

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence
Pfaffenwaldring 7a
70569 Stuttgart
publications@simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de

M. Sonntag D. Karastoyanova

Compensation of Adapted Service Orchestration Logic in
BPEL’n’Aspects

Stuttgart, July 2011

Institute of Architecture of Application Systems (IAAS)
University of Stuttgart,
Universitaetsstrasse 38
70569 Stuttgart, Germany
{sonntag, karastoyanova}@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

Abstract BPEL’n’Aspects is a non-intrusive mechanism for adaptation of control flow of BPEL
processes based on the AOP paradigm. It relies on Web service standards to weave process activities
in terms of aspects into BPEL processes. This paper is a logical continuation of the BPEL’n’Aspects
approach. Its main objective is to enable compensation of weaved-in Web service invocations
(activities) in a straightforward manner. We present (1) requirements on a mechanism for
compensation of weaved-in process activities; (2) the corresponding concepts and mechanisms to meet
these requirements; (3) an example scenario to show the applicability of the approach; and (4) a
prototypical implementation to prove the feasibility of the solution. This work represents an
improvement in the applicability of this particular adaptation approach since processes in production
need the means to compensate actions that are included into processes as result of an adaptation step,
too. The concept is generic and hence can also be used by other approaches that adapt control flow.

Keywords Workflow, Service Composition, BPEL, Compensation, Aspect-orientation, Adaptability.

Reference Sonntag, M. and Karastoyanova, D. (2011) “Compensation of Adapted Service
Orchestration Logic in BPEL’n’Aspects.” In: Proceedings of the 9th International Conference on
Business Process Management (BPM 2011), Clermont-Ferrand, France.

© Springer-Verlag
The original publication is available at: http://www.springerlink.com/

Compensation of Adapted Service
Orchestration Logic in BPEL’n’Aspects

Mirko Sonntag, Dimka Karastoyanova

Institute of Architecture of Application Systems, University of Stuttgart,
70569 Stuttgart, Germany

{sonntag, karastoyanova}@iaas.uni-stuttgart.de

Abstract. BPEL’n’Aspects is a non-intrusive mechanism for adaptation of
control flow of BPEL processes based on the AOP paradigm. It relies on Web
service standards to weave process activities in terms of aspects into BPEL
processes. This paper is a logical continuation of the BPEL’n’Aspects
approach. Its main objective is to enable compensation of weaved-in Web
service invocations (activities) in a straightforward manner. We present (1)
requirements on a mechanism for compensation of weaved-in process activities;
(2) the corresponding concepts and mechanisms to meet these requirements; (3)
an example scenario to show the applicability of the approach; and (4) a
prototypical implementation to prove the feasibility of the solution. This work
represents an improvement in the applicability of this particular adaptation
approach since processes in production need the means to compensate actions
that are included into processes as result of an adaptation step, too. The concept
is generic and hence can also be used by other approaches that adapt control
flow.

Keywords: Workflow, Service Composition, BPEL, Compensation, Aspect-
orientation, Adaptability.

1 Introduction

In the last decade, the Business Process Execution Language (BPEL) [1] became the
de facto standard for modeling and execution of service orchestrations in research and
industry. BPEL processes rely on Web services (WS) for the implementation of
process activities and are themselves published as WSs, which is known as recursive
aggregation model. The WSs used by a BPEL process are specified in an abstract way
only in terms of their port types (i.e. interfaces) and operations. Concrete WS
implementations can be selected using a static service binding strategy [2] or can be
chosen at runtime by the supporting middleware, the enterprise service bus (ESB).
The latter strategy is called late or dynamic binding of services and allows for
substituting WS implementations used in a BPEL process without a need to change
the process model itself. A prerequisite for this kind of flexibility (on the functions
dimension of processes [3]) is that the interface of services is not changed. In practice,
however, interface stability cannot be guaranteed. Thus, in order to react to changed

market conditions or service landscapes, process models need to be modified while
their instances are being executed, which may entail complex process instance
migration operations.

In our previous work, we proposed an adaptation mechanism for BPEL based on
the aspect-oriented programming (AOP) paradigm called BPEL’n’Aspects [4, 5]. It
allows dynamic weaving of WS calls into BPEL process models or running instances,
which may indeed realize change operations on the business logic (control flow)
dimension of processes like deletion, insertion, or skipping of activities or other
elements. Since these WS invocations are specified externally as so-called aspects,
the adapted processes do not need to be modified in any way, which quite in the spirit
of AOP renders the approach a non-intrusive one. This is a great practical importance
since it can be applied to existing BPEL processes currently in production.

Adapting running processes introduces new challenges for the compensation of
(parts of) processes. Compensation is a mechanism to reverse actions performed in a
long-running transaction (LRT) [3]. In BPEL, compensation is realized by
compensation handlers that are attached to scopes and that specify behavior to undo
the work accomplished by the scopes in case of a fault. Compensation is crucial for
the applicability of BPEL in real world scenarios where failures cannot be avoided.

Functionality that is weaved into processes at runtime cannot be foreseen and
accounted for by compensation handlers that were specified at process design time.
This work therefore presents a concept and its implementation for the compensation
of dynamically weaved-in aspects into BPEL processes. It is the next logical step to
improve the applicability of the BPEL’n’Aspects approach in practice and is the main
contribution of this work. In particular, we impose requirements on a mechanism to
compensate process tasks that are included into a process during its execution as
result of an adaptation step, a concept that satisfies these requirements, an example
scenario to demonstrate its feasibility, and a prototypical implementation. The
concepts in the paper are demonstrated to be applicable for a BPEL environment;
however they can equally be applied for other process meta-models and languages.

The rest of the paper is structured as follows. Section 2 shortly introduces the
BPEL’n’Aspects approach, which is needed as basis to understand the remainder of
the paper. Section 3 presents the approach for aspect compensation. Section 4
describes the prototype implementing the aspect compensation mechanism. Related
work is presented in Section 5. Our conclusions are given in Section 6.

2 BPEL’n’Aspects in a Nutshell

Business processes need to be flexible to allow enterprises to react on changed market
conditions and to stay competitive. BPEL provides a built-in flexibility mechanism:
used services can be specified in an abstract manner in terms of WSDL port types and
operations, i.e. only the type of a service is specified. Concrete services implementing
this type can then be chosen with the help of different binding strategies [2]. This kind
of flexibility allows BPEL engines to change concrete services even at runtime.

But it is not possible to switch to a service with a different type (i.e. with a
different port type and/or operation) during the execution of processes. This can only

be done by modifying the process model appropriately and propagating the changes to
running instances via instance migration techniques [6], which is a cumbersome task
to perform.

The combination of AOP techniques with the workflow technology [4, 7] allows
adapting running workflows without a need to change the workflow model. With
AOP crosscutting concerns can be specified in a modular and reusable fashion [8].
New behavior can be weaved into the program logic at specific points while keeping a
modular design of the system. Instance migration techniques are not needed. In
former work, we presented such a solution called BPEL’n’Aspects [4]. In the
following, we will summarize its most important features.

2.1 Weaving

The BPEL’n’Aspects approach weaves aspects into BPEL process models and
instances. BPEL engine events are used to signal points of interest where aspects can
be weaved in. This decouples weaving of aspects from specific engine
implementations.

BPEL’n’Aspects relies on existing technologies and standards. WS-Policy [9] is
used to specify aspects. Listing 1 shows the structure of aspects as WS-Policy
assertion. Association of aspects with BPEL processes is done with WS-
PolicyAttachment [10]. This mechanism allows attaching aspects to processes at
runtime without changing the target process definition.

<a4b:Aspect Id=”...”?>
 <a4b:Advice name=”...”?>
 <a4b:when type=”before|instead|after”/> 1
 <wsa:EndpointReference>...</wsa:EndpointReference> 2
 <a4b:Operation name=”...”/> 3
 <a4b:InputTransformation>...</a4b:InputTransformation>? 4
 <a4b:OutputTransformation>...</a4b:OutputTransformation>? 5
 </a4b:Advice>
 <a4b:Pointcut>
 <a4b:ProcessArtifact type=”activity|link|...”
 identifier=”...” />* 6
 </a4b:Pointcut>
</a4b:Aspect>

Listing 1. Definition of an aspect as WS-Policy assertion.

AOP terms map on BPEL’n’Aspects terms as follows: joinpoints are BPEL
activities or transition conditions. But in principle every language construct can be a
potential joinpoint. Advices are WSs specified by an endpoint reference (EPR) and an
operation (labels 2 and 3 in Listing 1). Pointcuts identify concrete process artifacts
where aspects are to be weaved in (label 6). There are three types of advices: an
advice can be weaved in before, instead, or after a given joinpoint (label 1). Aspects
are packages that connect engine events (= pointcut + advice type) with WSs (advice).
Input and output data of an advice can be fetched from and written to process
variables with the help of input and output transformation operations (labels 4 and 5).

These transformations can also be used to specify data mediation functionality.
BPEL’n’Aspects weaves WS invocations into BPEL processes instead of BPEL

code. We consider this solution both more flexible and non-intrusive for the following
reasons. First, the called WS may be implemented by a BPEL process or any other
mechanism. Second, we do not need to extend the BPEL language (and thus the used
BPEL engine) to account for the element related to the aspects. An example of an
aspect definition is shown in Listing 3 in Section 3.4.

2.2 Architecture

The BPEL’n’Aspects approach has already been implemented by a prototype
presented in [4, 5]. Its architecture consists of four main components (see Fig. 1).
Gray components are either newly added or extended in this work and are discussed
later in Section 4. These components are connected via pub/sub mechanisms for
flexibility and extensibility reasons as well as due to the suitability of the pub/sub
paradigm for implementing event-based systems.

BPEL Engine

Event
System

Engine
Adapter

MOM

Controller

Weaver
WS‐N
Broker WrapperWrapperWrapper

Web
Service

Web
Service

…

WS‐N

Aspect
Management Tool

Auditor

Broker

Service Bus

WS‐N

System Boundary

1

2
3

4
65

7

Fig. 1. Architecture of the BPEL’n’Aspects prototype.

With the aspect management tool, a workflow designer defines an aspect (1) and
deploys it to the broker (2). The broker weaves aspects into processes by subscribing
to navigation events of the BPEL engine (3). The engine is extended by an event
system to publish navigation events (the pluggable framework [11]). If an event of
interest is signaled (4), the execution of an advice is triggered (5). The broker
delegates the advice execution (i.e. the service invocation) to the service bus (6). The
service bus is realized by wrappers. A wrapper can be seen as a gateway to invoke
services. That way the broker is decoupled from WS invocations. Finally, the broker
propagates results of a service invocation to the engine with the help of an engine
adapter (7). The engine adapter allows accessing process instance data such as
variable instances, activity states, etc. One of the main goals of the architecture and
prototype was to touch the BPEL engine as little as possible, especially to avoid the
migration of process instances. Arbitrary BPEL engines can be used for the

BPEL’n’Aspects approach. The engines should offer an appropriate event system and
access on process instance data or may need extensions to provide these functions.

The prototype makes use of following technologies and implementations. The
Active XEngine is taken as BPEL engine. Engine extensions are accomplished with
the help of AspectJ. The ActiveMQ Java Message Service (JMS) implementation is
used as message-oriented middleware (MOM). For the notifications between weaver
and bus the WS-Notification (WS-N) implementation WS-Messenger is taken. The
aspect management tool is a standalone Java application. The weaver is implemented
as J2EE web application with a GUI based on Swing. It uses the Apache Neethi
implementation of WS-Policy.

3 Compensation in Adapted Service Orchestrations

Compensation in service orchestrations is a crucial functionality for the applicability
of the service composition concept in real world scenarios. In practice, there are many
sources of failures and hence faults cannot be avoided. For example, servers can
become unavailable due to network errors or software updates that require a restart.
Services may be moved to different locations or service interfaces may be modified. It
is therefore important to carry out (parts of) business processes within transactions
that are able to undo work in case of an error and thus preserve consistency of data.
Since business processes are often long-running, transactions with ACID (atomicity,
consistency, isolation, durability) properties are not applicable. The isolation
constraint can lead to locked data that cannot be accessed by other transactions while
the transaction that uses the data runs. Practice shows that this is disadvantageous in
scenarios with long-running processes.

Workflow technology therefore relies on compensation-based transaction models
that are used to span LRTs. LRTs specify compensating behavior that reverses the
effects of already completed work in case of an error. Note that reversing does not
mean to rollback finished work but to use operations to revoke the effects of a
transaction. For example, booking a hotel room can be compensated by a “cancel
hotel room” operation. This often entails a cancellation fee and is therefore not equal
to a rollback of an ACID transaction.

The compensating actions are specified during the design time of the process
model and are thus available for use in any of the process instances. Compensation of
adapted service orchestrations is beyond the scope of conventional compensation
mechanisms since the changed functionality cannot be foreseen at process design
time. In order to be applicable in practice, concepts for the compensation of adapted
service orchestrations need to be devised. This section provides such concepts for the
BPEL’n’Aspects approach.

3.1 Compensation in BPEL

In this section we provide some background to the compensation mechanism in
BPEL. Compensation in BPEL is achieved by compensation handlers that can be

attached to scope activities. Compensation handlers are intended to provide actions
to undo the (successful completed) work of a scope. There are two special cases of
scopes, namely the process scope and invoke activities that act as implicit scopes. A
BPEL process can contain several, possibly nested scopes. The process scope is the
outermost scope and thus contains all other scopes. A compensation handler of an
implicit scope of an invoke activity can be used to define pairs of activities where
one activity stands for an action and the other for a compensating action (e.g. “book
hotel room” and “cancel hotel room”).

If no compensation handler is defined, a default compensation handler is used
instead. Default compensation invokes all compensation handlers of the immediately
enclosed and successfully completed scopes in reverse execution order. Note that a
compensation handler is only installed if its scope is completed. That means only
completed scopes can be compensated. A compensation handler must be able to
access variables with the content that was valid at completion time of the considered
scope. A snapshot of all variables that are visible within a scope is therefore stored
when the scope completes.

BPEL provides two ways to invoke compensation handlers, corresponding to
explicit and default compensation. Note that compensation handlers can only be
invoked from within fault or other compensation handlers of immediately enclosing
scopes. First, a compensate activity with given scope attribute invokes the
compensation handler of the named scope. Second, a compensate activity without
attributes invokes all compensation handlers of immediately enclosed scopes in
reverse execution order.

Process P

FH(P)
compensate S1

Scope S1
CH(S1)

compensate

Scope S2

invoke “book hotel room”

CH(S2)
invoke “cancel
hotel room”

1

2

3

Fig. 2. Fault and compensation handlers in a BPEL process.

Fig. 2 illustrates the compensation in BPEL (version 1.1). Process P contains two
nested scopes, S1 and S2. In S2, an invoke activity calls a WS to book a hotel room.
A fault handler is attached to P and there are compensation handlers for S1 and S2.
Assume that S1 and S2 are completed successfully during execution. Their
compensation handlers get installed. A fault occurs in process scope P. The fault is
propagated to fault handler FH(P) (step 1). FH(P) handles the fault by explicitly
invoking the compensation handler CH(S1) of scope S1 by a compensate activity
with scope attribute (step 2). CH(S1) is designed to simply compensate all
immediately enclosed scopes in reverse order by a compensate activity without
scope attribute. The compensation handler CH(S2) of scope S2 is therefore invoked

(step 3). Finally, CH(2) contains an invoke that cancels the booked hotel room. The
fault is now handled successfully by the compensation of scopes S1 and S2.

3.2 Requirements on Aspect Compensation

Compensating behavior in a process model is designed along with its normal behavior
in the process modeling phase. As outlined earlier, the behavior of aspects usually
cannot be foreseen at process modeling time and thus cannot be subject to regular
compensation handlers. Hence, specification of an aspect and its compensation must
happen in the same phase, namely in the creation phase of an aspect, which is during
the deployment or execution phase of processes.

Our idea is to use the same aspect weaving mechanism also for the compensation
of aspects [12]. That means we propose to weave compensation aspects into processes
to compensate weaved-in aspects. We thereby keep the concept of activity pairs for an
action and its compensation action: each aspect can get a compensation aspect
attached. Such a compensation aspect refers to the compensation handler of the scope
in which the aspect that needs to be compensated is weaved in. In the following we
present considerations that influence the concept of aspect compensation.

Scope

BPEL code Some Aspect

Compensation
aspect

Fig. 1. Weaving an aspect into a scope without compensation handler.

An aspect can be weaved into a scope without explicit compensation handler (see
Fig. 3). For such scopes, an implicit compensation handler is installed at process
runtime by the BPEL engine. Such an implicit compensation handler contains only a
single compensate activity that triggers compensation of all immediately contained
scopes in reverse execution order. Since the implicit compensation handler is not
visible in the process model definition, it is not possible to define a pointcut for a
compensation aspect. We therefore define that the advice of a compensation aspect
without given pointcut is associated with the compensation handler of the scope in
which the aspect that is to be compensated is weaved in. During the execution of the
default compensation handler of a scope with a weaved-in aspect, the weaver must
use runtime information of the particular process instance to identify the position of
the weaved-in functionality. Based on this the weaver is capable of locating the
correct position of the compensating aspect in the reverse-order graph for the default
compensation. This imposes the requirement on the execution environment to collect
information about executed aspects in the audit trail (a component that collects the run
time information about all process instances).

An aspect can be weaved into a scope that has an explicit compensation handler
(see Fig. 4a). In this case, the compensation aspect must be associated with the
specified compensation handler.

We also consider an additional case where an aspect is weaved into a scope that is
nested within another scope (see Fig. 4b). The outer scope S1 has an explicit

compensation handler CH(S1). The inner scope S2 can have an explicit or default
compensation handler. That is the reason why CH(S2) is depicted by dashed lines. An
aspect is weaved into scope S2. That means its compensation aspect belongs to
CH(S2). If S1 needs to be compensated, CH(S1) is invoked. Now, there can be cases
where CH(S1) ignores CH(S2), i.e. the explicit compensation definition does not
contain actions involving CH(S2). That means CH(S2) is neither explicitly invoked
by a compensate activity with S2 as scope name nor implicitly by a compensate
without specified scope name. In such cases, the compensation of the weaved-in
aspect would also be ignored. A mechanism is needed to enforce the compensation of
aspects in these kinds of scenarios.

Scope S

BPEL code Some Aspect

Compensation
aspect

CH(S)
Scope S1

CH(S1)

Scope S2

Some Aspect

CH(S2)

BPEL code

Compensation
aspect

b)a)

Fig. 4. Weaving an aspect (a) into a scope with explicit compensation handler and (b) into a
nested scope.

CH(S)

A = A ‐ 1

A = A ‐ 2

A = A ‐ 1

A = 4

A = 0

CH(S)

A = A ‐ 1

A = A ‐ 2

A = A ‐ 1

A = 4

A = 0

b) c)

Scope S

A = A + 1

A = A + 1

A = A ‐ 1

A = A + 2

A = A ‐ 2

A = A ‐ 1

CH(S)

A = 4

A = 0

a)

Legend

A = …

A = …

Input data

Output data

Aspect

Compensation
activity/aspect

Activity

Compensation
handler

Compensation
before advice

Compensation
after advice

Workflow fragment

Link

Fig.5. Successful aspect compensation before/after a compensation handler.

In many cases it may be sufficient that a compensation aspect is weaved into a
process before, instead, or after a compensation handler. That means the
compensation handler is considered a black box. Fig. 5 illustrates this. An aspect is
weaved into a mathematical equation that simply adds up some values (a). If scope S
must be compensated, it is unimportant whether the aspect is compensated after (b) or
before (c) the compensation handler. The result is correct in both cases (A = 0). Note
that an instead advice would replace a complete compensation handler. Although this
may be wished in some scenarios, this would not yield a correct result in the given
example (A = 3) and is therefore not illustrated.

If the aspect’s operation is switched to a multiplication (see Fig. 6a), a case can
easily be created where it is insufficient to regard a compensation handler as black

box. Invoking the compensation aspect after (b) or before (c) the compensation
handler yields an incorrect result. Weaving the compensation aspect into the
compensation handler is needed (d).

In case several compensation aspects are defined for the same joinpoint with the
same advice type, a precedence ordering for their execution is needed. The order
should be reverse to the execution order of the aspects that are to be compensated.
That means execution timestamps of executed aspects need to be tracked by the
execution environment. As outlined above, this requirement is already imposed for a
correct default compensation behavior.

CH(S)
Scope S

A = A + 1

A = A * 2

A = A / 2

A = A + 2

A = A ‐ 2

A = A ‐ 1

CH(S)

A = A / 2

A = A ‐ 2

A = A ‐ 1

A = 4

A = 0
A = 4

A = 1/2

CH(S)

A = A / 2

A = A ‐ 2

A = A ‐ 1

A = 4

A = ‐1

a) b) c)

CH(S)

A = A / 2

A = A ‐ 2

A = A ‐ 1

A = 4

A = 0

d)

Compensation
inline

Compensation
before advice

Compensation
after advice

Workflow fragment

Fig. 6. Successful aspect compensation within a compensation handler.

It is important for the compensation of a scope to access values of variables that
were valid at scope completion time. A BPEL engine therefore stores a snapshot of all
variables visible in a scope when the scope completes. These snapshots can then be
accessed by compensation handlers. Similarly, variable values used or produced by an
aspect may be important for its compensation. A snapshot of all variables visible for
an aspect must therefore be stored after aspect completion. These values must be
accessed by the weaver during aspect compensation.

3.3 Realization of the Aspect Compensation Concept

In order to realize the concept of aspect compensation, we extend the WS-Policy
assertion specification for aspects (see Listing 2) [12]. The definition of a
compensation aspect for an aspect is done by reference with the help of an aspect
identifier. This allows decoupling of aspect and compensation aspect and thus fosters
reusability. The new element CompensationAspect is used within an aspect to
point to an aspect that implements compensating behavior (3). Definition of a
compensation aspect is optional for two reasons. First, not each aspect may need a
compensation aspect. Second, a compensation aspect is not allowed to reference
another compensation aspect because this would mean a compensation of the
compensation.

The new compensating attribute (1) of an advice is used to mark an aspect as
compensation aspect. Note that compensation aspects cannot be weaved into normal
process behavior but are always associated with the compensation handler of the
scope of the aspect to be compensated.

As outlined in Section 3.2 compensation handlers in nested scopes may be
overridden. Thus, the compensation of weaved-in aspects may be skipped as a side-
effect. With the alwaysCompensate attribute (2) compensation of an aspect can be
enforced even if its compensation handler may be ignored. In this case, the advice
type and pointcut are irrelevant as they refer to an overridden compensation handler.
The compensation aspect is therefore executed after the compensation handler of the
enclosing scope.

<a4b:Aspect Id=”...”?>
 <a4b:Advice name=”...”?
 compensating=”true|false” 1
 alwaysCompensate=”true|false”?>... 2
 </a4b:Advice>
 <a4b:CompensationAspect aspectId=”...”/>? 3
 <a4b:Pointcut>? 4
 <a4b:ProcessArtifact type=”activity|link|...”
 identifier=”...” />*
 </a4b:Pointcut>
</a4b:Aspect>

Listing 2. Extended aspect definition.

Finally, we extended the definition of pointcuts by making pointcuts optional (4).
This extension only applies to compensation aspects. There are cases where the
specification of a pointcut in a compensation aspect is not possible or not desired. If a
compensation aspect belongs to a default compensation handler, it is not possible to
specify a pointcut that refers to the handler. In this case, the compensation aspect
needs to be executed at the correct position of the reverse-order graph. Hence, the
specified advice type is unimportant. But even if a compensation aspect belongs to an
explicit compensation handler, the pointcut may be omitted. The advice is then
applied to the explicit compensation handler and is executed before, after, or instead
of it. This also means that a compensation handler can be completely replaced by a
compensation aspect if an instead advice is used. However, if a pointcut is specified
for a compensation aspect, it must refer to an activity/link within the explicit
compensation handler that belongs to the scope of the aspect that is compensated.

3.4 Scenario

Imagine an enterprise that operates an online book store. Customers can order books
via a WS provided by the book store. The WS is implemented by a BPEL 1.1 process.
The process is given in Fig. 7 in BPMN notation. Note that it is not modeled in an
optimal way in order to illustrate aspect compensation by default and explicit
compensation handlers as well as in nested scopes.

The process is triggered by a book order of a customer. The two main parts of the
process are billing and shipment which are executed in parallel. For shipment the
books are prepared, i.e. packed, before a third party company is contracted to deliver
the books. There are two explicit compensation handlers: book preparation can be
undone by putting the books back into the warehouse; shipping is compensated by
cancelling the transportation request and putting the books back into the warehouse.
The billing path contains the calculation of the bill and the invocation of a service that
submits the bill to the customer. There is no explicit compensation handler to undo
billing the customer. If billing and shipment are successful, the customer gets a
positive notification about his order. A fault handler at the process scope ensures that
the process is not aborted in case of an error. Instead, the completed work is undone
and the customer is informed that the order could not be handled.

In order to prove the concept of aspect compensation we applied it in three
scenarios in which the process is adapted and compensation aspects come into play.

Fig. 7. Business process example for an online book store.

Scenario 1: Credit point program
A credit point program can be easily implemented with an advice weaved-in after
billing the customer (Listing 3). The advice CustomerReward invokes a WS operation
that calculates the number of credit points for the customer depending on the amount
of the bill (rewardCustomer). In case of an error the granted credit points have to be
subtracted. A compensation aspect CancelCustomerReward is defined that invokes a
WS operation for credit point subtraction (cancelCustomerReward). The process
does not foresee a compensation handler for the billing scope. That means that a
default compensation handler is installed at scope completion time and can be
invoked by the higher-level fault handler. The compensation aspect does not specify a
pointcut and hence refers to the (default) compensation handler of the billing scope.

The advice type of the compensation aspect is irrelevant since it is part of the reverse-
order graph of default compensation behavior.

<a4b:Aspect xmlns:a4b="... " id="ns1:CustomerReward">
 <a4b:Advice name="CustomerReward" alwaysCompensate="false"
 compensating="false">
 <a4b:When type="After"/>
 <wsa:EndpointReference ...>...</wsa:EndpointReference>
 <a4b:Operation name="rewardCustomer" suppressFault="false"
 suppressResult="false"/>
 <a4b:InputTransformation>billingRequest
 </a4b:InputTransformation>
 <a4b:OutputTransformation>billingResponse
 </a4b:OutputTransformation>
 </a4b:Advice>
 <a4b:CompensationAspect aspectId="ns1:CancelCustomerReward"/>
 <a4b:Pointcut>
 <a4b:ProcessArtifact type="Activity"
 identifier="//invoke[@name='InvokeBillingService']"/>
 </a4b:Pointcut>
</a4b:Aspect>
<a4b:Aspect xmlns:a4b="... " id="ns1:CancelCustomerReward">
 <a4b:Advice name="CancelCustomerReward" alwaysCompensate="false"
 compensating="true">
 <a4b:When type="Before"/>
 <wsa:EndpointReference ...>...</wsa:EndpointReference>
 <a4b:Operation name="cancelCustomerReward"
 suppressFault="false" suppressResult="false"/>
 <a4b:InputTransformation>billingRequest
 </a4b:InputTransformation>
 <a4b:OutputTransformation>billingResponse
 </a4b:OutputTransformation>
 </a4b:Advice>
</a4b:Aspect>

Listing 3. Aspect for credit point program and its compensation aspect.

Scenario 2: Express delivery
Invoking the shipping company is hard-coded into the process in terms of a port type
and an operation. In this scenario, we want to make use of another shipping company
for express delivery. Imagine our favorite express delivery company offers a WS with
a different port type/operation. An aspect with instead advice can be used to replace
the old invoke activity. Accordingly, the compensation of the shipping request needs
to be adapted. A compensation aspect is specified that invokes a cancel shipping
service of the express delivery company. The pointcut of the compensation aspect
points to the “cancel shipping” activity in the compensation handler of the shipment
scope. In order to replace the old cancel operation the advice type is set to instead.

Scenario 3: Christmas present campaign
The book store plans a Christmas present campaign. Each customer gets a present that
is put into the package with ordered books. This can be realized by an aspect that is
weaved into the process as after advice after the “Prepare items” activity. Of course,
this influences the compensation of this activity since both the order items and the
present need to be put back to the warehouse. A compensation aspect is therefore

specified that takes the present back to the warehouse. It points to the “Put items
back” activity of the compensation handler of activity “Prepare items”. Since the
present insertion aspect is executed after the activity, the compensation needs to be
performed in reverse order. Hence, the compensation aspect gets a before advice. In
case the shipment scope completed successfully but the billing failed, the shipment
scope is compensated with the help of its compensation handler “Undo shipping”.
Unfortunately, this compensation handler overrides the compensation handler of
activity “Prepare items” and hence the compensation aspect. Nevertheless,
compensation of the aspect is enforced by setting the alwaysCompensate attribute
to true. That means the aspect is compensated although its compensation handler is
skipped. Note that the advice type and pointcut of the compensation aspect are
ignored since they point to the overridden compensation handler. The compensation
aspect is therefore executed after the compensation handler “Undo shipping”.

4 Prototype

We extended the existing BPEL’n’Aspects prototype in order to implement the
proposed concepts of aspect compensation (Fig. 1) [12]. The event system is extended
by events needed to weave compensation aspects into compensation handler: events
that are published if a compensation handler is ready for execution, is executing, or
has finished execution. A new variable_changed event signals that the value of a
variable was edited which is needed by the new auditor component.

The engine adapter is enhanced with functionality to dynamically register blocking
events. That way a process instance can be requested to suspend execution and wait
for a resume event. If an aspect was successfully weaved in, the event that triggers its
compensation can be registered as blocking at runtime. If a deployed aspect was not
weaved in, it does not need to be compensated and no event needs to be registered as
blocking. This could, e.g., be the case for an aspect weaved into one of two alternative
paths in the process model and when the path without aspect is taken in a particular
instance. Dynamically registering blocking events improves efficiency of the solution.

The auditor is a new component that tracks and persistently stores event messages
exchanged between the engine and the weaver. It serves the role of the so-called audit
trail. Since the architecture heavily relies on the pub/sub paradigm, the auditor can
simply be connected as an additional listener on the event topic of the engine and the
weaver topic of the weaver. The event variable_changed of the engine is most
important for aspect compensation since it is used by the auditor to store the snapshot
of aspect variables. These snapshots and other data can be fetched out of the audit
trail via a WS interface provided by the auditor. Furthermore the auditor stores
execution timestamps of activities and weaved-in aspects. This information is
important for the reverse-order graph of default compensation and for the precedence
order of compensation aspects with the same joinpoint and advice type.

The weaver is extended with capabilities to identify compensation aspects of
aspects and to register them for the compensation of scopes. It can access variable
values (i.e. snapshots) needed for the compensation of an aspect over the WS
interface of the auditor. Result values of compensating WS calls are forwarded to the

BPEL engine. Additionally, as mentioned earlier, the weaver can register blocking
events in the engine over the engine adapter to weave in compensation aspects.
Currently, the implementation of default compensation behavior is restricted as
follows: compensation aspects are executed after default compensation handlers, i.e.
they are inserted at the end of the reverse-order graph. In future, the correct position
for compensation aspects needs to be derived from the execution order of activities
and aspects of a scope.

The aspect management tool is enhanced with the functionality to specify aspects
as compensation aspects and to reference them from within ordinary aspects. For
more information on the prototype the reader is referred to [12] and [13].

5 Related Work

Much research is done in the application of AOP techniques to service compositions.
AO4BPEL [7] is a BPEL extension that allows aspects to be weaved into BPEL
processes at runtime. All activities can be considered as joinpoints. As opposed to our
approach, pointcuts are modeled with the help of XPath expressions. Advices are
either BPEL code or Java method calls. The compensation of aspects is also discussed
in AO4BPEL [14]. Scopes are extended to contain a list of compensation handlers
(instead of only a single one). If an advice with attached compensation handler is
weaved into a process, this compensation handler is added to the list of compensation
handlers of the scope the joinpoint belongs to. The execution sequence of the list of
compensation handlers is thereby arbitrary. But as we have outlined in Section 3.3,
the sequence of compensating actions is of utmost importance.

Weaving aspects into composite telecommunication services is presented in [15].
The approach is used to separate and decouple non-functional requirements such as
billing, logging, monitoring, and measurement of service quality from the functional
behavior of service orchestrations. Main goals are to improve reusability of services
and decrease costs for composite service design and modification. Aspects are
specified by a tailor-made language and are weaved in dynamically at runtime. The
concept has a limited means to support adaptation mechanisms of orchestrations. For
example, an instead advice type is not foreseen and hence functionality of a
composite services cannot be replaced (as is possible in BPEL’n’Aspects). Advice
services can be abstractly specified. Concrete advices are then late-bound at runtime.
To the best of our knowledge, the used composition language does not accommodate
for the compensation of already completed work. Compensation of weaved-in aspects
is therefore not dealt with either.

In [16] AOP is harnessed for two purposes. First, so-called engine aspects are used
to extend a BPEL engine with new functionality such as debugging or new language
elements. In this case, advices are Java code. Second, with the help of process aspects
BPEL code can be dynamically weaved into BPEL processes or instances. It is
possible to insert or replace compensation handlers in processes with the help of an
aspect. This functionality could be used to compensate weaved in aspects. However,
this would be cumbersome and by far not straight forward because compensation
handlers would need to be re-defined in order to compensate aspects in scopes with

existing compensation handler. In contrast, our approach with pairs of aspects and
compensating aspects allows intuitive compensation of aspects. Replacement of a
compensation handler is only one possible scenario.

Another approach that employs AOP mechanisms for the monitoring and
supervision of processes is presented in [17]. BPEL processes are annotated with rules
in order to control their execution. Weaving of aspects is not conducted dynamically
at runtime. A pre-processor is used for static weaving at deployment time. In [18] the
authors extend their work towards the recovery of BPEL processes in order to create
self-healing systems. The approach implements forward recovery mechanisms with
the help of special business rules (e.g. retry of WS invocations). These rules are
activated when weaved-in monitoring aspects signal out-of-line situations. Backward
recovery (i.e. compensation) in general and compensation of weaved-in aspects in
particular is not dealt with by the approach.

6 Conclusions

BPEL’n’Aspects is an approach to improve the flexibility of service orchestrations. It
makes use of AOP techniques and existing WSs to dynamically adapt the control flow
logic of BPEL processes and instances by inserting, deleting and skipping one or
more activities, or other process constructs. Adapting processes at runtime has
implications on the compensation behavior of processes: dynamically weaved-in
aspects, i.e. dynamically inserted activities, are inherently not a subject to
compensation behavior modeled at design time of processes.

In this paper, we extended the existing BPEL’n’Aspects approach to enable
compensation of weaved-in aspects, which is the logical continuation of our previous
work. We outlined and explained the requirements on such a compensation
mechanism: the need for compensation aspects to allow compensation of weaved-in
aspects, aspect compensation by default and explicit compensation handlers, aspect
compensation in nested scopes, considering explicit compensation handlers as black
box for aspect compensation, and weaving compensation aspects into compensation
handlers. Based on these requirements we developed a concept for the compensation
of aspects. It extends the existing aspect definition with a pointer to a compensation
aspect and with the ability to mark an aspect as compensating. A prototypical
implementation of an infrastructure enabling these concepts and an example scenario
of an online book store prove the feasibility of the solution. Our concepts improve the
applicability of the approach in real world situations where faults cannot be avoided
and compensation of process steps is an important feature.

In future we intend to apply the BPEL’n’Aspects approach with its novel
compensation mechanisms in the field of scientific workflows. It promises to improve
adaptability and robustness of usually long-running scientific experiments and
simulations. Further research is needed towards the adaptation of processes in stateful
environments. Another unsolved issue is a concept to track dynamic changes of
processes in order to ensure reproducibility of scientific results.

Acknowledgements. The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within the Cluster of
Excellence in Simulation Technology1 (EXC 310/1) at the University of Stuttgart.

References

1. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS Standard
(2007) [online] http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html

2. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Prentice Hall (2005)

3. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice Hall
(2000)

4. Karastoyanova, D., Leymann, F.: BPEL’n’Aspects: Adapting Service Orchestration Logic.
In: Proceedings of the 7th International Conference on Web Services (ICWS 2009)

5. Schroth, R.: Konzeption und Entwicklung einer AOP-fähigen BPEL Engine und eines
Aspect-Weavers für BPEL Prozesse. Diploma Thesis No. 2523, University of Stuttgart
(2006)

6. Reichert, M., Dadam, P.: Adeptflex – Supporting Dynamic Changes of Workflows Without
Losing Control. In: Journal of Intelligent Information Systems 10(2) (1998)

7. Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition. In: Proceedings of
ECOWS (2004).

8. Kiczales, G.: Aspect-Oriented Programming. In: Proceedings of ECOOP’97, Finland, 1997.
9. W3C: Web Services Policy 1.5 – Framework. W3C Recommendation (2007)

[online] http://www.w3.org/TR/2007/REC-ws-policy-20070904/
10. W3C: Web Services Policy 1.5 – Attachment. W3C Recommendation (2007)

[online] http://www.w3.org/TR/2007/REC-ws-policy-attach-20070904/
11. Khalaf, R., Karastoyanova, D., Leymann, F.: Pluggable Framework for Enabling the

Execution of Extended BPEL Behavior. In: Proceedings of the 3rd International Workshop
on Engineering Service-Oriented Application (WESOA'2007).

12. Wiselka, M.: Erweiterung einer AOP-fähigen BPEL Engine um die Kompensation von
eingewobenen Aktivitäten. Diploma Thesis No. 2905, University of Stuttgart (2009)

13. Sonntag, M., Karastoyanova, D.: BPEL’n’Aspects And Compensation: Adapted Service
Orchestration Logic and its Compensation Using Aspects. In: Weske, Mathias (Eds.); Yang,
Jian (Eds.); Maglio, Paul (Eds.); Fantinato, Marcelo (Eds.): Proceedings of the 8th Int. Conf.
on Service-Oriented Computing (ICSOC 2010), Demo Track, 2010.

14. Charfi, A.: Aspect-Oriented Workflow Languages: AO4BPEL and Applications,
Fachbereich Informatik, TU Darmstadt, PhD Thesis (2007)

15. Niemöller, J., Levenshteyn, R., Freiter, E., Vandikas, K., Quinet, R., Fikouras, I.: Aspect
Orientation for Composite Services in the Telecommunication Domain. In: Proceedings of
7th International Joint Conference ICSOC-Service Wave (2009)

16. Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proceedings of
ICSE (2005)

17. Baresi, L., Guinea, S.: Towards Dynamic Monitoring of WS-BPEL Processes. In:
Proceedings of ICSOC (2005)

18. Baresi, L., Guinea, S.: A Dynamic and Reactive Approach to the Supervision of BPEL
Processes. In: Proceedings of the 1st India Software Engineering Conference (ISEC), 2008.

1 http://www.simtech.uni-stuttgart.de

