
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

CMotion: A Framework for Migration of
Applications into and between Clouds

Tobias Binz, Frank Leymann, David Schumm

© 2011 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@inproceedings {INPROC-2011-75,
 author = {Tobias Binz and Frank Leymann and David Schumm},
 title = {{CMotion: A Framework for Migration of Applications into
 and between Clouds}},
 booktitle = {2011 IEEE International Conference on Service-Oriented
 Computing and Applications (SOCA)},
 publisher = {IEEE Computer Society},
 month = {December},
 year = {2011},
 doi={10.1109/SOCA.2011.6166250},
 }

:

Institute of Architecture of Application Systems

CMotion: A Framework for Migration of
Applications into and between Clouds

Tobias Binz, Frank Leymann, David Schumm
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract—The number of applications and services hosted in
the cloud grows steadily, because of significant advantages in
cost, flexibility, and scale compared to traditional IT. However,
major difficulties in this field are (i) the migration of existing
applications into the cloud and (ii) the increasing vendor lock-
in which denotes the inability to leave a certain cloud provider
without significant effort. Current approaches do not offer a
holistic solution: Either they require the user to provide the
application in a certain standardized way or they are only able
to migrate one specific type of component. As a consequence,
the migration of composite applications with different types
of components is not supported. To overcome this limitation
we propose the Cloud Motion Framework (CMotion) which
leverages existing application models and provides support to
migrate composite applications into and between clouds. Based
on the application model, the framework evaluates alternative
ways to host each component. CMotion assumes that the
dependencies of components are modeled explicitly and the
components are self-contained.

Keywords-application migration; service management; cloud
computing; composite applications

I. INTRODUCTION

Many businesses want to move their existing applications
into the cloud in order to benefit from the elasticity [1]
[2] [3], payments based on actual usage (pay-as-you-go)
[1] [2] [4], dramatically reduced cost [1] [4], flexibility
in terms of on-demand and self-service [2] [4], ease of
deployment and management [4], and energy efficiency [4].
However, it must be ensured that existing investments in
applications could be taken to the cloud without high effort
or complex code changes, which would reduce the financial
benefit of the migration. Application migration is still a
mostly unsolved problem in research [5] and vendor lock-
in a high risk [6] for cloud computing. As a report of the
European Network of Information Security states [6, p.25,
R.1]: ”There is currently little on offer in the way of tools,
procedures or standard data formats or service interfaces
that could guarantee data and service portability [...]”. With
the Cloud Motion Framework (CMotion) we try to address
the problem of migrating applications into and between
different clouds. CMotion uses adapters to make previously
incompatible technologies able to work together. It processes
the complete application stack and generates alternatives to

deploy the application, while ensuring it still provides the
same functionality.

The main contribution of this paper is a generic approach
and procedure (see Figure 1) to generate alternative, cloud-
based realizations of applications. We implemented our
approach prototypically in Java and are able to generate
and evaluate alternatives based on the provided application
model.

The remaining paper is structured as follows: The three
classes of migration we identified are described in Section II.
Section III gives an overview of the framework and explains
the running example. Section IV defines the entities CMotion
is based on. The framework’s architecture and operation is
detailed in Section V. Section VI discusses related works in
the area of portable applications and frameworks for their
deployment. The paper concludes with a critical discussion
of current limitations and future challenges (Section VII).

II. CLOUD APPLICATION MIGRATION

We performed a literature study on how migration of
applications is realized nowadays and identified three classes:

Standardized Format Migration. In a Standardized Format
Migration a component implemented in a standardized,
self-contained format is migrated. Components are moved
between instances of the same software or to other software
solutions supporting this format. There are many widely used

Figure 1. Procedure for Application Migration: Depicts the steps taking
place in CMotion to do a migration of an application.

Figure 2. Application model of the composite sample application

formats to facilitate migrations of this class, for example,
migrating VMware or Open Virtualization Format (OVF)
[7] images. Java [8] defines the standardized component
framework Enterprise Java (EJB) [9] and portable application
bundles like Java Web Archives (WAR) [10]. Both formats are
executable on containers of different vendors (e.g., Apache
Tomcat, Eclipse Jetty, and many commercial products).

Component Format Migration. In this class the format
of the respective component is transformed into another
format. Examples are transforming a virtual machine image or
enable the execution of scripting languages on PaaS offerings.
For example, there are projects to run Ruby on Google
AppEngine1 or PHP on Microsoft Azure2.

Holistic Migration, the third class, is what CMotion aims
to enable. It is the migration of a complete application, built
out of multiple components, by migrating each component
separately. In contrast to the component format migration
it addresses composite applications consisting out of com-
ponents on software, platform, and infrastructure level [2].
The related work in Section VI shows that current research
focuses on the definition of standardized formats to enable
portability.

Based on self-experience, we identified three requirements
for a framework implementing holistic migration: (R1) The
framework must be independent of a specific application
model format. (R2) Enable migration of components without
access to the component source (i.e., black boxes). (R3)
Extensibility and openness to reuse previously implemented
transformations in the framework.

III. FRAMEWORK OVERVIEW AND PROCEDURE

CMotion processes the application model of the application
which should be migrated. While not bound to a specific
kind of application model (Requirement R1), we expect
it to contain all components of the composite application,
their dependencies, and implementations. Figure 2 shows
the application model we will use throughout this paper to
illustrate our approach. The top element is a Web service
implemented in Java and packaged as Java Web Archive

1http://code.google.com/p/appengine-jruby/
2http://www.php-compiler.net

Figure 3. Different generated alternatives to host example application.
Components needed to run the application in the cloud which did not exist
in the original application model have been highlighted in gray color.

(WAR). It requires a runtime for WAR files and a MySQL
database, consequently the Web service is deployed on an
Apache Tomcat server and connects to a MySQL DBMS. Both,
Tomcat and MySQL, are installed on Linux. The CMotion
procedure depicted in Figure 1 goes on with processing the
application model and generating new hosting alternatives by
exploiting the available adapters and runtimes, as described
in Section V in detail. To explain this step of the procedure,
we will illustrate it with two exemplary alternatives: (1)
The first alternative in Figure 3 depicts that the Java Web
Service is hosted on Amazon Beanstalk, which is an Amazon-
managed cluster of Tomcat servers, and uses Amazon Relation
Database Service (RDS) as database, which allows us using
cloud-enabled and managed MySQL without changing the
application logic. (2) The second alternative in Figure 3
uses the respective services of Google. Slight changes of
the WAR file are needed to host the Java Web service on
Google AppEngine. This is realized by an adapter (Adapter A)
which generates and adds the required XML file to the WAR
before the deployment on Google AppEngine. The AppEngine
Datastore is no relational database, which requires complex
changes to the Java Web service. A human developer will
do the required code changes, which is represented by a so
called manual adapter.

The generated alternatives provide the same functionality,
but depend on different building blocks. In the next step the
alternatives are evaluated and the application model to deploy
is chosen based on the cost. We chose a simple example
for better illustration of the applied concepts. However,
the framework can scale up and handle more complex
applications. We make not claim that the framework is able
to handle all types of applications.

IV. CONCEPTUAL MODEL AND FRAMEWORK ENTITIES

This section defines the entities CMotion is built on.
Figure 4 depicts the entities and their relation to each other.

Technologies are a classification of standards and APIs.
To depict different variations or dialects, the technologies
are structured as trees, for instance, the technology SQL has
a child PostgreSQL, MySQL, and so on. Figure 5 depicts the

Figure 4. Conceptual Model of the framework entities and their relations.

current CMotion technology tree which can be extended by
the user as needed.

Components are the nodes in the application model
representing the building blocks of the application. In the
running example (Figure 2) the components would be the
Java Web Service, Apache Tomcat, MySQL DB, and Linux.
The conceptual model in Figure 4 states that components
may host other components which require one of the offered
technologies. Components themselves may also require
certain technologies to run.

Runtimes offer hosting for one or more technology and
may require technologies themselves. Apache Tomcat in the
sample application in Figure 2 is a runtime for the technology
WAR and in turn requires an operating system. Runtimes may
be offered as a service, like Amazon Beanstalk. In contrast
to components, runtimes are pre-defined in the framework
before the processing starts.

Adapters are components which are able to mediate
between two different technologies. They provide the func-
tionality to transform one format into another. CMotion uses
adapters to generate hosting alternatives for applications,
e.g., if for a given technology no suitable runtime was found,
one or more adapters can be used to adapt the component’s
technology to a different technology. In Figure 3, Adapter A
enables that the Java Web Service can run on Google App
Engine.
We classify adapters into two dimensions: when and how:
The when dimension denotes at which time in the application
lifecycle [11] the adapter is applied: Either the transformation
is done before the deployment of the application, for example,
transforming a file into another format, or at runtime, for
example, by adding an additional component doing the
needed transformation on the fly. The other dimension
represents two ways how adapters apply their changes:
Automatic adapters are executed by the framework without
human intervention, whereas manual adapters represent a task
done by a human developer and are included into CMotion
to consider their cost in the optimization.

Figure 5. CMotion technology tree which can be extended by the user.

Users are able to develop additional runtimes and adapters
or load them from a repository. Both are reusable (see
Requirement R3), because they are only tied to technologies
and not to the specific application which is migrated.

V. THE CMOTION FRAMEWORK

This section briefly lays out how the CMotion framework
operates, following the procedure depicted in Figure 1.

Prerequisites for applications processed by CMotion. The
framework operates on the supplied application model which
must depict all outside dependencies of its components.
Additionally, it references the application files and if available
the respective source code (see Requirement R2), which are
processed by the adapters in a later step.

Step 1: Generation of Alternatives. Our approach starts
from the top of the application, because these components
deliver most of the distinguishing functionality, which is
the Java Web service in our running example. From this
component down towards the infrastructure we find more and
more standardized and exchangeable components which can
be realized in alternative ways. For each required technology
of a component, one hosting component or runtime is needed.
CMotion determines all runtimes and adapters offering the
required technology and creates one new alternative for each
possibility. This process builds a tree with a branch for each
alternative hosting possibility in a depth-first way.

Step 2: Evaluation and Selection of Alternatives. For
optimization and evaluation purposes each adapter, runtime,
and component is associated with a specific cost. The cost
model may include optimization criteria like response time,
labor cost, licensing cost, or energy efficiency. Based on this
cost metric the alternatives can be evaluated and selected.

Step 3: Deployment. The deployment is delegated to an
existing, specialized deployment framework. Therefore, the
deployment highly depends on the used application model and
deployment framework. CMotion consumes the application
model as cafe application description [12] and returns the
chosen alternative in the same format. Our implementation
can be adapted to other application models (Requirement R1
in Section II) by mapping the application model of choice
to the conceptual model defined in Section IV.

VI. RELATED WORK

The related work presents approaches to build portable
applications and frameworks for their deployment.

SAGA3, the Simple API for Grid Applications, provides
operations frequently used for scientific grid applications
like replication and job handling. [13] describes how SAGA
applications can run on a cloud by providing an adapter
implementation of the SAGA API. This approach and similar
ones are in the class of standardized format migration
as defined in Section II. In contrast, CMotion does not
require the usage of a specific interface or application format.
Arbitrary technologies, architectures, and models can be used.
Whether a migration is possible or not fully depends on the
availability of the respective adapters.

The composite application framework (cafe) [12] provides
tooling to model so-called application descriptions, as well
as means to customize, offer, and deploy the described
applications. Based on cafe, [14] uses enterprise service bus
(ESB) concepts for provisioning. Applications are developed
against virtual host components which are replaced by real
components during deployment. This approach can exchange
implementations with the same interface (represented by
technologies in this paper), similar to what ESBs do with
services. CMotion goes on step further by adapting the
interface offered by the respective components to match
the required interface. With this, [14] could be extended to
use components not matching the required interface.

VII. FUTURE CHALLENGES AND CURRENT LIMITATIONS

CMotion shows how applications can be migrated by using
adapters and runtimes. In the following we discuss current
limitations of CMotion and which challenges need to be
addressed in future research.

Environment dependencies. Many components have de-
pendencies onto the environment, for example, differences
in folder separators between Windows and Linux or shared
libraries in application servers. Therefore, each dependency
must be declared explicitly in the application model to be
processed during the migration.

Policy support. Policies regarding provider selection,
security and compliance [5] [6], or ecological implications
[15] must be considered to increase cloud adoption.

Application data migration. Data lock-in and data transfer
are two major obstacles of cloud computing [16] and on
the European union’s list of research topics [4, p.3, Rec.1].
When migrating an application, the data processed by the
application must be transferred together with the application.

Application’s cloud characteristics. CMotion aims to
support the migration of applications into the cloud and
to reduce vendor lock-in for applications already hosted
in the cloud. The programming model and non-functional
requirements of the application stay the same. Future work
may consider optimizations towards an elastic or multi-tenant
aware design, exploiting essential cloud characteristics [2].

3http://saga.cct.lsu.edu/

ACKNOWLEDGMENT

The research leading to these results has partially received
funding from the 4CaaSt project (http://www.4caast.eu)
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 258862.

REFERENCES

[1] F. Leymann, “Cloud Computing: The Next Revolution in IT,”
in Proc. 52th Photogrammetric Week, September 2009.

[2] P. Mell and T. Grance, “The NIST definition of cloud
computing,” Information Technology Laboratory, July 2009.

[3] OpenCloudManifesto.org, “Open cloud manifesto - dedicated
to the belief that the cloud should be open,” 2009.

[4] L. Schubert, K. Jeffery, and B. Neidecker-Lutz, “The future
of cloud computing,” European Commission - Information
Society and Media, Tech. Rep., 2010.

[5] A. Khajeh-Hosseini, I. Sommerville, and I. Sriram, “Research
challenges for enterprise cloud computing,” Information Secu-
rity, no. 1960, 2010.

[6] D. Catteddu and G. Hogben, “Cloud computing - benefits,
risks and recommendations for information security,” European
Network and Information Security Agency, Tech. Rep., 2009.

[7] System Virtualization, Partitioning and Clustering Working
Group, “Open Virtualization Format Specification (DSP0243),”
Distributed Management Task Force, February 2009.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java Language
Specification, Third Edition. Addison Wesley, 2005.

[9] Sun Microsystems, “JSR 220: Enterprise JavaBeans 3.0,”
2007. [Online]. Available: http://jcp.org/en/jsr/detail?id=220

[10] ——, “JSR 154: Java Servlet Specification, Version 2.5,”
2007. [Online]. Available: http://jcp.org/en/jsr/detail?id=154

[11] G. Breiter and M. Behrendt, “Life cycle and characteristics
of services in the world of cloud computing,” IBM Journal of
Research and Development, vol. 53, no. 4, 2009.

[12] R. Mietzner and F. Leymann, “A self-service portal for service-
based applications,” in SOCA, 2010.

[13] A. Merzky, K. Stamou, and S. Jha, “Application level interop-
erability between clouds and grids,” Workshops at the Grid
and Pervasive Computing Conference, pp. 143–150, 2009.

[14] R. Mietzner, C. Fehling, D. Karastoyanova, and F. Leymann,
“Combining horizontal and vertical composition of services,”
in SOCA, 2010, pp. 1–8.

[15] A. Nowak, F. Leymann, and R. Mietzner, “Towards Green
Business Process Reengineering,” in Proceedings of the
Workshop on Services, Energy, & Ecosystem: SEE, 2010.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Feb 2009.

