
1 Institute of Architecture
of Application Systems,

University of Stuttgart, Germany
{fehling, leymann, schumm}

@iaas.uni-stuttgart.de

2 T-Systems International GmbH,
Frankfurt, Germany

{ralf.konrad, ralph.mietzner, michael.pauly}
@t-systems.com

Flexible Process-based Applications
in Hybrid Clouds

Christoph Fehling1, Ralf Konrad2, Frank Leymann1,
Ralph Mietzner1, Michael Pauly2, David Schumm1

© 2011 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{FehlingKL11,
author = {Christoph Fehling and Ralf Konrad and Frank Leymann and

Ralph Mietzner and Michael Pauly and David Schumm},
title = {{Flexible Process‐based Applications in Hybrid Clouds}},
booktitle = {Proceedings of the 4th IEEE International Conference on Cloud

Computing, CLOUD 2011},
year = {2011},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Flexible Process-based Applications in Hybrid Clouds

Christoph Fehling, Frank Leymann,
David Schumm

Institute of Architecture of Application Systems
University of Stuttgart

Stuttgart, Germany
{fehling, leymann, schumm}@iaas.uni-stuttgart.de

Ralf Konrad, Ralph Mietzner,
Michael Pauly

T-Systems International GmbH
Frankfurt, Germany

{ralf.konrad, ralph.mietzner, michael.pauly}
@t-systems.com

Abstract— Cloud applications target large customer groups to
leverage economies of scale. To increa se the number of
customers, a flexible application design is of major importance.
It enables customers to adjust the app lication to their
individual needs in a self-service manner. In this pap er, we
classify the required variability of these flexible applications:
data variability – changes to hand led data structures;
functional variability – changes to the processes that the
application supports; user interface variability – changes to the
appearance of the application; provisioning variability – the
ability of the a pplication to be deployed in different runtime
environments. Existing and new technologies and tools are
leveraged to realize these classes of variability. Further, we
cover architectural principles to follow during the design of
flexible cloud applications and we introduce an abstract
architectural pattern to enable data variability.

Keywords- application customization, self-service,
orchestration, composite application, provisioning, cloud

I. INTRODUCTION

Today, many cloud applications handle large numbers of
customers, whose versatile demands on resources and
application performance have to be met in an effective and
timely manner. Flexibility regarding application behavior,
user interface appearance, and resource provisioning is
therefore of major importance for competitiveness of
application developers and cloud infrastructure providers.

Prior to the establishment of cloud computing, hardware
virtualization has introduced flexibility to hardware
management. It forms the basis for on-demand use of cloud
resources. Due to hardware virtualization, resources are no
longer bound to physical servers. Therefore, their
provisioning can be automated and is offered via
management interfaces to cloud users. Recently, significant
effort was made by the industry to standardize these
interfaces [1], [2]. This automation and standardization has
lead to the additional properties of computing clouds, which
differentiate them from pure virtualization environments.
These properties are: Elasticity – cloud resources can be
reserved and freed on demand; Pay-per-use – users only pay
for the currently required resources; Standardization –
management functionality is accessible via standardized
interfaces.

Many cloud offerings [3], [4], [5], [6] also brought this
flexibility of the infrastructure to the application level.
Configurable applications are offered to customers (referred
to as “Software as a Service”, SaaS). Configurable platform
services can be used by customers to develop and execute
custom applications (referred to as “Platform as a Service”,
PaaS). Also, there are offerings that allow users to flexibly
compose individual services and platform services into
custom applications (referred to as “Composition as a
Service”, CaaS [7]). In this scope, flexibility is enabled by
two types of compositions [8]. “Horizontal composition”
refers to the orchestration of services themselves.
“Vertical composition” refers to the combination of service
implementation, required middleware and runtime
environments (especially, different clouds).

In this paper, we classify the variability introduced by
horizontal and vertical composition of services and we
introduce architectural principles and techniques to create
flexible cloud applications. Further, we show how flexibility
of the underlying infrastructure can be supported on other
application layers. Application architectures following the
presented approach allow a flexible (re)composition of their
components, which enables reacting to different or changing
business demands. An abstract process-based view is
introduced on which this (re)composition can be performed.
Additionally, we cover techniques to automatically transform
component orchestrations to an executable form, which can
be provisioned to clouds. Especially, application
components can be distributed among different clouds
forming a so-called hybrid cloud. This distribution can be
specified individually for each customer. For example, one
customer may decide to provision all application components
in a public cloud, while another customer requires certain
application components to be hosted in his private cloud due
to security requirements.

As a consequence, the contributions of this paper are (i) a
classification of different variability required in flexible
cloud applications, (ii) architectural principles to enable
configurability and flexibility in applications based on
processes and service compositions, and (iii) a framework
handling the flexible user-centric (re)composition of
application components and their provisioning in a hybrid
cloud environment.

TenantCloud Application
Provider

Development

Customization

Provisioning

Usage

Application
Developer

Provisioning
Manager

Application
Customizer

Application
User

Figure 1: The Cloud Application Offering Process and

Stakeholders

To describe the different phases that a cloud application
undergoes as well as to introduce associated stakeholders, we
propose the cloud application offering process depicted in
Figure 1. The cloud application provider offers a
customizable application to multiple tenants. Each tenant
forms an individual institution, such as a company, that has
multiple application users associated with it. These users
access the application on behalf of the tenant. During the
development phase, configurable applications are
implemented by an application developer. An application
customizer adjusts such an application to the individual
requirements of a tenant during the customization phase.
This is usually done via a self-service portal that is offered
by the cloud application provider. Via this portal, a tenant
may also sign-up for the service, specify billing information,
manage application user rights etc. After the customization
phase, an infrastructure manager of the application provider
handles the provisioning phase of the application. In this
phase, the customized application is transformed into an
executable form and provisioned specifically for a tenant.
Afterwards, application users of that tenant may start using
the application during the usage phase.

The paper’s further structure respects the phases of the
cloud application offering process and is the following:
Section II describes the motivating use case based on an
application that is productively used by T-Systems, the ICT
subsidiary of Deutsche Telekom [9]. Section III classifies the
different forms of variability required by customers of these
flexible applications and describes how to enable them
during the application development phase. Section IV
introduces a framework used during the subsequent
application customization phase and application provisioning
phase. Section V discusses an evaluation of the provided
framework to handle this application customization and
provisioning in a hybrid cloud setup. Section VI covers
relevant related work. Finally, Section VII gives a summary
and an outlook of future research challenges.

II. MOTIVATING USE CASE

T-Systems provides the Process Service Platform (PSP)
as a PaaS offering to customers. Using this platform,
customers may deploy customized processes and services,
while the platform provides the necessary runtime
environment as well as additional platform services for

monitoring, billing, and access control. The architecture of
the PSP is also described in [10].

Especially, the PSP is used by T-Systems to realize SaaS
offerings that shall be individually adjusted to customer
requirements. The offering considered here, provides
management software for the public administration of the
city of Friedrichshafen. It is part of the “Smart City” pilot
project, T-City [11]. Using this software, processes of public
administrations are integrated to provide easier access for
inhabitants and increase the quality of the services provided
to them. The specific integration process considered in this
use case informs inhabitants of Friedrichshafen, which have
children of a certain age, about available places in
kindergartens. In the following, this process is referred to as
the Kindergarten Information Process. Prior to integration of
information sources, information about children was
distributed among different institutions. Therefore, parents
tried to sign up to multiple kindergartens in order to increase
their chances of having a place assigned to their child.
Capacity planning for the kindergartens of Friedrichshafen
was significantly hindered by this situation, because the
actual demand was obfuscated. Also, an earlier process to
inform parents about free kindergarten places could not
access information handled by kindergartens or schools to
exclude children that had been placed already. This resulted
in a lot of redundant communication and unnecessary
information being sent out to parents.

As depicted in Figure 2, the new PSP-based process
integrates the different information services associated with
the city center (information about inhabitants), the
kindergartens (information about available places), and local
schools (information about children that are already going to
school). Access to all this data is required to determine the
families to inform about free kindergarten places in their
area.

Platform Services

Process Engine

Service
Runtime City Center

Management Service
School

Management Service

$Billing Monitoring Access Control

Retrieve
Children
Data

Check
Schools

Check
Kindergartens

Send
Information to

Parents

Mail Service
Kindergarten

Management Service

Figure 2: Overview of the Process Service Platform (PSP) in the

considered Kindergarten Information Process

After the pilot project, the management software is
supposed to be provided as a SaaS offering to other cities
(i.e., tenants) as well. However, due to different local laws
and different management structures, the requirements of
other cities differ significantly. For example, different
requirements on security, privacy, and trust can hinder the
hosting of certain data on the provider side. Further, the data
structure that the software needs to deal with may differ. For
example, cities in the German local state “North Rhine-
Westphalia” would require additional information about

children's results of a language test to be stored. This
information would also have to be considered during the
assignment of kindergarten places to provide children with
adequate care. Additionally, different customers may
demand different media to communicate with parents and
kindergartens, like letters, e-mails, or cell-phone text
messages.

III. DEVELOPMENT OF FLEXIBLE CLOUD APPLICATIONS

In general, we propose to divide the variability required
by flexible SaaS applications into four classes. Data
variability guarantees that the software can handle additional
data fields and is flexible regarding the schema of handled
data. In the use case, the information about language test
results can be added to a variable data element after
implementation. Functional variability refers to the
capability of the application to activate, deactivate, or replace
certain steps in supported processes. Additionally, the user-
centric definition of completely custom processes could be
desirable. For example, the Kindergarten Information
Process can allow replacement of the activity informing the
parents to support different communication media.
Provisioning variability considers how the application can be
distributed among different computing environments to
fulfill different privacy, security, and trust requirements. For
example, the software considered in the use case shall
support that certain services are hosted in the customer's
private data center. This is mostly to comply with local laws
prohibiting public administrations to outsource inhabitants’
personal data. In other fields, such as healthcare, similar
challenges arise [10]. User interface variability describes
how the user interface of an application can be adjusted to
customers' demands or how individual user interfaces can be
developed for a particular customer. In our use case, this
variability demanded adjustment of the user interface
language, its color, and graphics.

Often, the desired flexibilities must be considered in the
applications architecture. In the following we therefore
describe architectural principles to follow during the
development of flexible application components, as well as a
user-centric, process based orchestration and application
configuration. One of the main challenges during the
development of the Kindergarten Information Process arose
from the fact that many process modeling languages used
today are focusing either on modeling or on execution [12],
[13]. In our case, customers without programming
knowledge had to be enabled to orchestrate pre-determined
application components or alter reference orchestrations in a
fast and flexible manner. A manual transformation from
modeling language to execution language was unsuitable for
this task. Therefore, we abstracted from predefined execution
language constructs towards graphical elements that are
orchestrated. This lead to a tight alignment of modeling
language and execution language and enabled an automatic
transformation. In the following, we introduce the proposed
structure of application components and cover how the
different classes of variability are supported.

A. General Structure of Application Components

Componentization and loose-coupling of application
components ensure the ability of the composite application to
scale-out and to ensure high availability in a cloud
environment. This is covered in greater detail in Section VI
(background and related work).

Component
Implementation

Execution
Flow

Abstract
Views

Provisioning
Flow

Data
Structures

Component
Interface

Figure 3: Artifacts that constitute an Application Component

Figure 3 depicts the artifacts that constitute an
application component of such a componentized application.
In scope of the motivating use case, such application
components map to services that are deployed on the PSP.
The component implementation contains the concrete
software artifacts that implement the desired functionality.
The component interface describes how this functionality
can be accessed. We used WSDL [14] in the use case, but
other interface description languages could also be used.
This is mainly influenced by the orchestration language that
is employed to orchestrate applications components. For the
Kindergarten Information Process, we used BPEL [15] to
orchestrate application components. These orchestrations of
application components can again be used to form new
application components. The abstract views of an application
component describe its graphical representation to be used
during the orchestration. Multiple abstract views can be
defined by the application developer. Each abstract view of
an application component is made up of (i) an icon used for
its graphical representation, (ii) connection points used
during graphical orchestration, and (iii) a description of the
offered function. Each abstract view is associated with an
execution flow. This flow subsumes the required execution
language constructs needed to access the application
component’s functions via its interface. It is used during the
transformation of the orchestration to an executable form,
which is covered in detail in Section IV.B. Additional
information described by the data structures allows users to
customize the data elements handled by an application
component. In the use case, this was employed to enable
addition of the language test results to children data
elements. Finally, each component has a provisioning flow
that describes the required tasks to configure and provision
the component in different environments. How application
components are provisioned according to provisioning flows
is covered in Section IV.C. In the following, it is described,
how the application component artifacts and the architecture
of its implementation are used to enable the different classes
of variability.

B. Data Variability

Data variability has to be respected by the application
component's implementation (handling of variable data
elements) as well as by its interface (generic access to data
elements). We identified the architectural specifics required
for this component behavior as the variable data component
pattern depicted in Figure 4. Implementation of this
architectural pattern enables a variable structure of handled
data elements and generic data querying capabilities that are
offered by the application component. Data elements can be
extended by additional fields and a generic data manipulating
interface can be used to handle completely new data
elements.

Variable Data
Component

Specialized
Functions

Generic CRUD
Functions

key key

id id

id

Figure 4: Conceptual Architecture of the Data‐flexible

Component

The extensibility of data elements is achieved by each
data element being associated with an untyped list of further
data elements. This allows additional data elements to be
associated with existing ones and does not require the
structure or type of the new ones to be known during design
time of the application. Each entry in this list is identified via
a key. Regarding the motivating use case, such a data
structure was used to store additional information about
language test results associated with children data elements.

In case new data elements shall also be queried directly
and not via existing functions, additional generic data
manipulating functions can be implemented. These are used
to create, read, update, and delete data elements managed by
the application component. These are the CRUD functions
[16], which are, for example, used by the REST architecture
[17]. If this generic data access is desired, additional data
elements are identified by a unique identifier (id). This id is
passed to the generic functions as a parameter to identify the
data element to manipulate. A user is enabled to query and
manipulate arbitrary data elements for which special
querying functions were unknown during design time.

The drawback of such variable data elements and generic
querying interfaces is that a lot of the application
functionality is now hidden behind generic interfaces. The
readability of such interfaces is therefore drastically reduced.
Also, newly required functionality is not implemented in the
associated application component but on the orchestration
layer, which increases the complexity of the orchestrations.
Additionally, the optimization of query execution, database
structure, and database partitioning is hindered. This can
drastically affect the performance and scaling behavior of
customized data components. In contrast to relational
databases, this approach moves away from a restricting

database schema. It is employed by many databases that
emerged in the area of cloud computing. These so-called
NoSQL databases are used to serve users with arbitrary
requirements on data structures and employ the elasticity of
clouds to handle performance issues. Queries are distributed
among many compute nodes using a mechanism called Map
Reduce [18].

 Due to these restrictions, variability has to be weighed
against interface readability, performance, and orchestration
complexity. While the first two will only affect the
application provider, complexity of reference orchestrations
hinder customers during application customization. In [19]
an approach is given how to make the correct architectural
decisions in this scope.

The variable data component pattern is implicitly used by
many cloud providers, such as Saleforce.com [3] to
customize its CRM software. A similar approach is also
employed in XML via the xs:any-tag [20].

C. Provisioning Variability

Application components are provisioned individually for
integration into orchestrations that are customized by tenants.
When an application component is provisioned, its
provisioning flow is being executed. This flow describes
automated and manual tasks required to provision the
component. For example, this can include starting a virtual
machine with a certain operating system, installing required
middleware, and deploying the application components on it.

To enable provisioning variability, we defined multiple
branches in execution flows of application components to
describe different alternatives how the application
component may be provisioned. During the provisioning, an
application customizer is asked which alternative is
preferred. This way, an application component can be
provisioned in different environments, such as the PSP,
Amazon EC2 [21], or even within the users’ private data
centers. In the corresponding branches of the application
component's provisioning flow, activities are contained
which perform an upload of the application component to the
PSP, instantiate an Amazon virtual machine image with the
required application stack, or ship the component on CD to
be installed in users’ private data centers.

D. Functional Variability

To enable functional variability, the application
components may be orchestrated in a process-based view. In
this view, the elementary orchestration language constructs
are made available to application customizers while
complexity introduced by service invocation, service
addressing, variable initialization and variable assignment is
hidden. This additional complexity is addressed in the
application component’s execution flow, which is used
during the generation of executable orchestrations. This
generation is described in Section IV.B.

The elementary elements used for our process-based
application orchestration are mainly influenced by BPEL.
Directed control connectors connect any two graphical
elements in the orchestration view except other control
connectors. Each orchestration has exactly one start element

and exactly one end element. The start element may not have
any incoming control connectors. The end element may not
have any outgoing ones. Abstract views of application
components can be freely interconnected using control
connectors or may be part of a sequence. Such a sequence
element specifies activities that are executed one after
another. Branches can be expressed using an if-element.
Additionally, a for-each element enables the iteration of lists
of data elements.

E. User Interface Variability

Similar to provisioning variability, variability of the user
interface in handled in the provisioning flow of the
application components that constitutes the user interface.
For example, an application customizer can be asked to
specify desired UI colors, logos, or the language to be used.
In case of rich clients, the UI can be shipped to applications
users and can then be customized in the same form as other
desktop applications.

IV. CUSTOMIZATION AND PROVISIONING FRAMEWORK

In this section, we describe the framework providing
technologies and tools used to customize and provision
flexible cloud applications. The components of the
framework are depicted in Figure 5.

Customization & Provisioning Framework

Reference
Orchestrations

Application
Components

Modeling
Tool

Provisioning
Tool

Execution Flow

Provisioning Flow

Self‐Service
Portal

Application
Developer

Application
Customizer

provides uses

orchestrates

enacts

uses

refines contains

Cloud
Process Service

Platform
Customer Data

Center

manages resources

Provisioning Flow

Figure 5: Components of the Customization & Provisioning

Framework

The application developer provides reference
orchestrations and application components. Application
components are orchestrated by reference orchestrations to
provide certain functionality, like the Kindergarten
Information Process, to tenants. The application customizer
uses a modeling tool as part of a self-service portal to refine
the reference orchestrations. The modeling tool uses the
application components to offer available modeling elements

to the application customizer. After the reference
orchestration has been customized, the modeling tool uses
the execution flows of application components to generate
executable orchestrations that can be provisioned on the PSP.
This is handled by the provisioning tool that enacts
provisioning flows of the application components to deploy
them on cloud resources and other infrastructure resources.
Since the reference orchestrations are also application
components, their provisioning to the PSP is performed in
the same manner. The provisioning tool further integrates the
resource management of different computing environments,
like customer data centers, the PSP, and different clouds.
Due to this integration, the different environments are
perceived as one hybrid cloud.

In the following, the phases of application customization,
executable orchestration generation, and application
provisioning are covered in more detail and the used tools
are described.

A. Application Customization

Figure 6: Screenshot of the DecidR+ Modeling Tool

The application developer provides application
components and reference orchestrations that orchestrate
them. These reference orchestrations may be incomplete. For
example, the reference Kindergarten Information Process
may lack an application component that sends information to
parents. The application customizer may then use the
modeling tool of the framework to add a component that
provides e-mail services, postal services, or cellular text
messaging services, to complete the process.

Both, the self-service portal and the modeling tool have
been implemented and are available as open source, namely
as the DecidR+ tool [22]. Individual abstract views have
been created for E-mail interaction as well as for human
tasks. E-mail and human task functionality is needed in the
motivating use case, when data required in the orchestrations
cannot be accessed via Web services. E-Mail interaction
allows E-mails to be sent to E-mail addresses. Optionally,
these interactions may then provide input data for the process
in form of a regular E-mail response. Human tasks allow a
similar integration of human beings via a task manager. The
tool further supports the orchestration of arbitrary Web
services that are integrated using a common abstract view.
When the common view is added, a WSDL file may be
specified for the service to be accessed. This common
abstract view has been used to access some of the services
integrated by the Kindergarten Information Process, which is
depicted in Figure 6.

In this particular customization, the data of children is
retrieved via a human task. Then, kindergartens and schools
are checked to exclude children that already have places in
these institutions. For each child that was not excluded, the
information regarding available kindergarten places is sent to
parents via e-mail.

B. Generation of Executable Orchestrations

Each elementary orchestration language element is
mapped to constructs of an executable language to allow
generation of executable orchestrations. In our
implementation, the DecidR+ tool, BPEL was used for
execution as depicted exemplarily in Figure 7. The BPEL
constructs access application functionality via applications
component interfaces. After the modeling, the orchestration
of application components is automatically transformed into
BPEL code that can be deployed on the PSP. This form is
partially incomplete, because the BPEL process as well as
the application component interfaces may contain variability
points [23]. These describe additionally required
information, such as addresses, unknown during application
customization that becomes available during application
provisioning.

Customization LevelExecution Level (BPEL)

<bpel:flow>

</bpel:flow>

<bpel:assign…>
…
</bpel:assign …>
<bpel:invoke…>
…
</bpel:invoke>

<bpel:link …>
…
</bpel:link …>

Start

End

Send Email

Figure 7: Mapping between Execution Level and

Customization Level

Other execution languages could also be supported. The
presented approach can even enable the orchestration of non-
distributed applications. For example, the component
interface could be described using a JAVA [24] interface
specification. If a mapping of abstract view elements to
JAVA is specified, the orchestration of application
components would result in the creation of stand-alone
JAVA application.

C. Application Provisioning

After high level customization and subsequent generation
of an executable orchestration, the customized application
may be provisioned for a customer. To do so, we used an
existing provisioning tool, Cafe [25], that enacts the
individual provisioning flows of application components.
During this process, the variability points of these
components become known, especially, their addresses in
clouds. Therefore, the corresponding variability points of the
BPEL process are set to these addresses and the process is
provisioned on the PSP. In the same way, variability points
of the user interface, which initiates the BPEL process, are
handled. The application customizer can also be integrated
via human tasks in which he may select alternative runtime
environments to provision application components. Through
the integration of human tasks, the provisioning of required
infrastructure or application components may also be
handled by the application customizer himself. Cafe's
concepts and techniques to handle the flexible provisioning
of applications is described in further detail by [26], [27],
and [28].

V. EVALUATION IN A HYBRID CLOUD SETUP

We have used the provisioning tool Cafe to model
application components and their different classes of
variability. During the customization phase, this enables
tenants to individually distribute application components
among computing environments forming a hybrid cloud. For
each of the application components the different
provisioning alternatives were modeled in their provisioning
flows. During their registration to the application, customers
can decide to provision the school management service, for
example, in their private data center or on an infrastructure
offered by the provider. In the provisioning flows, the tasks
required to achieve this are fully automated on the provider’s
side. If the provider does not have direct access to the
computing environment, for example to a customer’s data
center, human tasks are included in the provisioning process
to be performed by the customer. The application provider
only offers downloads for the application components to the
customer that can be installed manually.

We have integrated Amazon EC2 as a public
environment, a cloud offered by T-Systems that also hosts
the PSP itself, and the above mentioned manual provisioning
for private data centers. Each customer may specify his own
distribution of application components in this hybrid cloud
setup. Exemplary distributions of application components are
depicted in Figure 8. In this example, Tenant 1 decides to use
some of the shared services offered by the provider. He uses
the provisioning flexibility of other services so they are

provisioned as separate instances for him on Amazon EC2.
This may be due to legal requirements demanding that some
of his data may not be stored on hardware that is shared with
others. Tenant 2 has even greater security requirements and
decides to host some of the services in his private data
center.

Tenant 2
Private
Data
Center

Process Service Platform T‐Systems Cloud

Process Engine

Service
Runtime

Tenant2 OrchestrationTenant1 Orchestration

Service
Runtime

Platform Services $

Tenant 1
Amazon
EC2 Cloud

Service
Runtime

Figure 8: Exemplary Application Component Distributions

VI. BACKGROUND AND RELATED WORK

According to [29] and [30], cloud applications rely on
modular architectures, loose coupling of application
components, statelessness, and asynchronous
communication. These concepts are also employed in the
approach presented here. They enable cloud applications to
benefit from a cloud’s elasticity, its pay-as-you-go pricing
models, and the standardization of its management
interfaces. In detail, modular architectures allow individual
application components to scale independently and thus
maximize the beneficial effects of the elastic cloud
infrastructure. Loose coupling and statelessness eases these
scaling processes and ensures that failing application
components do not affect others.

The presented variability of cloud applications
introduced in Section III is of vital importance to increase the
addressable customer market, because varying customer
requirements can be met more easily. A large customer
group enables the application provider to leverage economies
of scale better, because resources can be shared between
more customers. The concept has been introduced as
“catching the long tail” by [31]. The sharing of resources
between multiple tenants is another important concept of
cloud computing. Tenants may however have different
requirements regarding the resources they may share with
others [32]. These different requirements are covered in the
presented approach by the provisioning variability. During
the provisioning of application components, a tenant may
select if the component can be shared with other tenants or
shall be provisioned individually. Optimization of tenants’
user distributions among available application component
instances, while respecting their requirements on multi-
tenancy and service levels, is described by [34].

The covered provisioning variability further enables the
distribution of application components among different
clouds. Today, applications of companies have versatile
requirements on privacy, security, and trust. It is unlikely
that a complete application landscape can be moved to one
distinct cloud environment. Therefore, companies face the

challenge of distributing their applications among different
computing environments and integrating them afterwards to
form a hybrid cloud [7], while secure access between
components is enabled [33]. The presented approach enables
a fine-grained and customer-specific distribution of
applications and their components among multiple
environments of such a hybrid cloud.

The variable data component pattern covered in Section
III.B describes concepts that are widely used implicitly,
which is why we suggest the abstraction of these concepts to
a generic architectural pattern. Examples are NoSQL
databases [35], like Apache CouchDB [36] or Amazon
SimpleDB [37], that reduce data consistency [38] and do not
support database schemas or only very rudimentary ones.
Often these databases are queried using Map Reduce [18],
which distributes the query load among many cloud
resources and consolidates the results afterwards. This
enables them to scale-out extremely well using distributed
resources and allows tenants with versatile requirements on
data structure to share a database.

The presented process-based orchestration of services is
going to be a significant architectural principle in cloud
applications. While holistic applications realize similar
functionality by implementing the model-view-controller
pattern [39], [40] motivates that processes, views, and
services are going to play a similar role in distributed
applications.

VII. SUMMARY AND OUTLOOK

New cloud computing technologies and architectural
principles lead to flexibility being introduced to cloud
infrastructures (dynamic provisioning of customized virtual
servers), the cloud application architectures (loose coupling,
statelessness), as well as to used middleware (for example,
NoSQL databases). Using the presented approach, this
flexibility is also introduced to the application development
processes and customization processes, to create applications
in a flexible and user-centric form.

We classified the desired variability of flexible cloud
applications and described how to enable them using certain
architectural principles, techniques and tools. Users are now
able to create individualized composite applications using a
self-service portal. Application providers may use the
presented framework to offer application components and
referential orchestrations thereof to customers. The
provisioning of application components is adjusted
individually. This results in customer specific application
component distribution among different cloud, especially to
support hybrid cloud environments.

The next step is, to bring the flexibility introduced to
application design and provisioning to the runtime
management of cloud applications. To exploit pay-per-use
pricing models even better, application users would then be
enabled to suspend complete applications, for example.
Another management task would be the redistribution of
application components among different environments in
hybrid clouds. The need for this arises if customers’
requirements on privacy, security, trust, performance,

availability etc. change after the initial provisioning of the
customized cloud application.

ACKNOWLEDGMENT

The author David Schumm would like to thank the
German Research Foundation (DFG) for financial support of
the project within the Cluster of Excellence in Simulation
Technology (EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] Distributed Management Taskforce (DMTF). Interoperable Clouds

Whitepaper, 2011.

[2] Storage Networking Industry Association (SNIA). Cloud Data
Management Interface (CDMI) Whitepaper, 2010.
http://www.snia.org/tech_activities/standards/curr_standards/cdmi/C
DMI_SNIA_Architecture_v1.0.pdf

[3] Salesforce. Small Business CRM and Contact Manager, 2011.
http://www.salesforce.com/smallbusinesscenter/

[4] Amazon. Amazon Web Services, 2011. http://aws.amazon.com/

[5] RunMyProcess. BPMN Designer, 2011.
 http://www.runmyprocess.com/

[6] Cordys. Process Factory, 2010.
 http://www.cordysprocessfactory.com/

[7] F. Leymann. Cloud Computing: The Next Revolution in IT.
Proceedings of the 52th Photogrammetric Week, 2009.
http://www.ifp.uni-
stuttgart.de/publications/phowo09/010Leymann.pdf

[8] R. Mietzner, F. Leymann, T. Unger. Horizontal and Vertical
Combination of Multi-Tenancy Patterns in Service-Oriented
Applications. Enterprise Distributed Object Computing Conference
(EDOC), 2009.

[9] Deutsche Telekom. T-Systems, 2011. http://t-systems.com/

[10] I. Brandic, S. Dustdar, T. Anstett, D. Schumm, F. Leymann, R.
Konrad. Compliant Cloud Computing (C3): Architecture and
Language Support for User-Driven Compliance Management in
Clouds, IEEE 3rd International Conference on Cloud Computing,
2010.

[11] Deutsche Telekom. T-City Friedrichshafen, 2011.
http://www.t-city.de/

[12] O. Kopp, D. Martin, D. Wutke, F. Leymann. The Difference Between
Graph-Based and Block-Structured Business Process Modelling
Languages. Enterprise Modelling and Information Systems
Architecture, 2009.

[13] N. Palmer. Understanding the BPMN-XPDL-BPEL Value Chain,
Business Integration Journal, 2006.

[14] World Wide Web Consortium (W3C). Web Services Description
Language (WSDL) Version 2.0, 2007.
 http://www.w3.org/TR/wsdl20/

[15] Organization for the Advancement of Structured Information
Standards (OASIS). Web Services Business Process Execution
Language Version 2.0, 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

[16] C. Henderson. Building Scalable Web Sites, O’Reilly, 2006.

[17] L. Richardson, S. Ruby. RESTful Web Services, O’Reilly, 2007.

[18] Dean J, Ghemawat S. MapReduce: Simplified data processing on
large clusters, Communications of the ACM, 2008.

[19] C. Pautasso, O. Zimmermann, F. Leymann. Restful Web Services vs.
“Big” Web Services: Making the Right Architectural Decision, 17th
International Conference on World Wide Web, 2008.

[20] World Wide Web Consortium (W3C). Extensible Markup Language
(XML) 1.0 (Fifth Edition), 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/

[21] Amazon. Amazon Elastic Compute Cloud (EC2), 2011.
http://aws.amazon.com/ec2/

[22] DecidR+ project, 2011. http://www.decidrplus.de

[23] R. Mietzner, F. Leymann. A Self-Service Portal for Service-Based
Applications, IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), 2010.

[24] Oracle. Java Technology, 2011. http://www.oracle.com/java/

[25] R. Mietzner. Cafe Project Site, 2011. http://www.cloudy-apps.com

[26] R. Mietzner, F. Leymann. Generation of BPEL customization
processes for SaaS applications from variability descriptors, IEEE
International Conference on Services Computing (SCC), 2008.

[27] R. Mietzner, F. Leymann, M. P. Papazoglou. Defining Composite
Configurable SaaS Application Packages Using SCA, Variability
Descriptors and SaaS Multi-Tenancy Patterns, 3rd International
Conference on Internet and Web Applications and Services (ICIW),
2008.

[28] R. Mietzner. A method and implementation to define and provision
variable composite applications, and its usage in cloud computing,
Ph.D. Thesis, 2010.
http://elib.uni-stuttgart.de/opus/volltexte/2010/5614/

[29] J. Varia. Architecting for the Cloud: Best Practices. Technical Report,
Amazon, 2010.
http://media.amazonwebservices.com/AWS_Cloud_Best_Practices.p
df

[30] J. Varia. Cloud Architectures. Technical Report, Amazon, 2010.
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-
varia.pdf

[31] F. Chong, G. Carraro. Architecture strategies for catching the long
tail. MSDN Library, Microsoft Corporation, 2006.
http://msdn.microsoft.com/en-us/library/aa479069.aspx

[32] R. Mietzner, T. Unger, R. Titze, F. Leymann. Combining different
multi-tenancy patterns in service-oriented applications. Enterprise
Distributed Object Computing Conference (EDOC), 2009.

[33] Spillner J. Privacy-enhanced Service Execution. Westnik DUIKT-
Proceedings of the International Conference for Modern Information
and Telecommunication Technologies, 2008.

[34] C. Fehling, F. Leymann, R. Mietzner. A Framework for Optimized
Distribution of Tenants in Cloud Applications. IEEE 3rd International
Conference on Cloud Computing, 2010.

[35] R. Cattell. Scalable SQL and NoSQL Data Stores, 2011.
http://www.cattell.net/datastores/Datastores.pdf

[36] The Apache Software Foundation. CouchDB, 2011.
 http://couchdb.apache.org/

[37] Amazon. Amazon SimpleDB, 2011.
 http://aws.amazon.com/simpledb/

[38] W. Vogels. Eventually consistent. Communications of the ACM,
2009. http://queue.acm.org/detail.cfm?id=1466448

[39] F. Buschmann, K. Henney, D.C. Schmidt. Pattern-oriented Software
Architecture. A System of Patterns, Addison-Wesley, 1998.

[40] R. Heffner. Process-Views-Services: A Better Design Paradigm For
Applications. Forrester Research, 2008.

	cover-IEEE
	2011 - Flexible Process-based Applications in Hybrid Clouds

