P1D" />
<pick>

<gld:onInteraction messageLink="acceptance">
<correlations>

<correlation set="cor" gld:senderInitiate="n/a" />
</correlations>

</gld:onInteraction>
<gld:onInteraction messageLink="rejection">

<correlations>
<correlation set="cor" gld:senderInitiate="n/a" />

</correlations>
</gld:onInteraction>

</pick>
</sequence>

</process>

Figure 4. Investment Choreography: BPELgold Interaction Description

activity may take the attribute variable to specify the message format (by the
type of the variable) and to enable choreography tracking by the global observer.

Figure 4 presents the interaction description of the investment choreography
using the basic profile. The correlation set used for communication is named cor,
initiated at the sender only. In our scenario, the customer executes a receive/send
message exchange only. If one regards the full choreography, the customer has
to send initiate a correlation set on his own at the acceptance interaction. This
ensures that the consultant reaches him to negotiate the details of the contract.
The pick activity uses gld:onInteraction branches, which replace BPEL’s
onMessage branches.

3.3 From BPELgold to Executable BPEL Processes

Going from BPELgold to executable BPEL processes is one way to enact the
choreography. Other ways include that each participant uses the choreography
description and implements the services in his favorite language. Nevertheless,
the created endpoints must be made available to the other participants in order
to enable them to reach the participant.

When using BPEL as implementation language, the way starting from
BPELgold is depicted in Fig. 5: A choreography is modeled using a BPELgold

participant topology, a BPELgold interaction description and optionally a ground-
ing. A grounding provides a mapping from the message links to their concrete
WSDL implementation in the form of one concrete portType and one concrete
operation for each message link.

The BPELgold participant topology is transformed to a BPEL4Chor par-
ticipant topology, where names for sending and receiving activities have to be

Interaction Choreography Models in BPEL 9

gold

manual
refinement

automatic
transformation

Legend:

Figure 5. From a BPELgold Choreography Description to Executable BPEL
Processes

generated. This generation is necessary as BPELgold has no knowledge of the
activities used at the participants. The process interaction description is trans-
formed to participant behavior descriptions following the ideas presented in [9].
The main idea is to split an interactionActivity into an invoke and receive

activity. A pick is translated into an if at the sender’s side and to a pick at the
receiver’s side. For each gld:onInteraction branch, a condition branch in the
if activity is generated. The first activity in the condition branch is an invoke

activity. On the receiver’s side, each gld:onInteraction branch is transformed
to an onMessage branch. A detailed description of the transformation is out
of scope of this paper and will be presented in our future work. In case the
grounding description does not exist, it has to be created in order to gain a full
BPEL4Chor choreography description. This choreography description can now
be used to generate abstract BPEL processes as shown in [14]. These abstract
BPEL processes contain partnerLinks, portTypes, and operations at each
communication activity. The processes are abstract as they do not contain the
internal behavior of each participant. The abstract BPEL processes have to be
expanded in order to get executable BPEL processes. This is the only manual
refinement step.

4 Evaluation of BPELgold

In this section, we evaluate BPELgold using the requirements on choreogra-
phies [14], which in turn are based on the service interaction patterns [16]. Other
approaches to compare modeling languages are not tailored towards choreogra-
phy languages, but towards orchestration languages. These approaches include
the workflow patterns [18], process instantiation patterns [19], correlation pat-
terns [20], data handling patterns [21], exception handling patterns [22], and a
discussion regarding block-structured and graph-based modeling styles [23]. As
these patterns are not centered around choreographies, an evaluation using these
patterns is out of scope of this paper, but part of our future work.

In the following, we list each requirement of [14] and evaluate BPELgold

according to its fulfillment.

10 Oliver Kopp et al.

R1. Multi-lateral interactions A choreography language has to support more
than two participants in a choreography. This is directly enabled by the BPELgold

topology.

R2. Service topology A choreography language should provide a structural
view, where the types and number of participants involved is provided. This
is directly supported by the participant and participantSet elements in
BPELgold’s topology. In case the concrete number of instances are known from a
participant, it is listed multiple times as participant. A priori unknown numbers
are supported by the participantSet element.

R3. Service sets A choreography language must support modeling of an a
priori unknown arbitrary number of services. This is directly supported by the
participantSet element.

R4. Reference passing A choreography language must provide support for
passing references to participants to enable distribution of knowledge about par-
ticipants. BPELgold supports this requirement by the attribute participantRefs
of a message link.

R5. Message formats It is possible to agree on concrete message formats
when agreeing on a choreography. Thus, a choreography language should support
the specification of message formats. BPELgold supports specification of message
formats by the variable attribute in the interactionActivity.

R6. Interchangeability of technical configurations Concrete WSDL portTypes

and WSDL operations typically vary from implementation to implementation
even if the implementation itself offers the same functionality. Thus, a choreogra-
phy language should support changing the concrete identifiers. BPELgold enables
this by the concept of grounding.

R7. Time constraints A choreography has to offer constructs for modeling
time constraints. This is offered by BPEL’s wait activity and the onAlarm branch
of a pick activity and the event handler of a scope. Hence, this requirement is
supported by BPELgold.

R8. Exception handling Typically, there is a separation of the “happy path”
through a process and the exception path. BPELgold allows using the scope

construct of BPEL thus enables explicit modeling of exception handling.

R9. Correlation A process may be instantiated multiple times, each taking
part in different choreographies. Thus, a choreography language has to be able to
specify the identifiers used for correlation. This is enabled by the correlationSet
specification at the interactionActivity.

R10. Integration with service orchestration languages BPEL is the de-facto
standard to implement business processes based on Web services. Therefore,
choreography languages must allow an integration with BPEL, including genera-
tion of BPEL processes out of choreographies. Section 3.3 showed that BPEL
processes can be generated out of a BPELgold choreography description.

Interaction Choreography Models in BPEL 11

5 Choreography-aware Enterprise Service Bus

A traditional ESB does not know whether the message it currently routes is part
of a conversation. Thus, it cannot react on messages out of band. In contrast,
a choreography-aware enterprise service bus (CSB for short) is aware of the
choreography and can react accordingly. A CSB should act transparent to the
participants. There are use-cases, however, where participants with knowledge
about the choreography-awareness of the bus allow enhanced solutions. We refer
to such participants as choreography-aware participants (CAP for short). A CAP
offers an interface to the CSB, where the CSB may request information or inform
the CAP of events not captured in the choreography definition. For instance, a
CSB may ask the CAP whether it still runs. In case a CAP is not running any
more, the whole choreography cannot be enacted further. Thus, the CSB informs
the other CAPs that the choreography faulted. The CAPs in turn can take
appropriate fault handing actions including a termination of the process taking
part in the choreography. A CAP can also push information on interactions to
the CSB. Thus, it can inform the CSB whether an interaction has been skipped.
The CSB can then check whether this complies with the choreography definition
and take appropriate actions.

We implemented a prototype of an choreography-aware enterprise service bus
based on Apache ServiceMix 3.3.1 [24] and call it CASmix—Choreography-Aware
Servicemix. We did not change any of ServiceMix code. All extensions were
implemented through the extension mechanisms and Java Business Integration
components. For tracking the state of the choreography, we extended the Apache
ODE engine [25] to ODEgold. The overall architecture and the message flow of
one message in CASmix from a participant A to a participant B denoted by the
steps 1 to 8 in the diagram.

A binding component provides connectivity to services located outside of the
bus. Thus, the message of participant A is received by the binding component
(step 1), transforms the message to a normalized message and puts it on the
normalized message router (step 2). All communication internal of ServiceMix is
based on normalized messages. The CASmix Message Interceptor is plugged into
the normalized message router and inspects each message being put on the bus
(step 3). It checks whether the message belongs to a choreography instance. This
is done by checking with the CASmix Choreography Manager, which stores and
provides information about the currently deployed choreography descriptions.
The CASmix Choreography Manager also keeps track of currently running
choreographies and is responsible for the fault propagation to choreography-aware
participants. In case the message does not belong to a choreography, the CASmix
Message Interceptor releases the message unchanged to the normalized message
router (step 4). The message then is handed over to the binding component of
participant B (step 5’), where it is sent to participant B (step 6’). In case the
message belongs to a choreography, the target endpoint is changed to ODEgold

and the original endpoint is stored at a message property. The message is
put back to the normalized message router (step 4), where it is forwarded to
ODEgold (step 5). ODEgold checks whether there is a matching active receive

12 Oliver Kopp et al.

Particpant A Participant B

ServiceMix

CASmix
Message Interceptor ODEgold

Binding Component Binding Component

Normalized Message Router

CASmix
Choreography Manager

HTTP, JMS etc. HTTP, JMS etc.

Figure 6. CASmix: Components and Message Routing

activity. In case there is no such activity, the choreography is violated and a
gld:choreographyViolation fault is thrown in the outermost scope of the
respective choreography instance. In case an explicit fault handler is modeled, the
specified activities are executed. In case no explicit fault handler is modeled, the
choreography is terminated and (by using the CASmix Choreography Manager),
all choreography-aware participants are notified. In case ODEgold finds a matching
choreography instance for the message, the message is routed to the instance
and processed there. Otherwise, ODEgold identified a choreography model which
can be instantiated with the message and the message can be processed there.
After processing, the message is put pack to the normalized message router with
the original recipient (step 6). A flag in the message indicates that the CASmix
Message Interceptor is not required to redirect the message to ODEgold again.
Thus, the message flows via a binding component (step 7) to the participant B.

We have identified three ways to provide support for the gld:interaction

activity and the gld:onInteraction branch in Apache ODE. (i) ODE’s mech-
anism for implementing the behavior of an extensionActivity, (ii) imple-
menting the extension directly in the runtime, and (iii) transforming each
gld:interaction activity and gld:onInteraction branches into native BPEL
activities. As ODE does not support extensions for the behavior of pick activities,
the gld:onInteraction branch cannot be implemented using an extension mech-
anism. Thus, approach (i) cannot be taken. Implementing the extensions directly
in Apache ODE is a change in ODE’s internals and leads to code duplication as
the sending and the receipt of messages have to be re-implemented. Therefore, we
dropped option (ii). Finally, we opted for option (iii) and transform the BPELgold

model to a standard BPEL model.

Figure 7 shows how a gld:interaction activity is transformed to standard
BPEL. The onMessage element on line 3 is used to receive the specified mes-
sage. The operation name opName and the variable name varName is a uniquely
name within the choreography definition. The CASmix Message Interceptor
changes the destination of a message accordingly. In line 5 the endpoint reference
of the original recipient from the message header is assigned to the partner
link. In line 5 the message to the recipient is sent. ODE also propagates com-
munication faults into the process [26], thus a fault occurring at the invoke

Interaction Choreography Models in BPEL 13

1 <pick>
2 <!-- regular interaction -->
3 <onMessage partnerLink="inboundPL" operation="opName" variable="varName">
4 <sequence>
5 <assign><!-- copy original target epr to outboundPL --></assign>
6 <invoke partnerLink="outboundPL" operation="opName" variable="varName">
7 <catchAll>
8 <throw>gld:interactionCompletionFault</throw>
9 </catchAll>

10 <invoke>
11 </sequence>
12 </onMessage>
13 <!-- notification from ChoreographyManager -->
14 <onMessage partnerLink="chorManagerInbound" operation="opNameInteractionFailed" />
15 <throw>gld:interactionInitiationFault</throw>
16 </onMessage>
17 </pick>

Figure 7. gld:interaction mapped to Standard BPEL Activities (without
correlation, simplified)

activity denotes a communication fault. This fault is propagated by throwing an
gld:interactionCompletionFault (line 8). In case the CASmix Choreography
Manager detects that a participant cannot initiate the interaction any more, it
sends a message to ODEgold. This message is received by the onMessage in line 14
and leads to a propagation in the gld:interactionInitiationFault. A similar
transformation is done for a gld:onInteraction element. Opaque activities are
deleted from the process and opaque assignments, too. As the profile definition
itself ensures that values for variables are available for conditions, these deletions
do not alter the behavior of the choreography. The other elements of the process
are transformed one by one.

When a fault occurs and no explicit exception handling is modeled, the
CSB has to inform all participants. They can then trigger their individual error
handling. Propagating a fault to CAP is achieved using the interface offered by
the CAP. For non-choreography aware participants we have to distinguish three
possibilities: (i) fault messages may be sent, (ii) erroneous messages may be sent,
and (iii) future interactions may be blocked. In case the participant is expecting
a message and the respective operation supports fault messages, one of them may
be sent by the bus. If no fault message is expected, the bus may send a message
of the expected type and fill all parameters with erroneous values (such as empty
strings or 0), which in turn leads to a fault in the participants process. In case
the participant is currently expecting no messages, we just block any further
messages of it and reply with faults or faulty messages, respectively.

6 Related Work

WS-CDL has been introduced to capture choreographies in the field of Web
services. It follows the interaction modeling approach. It has been criticized for
not supporting all service interaction patterns [27], for the impossibility to specify
an a priori unknown number of participants [27], and for not being integrated with

14 Oliver Kopp et al.

BPEL [28]. Based on WS-CDL, Fredlund [29] present a tool for debugging WS-
CDL specifications and to check WS-CDL models against a property formulated
as safety automaton. It is not possible to use his tool for runtime checking
during the execution of a choreography. Kang et al. [30] extended WS-CDL to
support its execution. They mainly added variable initialization to WS-CDL and
called it WS-CDL+. As messages are received and sent, WS-CDL+ is a kind
of orchestration language without the full capabilities of BPEL. An overview
on current available choreography language and an evaluation is presented by
Decker et al. [14]. There is no language based on BPEL following the interaction
modeling paradigm.

We sketched the concept of a choreography-aware service bus in [31]. This
paper extends the work in (i) providing a concrete language for choreography
modeling and (ii) presenting a proof-of-concept implementation of a choreography-
aware enterprise service bus.

Conformance between a choreography and an orchestration can be checked
at design time [32–35]. The approaches assume that at least the public behavior
description of each service used is available. That might not be possible in
case services provided by other companies not offering the code of the deployed
implementations. Thus, the approaches cannot prove whether the opaque service
implementation adheres to the choreography specification.

Alberti et al. [36] present an approach based on a computational logic for
runtime conformance verification. The language does not support an a priori
unknown number of participants and the concrete integration to the ESB is not
shown. Rozinat and van der Aalst [37] show a conformance approach based on
Petri process models. They provide metric definitions of the degree of conformance
to the specified model. The support of an a priori unknown number of participants
and the integration to the ESB is not shown.

Gheorghe et al. [38] combine enforcement capabilities of a BPEL engine with
the ones of an enterprise service bus (ESB). Gheorghe et al. monitor the execution
of the process and the message exchange using events, which trigger actions
if a certain rule is matched. The actions include altering the process instance
and modification of messages. Thus, the possible violations are modeled in a
declarative way. This is similar to the approach taken by Montali et al. [39],
which offer a declarative way to specify choreographies. In our approach, we
opt for the explicit way of specifying choreographies. Once a choreography is
explicitly specified, it is not required any more to specify additional declarative
properties to ensure compliance: The modeled choreography artifact can directly
used to check compliance and take necessary actions.

The work of Gheorghe et al. [38] builds on the work presented by Gheorghe
et al. [40]. There, the ESB part of [38] is detailed. The work of Birukou et al. [41]
also describes a solution for compliance checking at an ESB. Here, the events
produced by a BPEL engine are put to the ESB, where the events are logged
and analyzed by a business intelligence engine and by a complex event processing
engine. That approach also does not rely on a choreography description to check
for compliance with the service interaction to the choreography model.

Interaction Choreography Models in BPEL 15

Daniel et al. [42] survey on business compliance checking, where runtime
compliance is a part of. No work uses a choreography description language sup-
porting all choreography requirements by Decker et al. and uses the choreography
description itself at the ESB to check for compliance.

A survey on the history on protocol design is provided at by von Bochmann [43].
Although the authors do not explicitly mention the modeling style used, the
models presented there follow the interconnection modeling approach.

The S-BPM language PASS (as presented by Fleischmann [44]) builds on the
interconnection model paradigm. There currently is no evaluation whether the
interaction modeling paradigm is suitable for the S-BPM approach, too.

7 Conclusion and Outlook

This paper presented BPELgold as alternative to WS-CDL and BPEL4Chor
tightly integrated in the Web service stack. Similar to WS-CDL it supports
the interaction modeling approach, but supports all common requirements on
choreography languages. Similar to BPEL4Chor it builds on the control flow
constructs of BPEL, but follows the interaction modeling paradigm instead of
the interconnection modeling paradigm.

After presenting BPELgold and an evaluation of it, we gave an overview on
CASmix, a choreography-aware service bus. We have shown how a BPELgold

choreography description can be deployed on CASmix enabling tracking of
the choreography and reacting on derivations of the choreography. Neither we
measured the efficiency choreography design using BPELgold nor measured the
cost of the additional message flow through the ODEgold component and leave
that as future work.

The current limitation of CASmix is the missing enforcement of choreographies.
For instance, if messages are sent out of order, it may be the case that CASmix puts
the choreography in a faulting state instead of holding the message back until it
can be handled by the choreography. Thus, future work is a detailed investigation
on possible implementation strategies for choreography-aware enterprise service
buses. This includes a transformation of BPELgold models to state machines,
where a choreography-aware enterprise service bus can keep track the changes
without the need of a customized BPEL engine.

Acknowledgments This work was supported by funds from the European
Commission (contract no. 215175 for the FP7-ICT-2007-1 project COMPAS,
http://www.compas-ict.eu).

References

1. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10)
(2003) 46–52

2. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard. (2007)

http://www.compas-ict.eu

16 Oliver Kopp et al.

3. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL
for Modeling Choreographies. In: International Conference on Web Services, IEEE
Computer Society (2007)

4. Chappell, D.A.: Enterprise Service Bus. Theory in Practice. 1 edn. O’Reilly Media
(July 2004)

5. Object Management Group (OMG): Business Process Model and Notation (BPMN)
Version 2.0. (2010) http://www.omg.org/cgi-bin/doc?dtc/10-06-04.

6. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies.
Information Technology 50(2) (February 2008) 122–127

7. Wolf, K.: Does my service have partners? LNCS T. Petri Nets and Other Models
of Concurrency 5460(2) (2009) 152–171

8. Decker, G., Weske, M.: Interaction-centric Modeling of Process Choreographies.
Information Systems (2010) in Press.

9. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Interaction
Modeling: Bridging Global and Local Views. In: EDOC, IEEE (2006)

10. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Business
Process Management. Volume 4714 of LNCS., Springer (2007) 305–319

11. Lohmann, N., Wolf, K.: Realizability is Controllability. In: Web Services and
Formal Methods, 6th International Workshop (WS-FM 2009, Springer (2009)

12. Kopp, O., Leymann, F., Wu, F.: Mapping interconnection choreography models to
interaction choreography models. In: Central-European Workshop on Services and
their Composition, ZEUS 2010, CEUR-WS.org (2010)

13. Decker, G., Barros, A.P.: Interaction Modeling Using BPMN. In: 1st International
Workshop on Collaborative Business Processes, Springer (2007)

14. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: From specifi-
cation to execution. Data & Knowledge Engineering 68(10) (April 2009) 946–972

15. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography
Description Language Version 1.0. (November 2005)

16. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: 3rd

International Conference on Business Process Management (BPM). Volume 3649
of LNCS., Springer (2005)

17. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service
Choreographies using BPMN and BPEL4Chor. In: International Conference on
Advanced Information Systems Engineering (CAiSE ’08), Springer (2008)

18. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

19. Decker, G., Mendling, J.: Process Instantiation. Data & Knowledge Engineering
68 (2009) 777–792

20. Barros, A.P., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-
Oriented Architectures. In: International Conference on Fundamental Approaches
to Software Engineering (FASE). LNCS (2007)

21. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Work-
flow Data Patterns: Identification, Representation and Tool Support. In: 24th

International Conference on Conceptual Modeling (ER 2005), Springer (2005)
22. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception

Patterns. In: Advanced Information Systems Engineering (AISE). Volume 4001 of
LNCS., Springer (2006)

23. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-
Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems 4(1) (June 2009) 3–13

http://www.omg.org/cgi-bin/doc?dtc/10-06-04

Interaction Choreography Models in BPEL 17

24. Apache: ServiceMix Website http://servicemix.apache.org/.
25. Apache: ODE Website http://ode.apache.org/.
26. Kopp, O., Leymann, F., Wutke, D.: Fault Handling in the Web Service Stack. In:

ICSOC 2010, Springer (2010)
27. Decker, G., Zaha, J.M.: On the Suitability of WS-CDL for Choreography Modeling.

In: EMISA 2006 – Methoden, Konzepte und Technologien für die Entwicklung von
dienstbasierten Informationssystemen. Volume 95 of LNI., GI (2006)

28. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services
Choreography Description Language (WS-CDL) (March 2005) BPTrends.

29. Fredlund, L.R.: Implementing WS-CDL. In: Proceedings of JSWEB 2006 (II
Jornadas Cientfico-Tcnicas en Servicios Web). (2006)

30. Kang, Z., Wang, H., Hung, P.C.: WS-CDL+ for web service collaboration. Infor-
mation Systems Frontiers 9(4) (2007) 375–389

31. Kopp, O., van Lessen, T., Nitzsche, J.: The Need for a Choreography-aware Service
Bus. In: YR-SOC 2008, Online (2008) 28–34

32. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
Orchestration Conformance for System Design. In: Coordination 2006. LNCS

33. Li, J., Zhu, H., Pu, G.: Conformance Validation between Choreography and
Orchestration. In: TASE 2007

34. Hongli, Y., Xiangpeng, Z., Chao, C., Zongyan, Q.: Exploring the Connec-
tion of Choreography and Orchestration with Exception Handling and Finaliza-
tion/Compensation. In: FORTE 2007. LNCS

35. M.Bravetti, Zavattaro, G.: Towards a Unifying Theory for Choreography Confor-
mance and Contract Compliance. In: 6th International Symposium on Software
Composition (SC’07). LNCS

36. Alberti, M., et al.: Computational Logic for Run-Time Verification of Web Services
Choreographies: Exploiting the SOCS-SI Tool. In: WS-FM 2006. Volume 4184 of
LNCS., Springer (2006)

37. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1) (2008) 64–95

38. Gheorghe, G., et al.: Combining Enforcement Strategies in Service Oriented
Architectures. In: ICSOC 2010, Springer (2010)

39. Montali, M., Pesic, M., Aalst, W.M.P.v.d., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographiess. ACM Trans.
Web 4(1) (2010) 1–62

40. Gheorghe, G., Neuhaus, S., Crispo, B.: xESB: An Enterprise Service Bus for Access
and Usage Control Policy Enforcement. In: Trust Management IV. Volume 321 of
IFIP Advances in Information and Communication Technology., Springer Boston
(2010)

41. Birukou, A., et al.: An integrated solution for runtime compliance governance in
SOA. In: ICSOC 2010, Springer (2010)

42. Daniel, F., et al.: Business Compliance Governance in Service-Oriented Architec-
tures. In: Proceedings of the IEEE Twenty-Third International Conference on
Advanced Information Networking and Applications (AINA’09), IEEE Press (2009)
113–120

43. von Bochmann, G., Rayner, D., West, C.H.: Some notes on the history of protocol
engineering. Computer Networks 54(18) (2010) 3197–3209

44. Fleischmann, A.: What is S-BPM? In: S-BPM ONE – Setting the State for
Subject-Oriented Business Process Management, Springer (2010)

http://servicemix.apache.org/
http://ode.apache.org/

	cover-Springer.pdf
	Foliennummer 1

