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Abstract—Software systems running in an enterprise consist of 
countless components, having complex dependencies, are 
hosted on physical or virtualized environments, and are 
scattered across the infrastructure of an enterprise, ranging 
from on-premise data centers up to public cloud deployments. 
The resulting topology of the current IT landscape of an 
enterprise is often extremely complex. We show that 
information about this complex ecosystem can be captured in a 
graph-based structure, the enterprise topology graph. We 
argue that by using such a graph-based representation many 
challenges in Enterprise Architecture Management (EAM) can 
be tackled through the aid of graph processing algorithms. 
However, the high complexity of an enterprise topology graph 
is the main obstacle to this approach. An enterprise topology 
graph may consist of millions of nodes, each representing an 
element of the enterprise IT landscape. Further, these nodes 
comprise a large variety of properties and relationships, 
making the topology hardly manageable by human users and 
software tools. To address this complexity problem, we propose 
different mechanisms to make enterprise topology graphs 
manageable. Segmentation techniques, tailored to specific use 
cases, extract manageable segments from the enterprise 
topology graph. Based on a set of formally defined 
transformation operations we then demonstrate the power of 
the approach in three application scenarios. 

Keywords-enterprise topology; enterprise topology graph; 
EAM; topology abstraction; segmentation; aggregation. 

I.  INTRODUCTION 
Information technology and corresponding software 

systems are an important factor for the competitiveness of 
today’s enterprises. For example, solutions like Business 
Process Management Systems (BPMS) help in managing the 
processes that drive an enterprise. BPMS support the 
automation of business processes and workflows and aim at 
structuring and optimizing reoccurring human tasks. 
Furthermore, through the use of new technologies the cost of 
business operation can be decreased, operations can be 
accelerated, and business-to-business relationships can be 
made more flexible. For instance, the efficient use of cloud 
computing is currently considered as one of the key success 
factors for enterprises [10]. However, through the increasing 
use of IT in almost any part of an enterprise, the management 
of the emerging IT landscape becomes a difficult challenge, 
as its complexity also increases steadily [9]. 

Enterprise Architecture Management (EAM) deals with 
the complexity of today’s enterprise IT landscapes. EAM 

considers different layers of an enterprise, capturing the 
business, processes, integration, software, and infrastructure 
in models on different levels of abstraction to support 
business-IT alignment, transformation, and maintenance [6]. 
As EAM is being recognized as a major challenge for an 
enterprise, a variety of management approaches and 
corresponding methods has been developed. However, a 
commonly accepted reference model has not yet evolved 
from these efforts and, furthermore, the different EAM 
approaches vary significantly in terms of granularity and 
scope, as concluded by Winter et al. [7]. Another result of 
this study is that software tools are an important aspect in 
EAM to capture and visualize information. EAM tools like 
Iteraplan EAM [8], for example, can be used to model the 
topology of an enterprise IT landscape, plan transformations, 
and run advanced reporting functions on different aspects of 
such a topology. However, the information captured with 
these tools is often (re-)modeled manually and techniques to 
analyze such enterprise architecture descriptions are rather 
informal [7]. Due to limited human resources and the costs 
of maintaining such a topology, typically a high level of 
abstraction is applied. Hence, manually modeled topologies 
only map a fraction of the whole enterprise IT onto such a 
model. For instance, a Content Management System (CMS) 
can be abstractly represented as one node in a topology, or as 
a complex graph consisting of several dozen nodes and edges 
which represent components of that CMS, their relationships, 
and dependencies. When modeling the topology manually, 
such level of detail can hardly be achieved in day-to-day 
practice. To address the shortcomings of modeling the 
enterprise IT landscape manually, we advocate another 
option that builds on automated discovery and pre-modeled 
application templates that reveal the inner structure of 
complex architecture components. The resulting complex 
enterprise topology graph allows applying certain 
transformation operations presented in this paper to be able 
to address the different information needs of various 
stakeholders. As an example, imagine a manager who wants 
to know all IT-systems that are used within his department 
including the dependencies to other systems or departments.  

The contributions of this work are (i) a formal definition 
of segments and two segmentation techniques, (ii) a set of 
transformation operations to support the management of 
complex and large-scale enterprise topology graphs, and 
(iii) different analysis strategies, which use the contributions 
(i) and (ii) to address relevant challenges in EAM. 



 

 

The remainder of this paper is structured as follows: We 
present the enterprise topology graph in Section II. In 
Section III segments and segmentation of the enterprise 
topology graph are discussed. The transformation operations 
on the formal enterprise topology graph and its segments are 
presented in Section IV. Building on these fundamentals, we 
exemplify the approach along three analysis strategies that 
address the EAM concerns Impact Analysis in Section V.A, 
Workflow Deep-Dive in Section V.B, and Abstract 
Enterprise Architecture in Section V.C. Related work is 
reviewed in Section VI. In the conclusion and outlook in 
Section VII we reflect on the benefits and challenges of our 
approach and give a brief overview on future work. 

II. ENTERPRISE TOPOLOGY GRAPH 
An enterprise topology represents a snapshot of all 

services and applications in an enterprise, together with their 
supporting infrastructure and relations. Figure 1 shows a 
complete view of our approach and the focus in this paper. 

A. Buiding up an Enterprise Topology Graph 
The central artifact of our approach shown in Figure 1 is 

the enterprise topology graph. We have identified different 
methods to build up the topology: it can either be manually 
modeled, automatically discovered, imported from existing 
application descriptions, or it can be built up by applying an 
arbitrary combination of these. The manual modeling of a 
topology comes with the drawbacks we have already 
discussed in the introduction. The rather informal 
descriptions as well as different abstraction levels harm the 
creation of a holistic topology.  

The modeling can be complemented with the automated 
discovery of an enterprise IT landscape. This is not a novel 
field and has been brought up over a decade ago in the 
context of network topology discovery. For example, 
Machiraju et al. [11] present an auto-discovery engine to 
overcome the disadvantages of manual discovery. In contrast 
to automated methods, Machiraju et al. characterize manual 
discovery as time consuming and inconsistent with a lack of 
reuse and the problem of distributed intelligence. Analogous 
to a search engine crawler that discovers the internet, 
topology discovery automatically analyzes the interiors of 
applications to get insight into its constituent parts and the 
relationships among them as well as the relationships to 
other components in the IT landscape. However, for 
discovering the relationships of particular applications, like a 
BPEL process or a Perl script, particular language-specific 
algorithms and processing functions are required. Such 
application-specific relation discovery is not state of the art.  

Another way that we propose to discover an application 
landscape is to use existing application descriptions of 
deployed applications. This, however, assumes that the 
application that is known to be used in the enterprise has 
already been modeled using a nonproprietary format, for 
instance provided by the application vendor. In the context of 
cloud computing recently a specification for application 
models and their management has been proposed for 
standardization, which is very relevant to this aspect. 
TOSCA [5], the Topology and Orchestration Specification 

 

 
Figure 1.  Overview of the enterprise topology approach. The areas this 

paper is focusing on are highlighted in black. 

for Cloud Applications, describes a format to model an 
application, its constituent parts, and their relationships. The 
aim of the specification is to ease cloud portability, enable 
automated deployment of software on an enterprise scale, 
and to ease and automate the management of applications. 
We argue that such application models can be another way to 
build up the enterprise topology graph by importing the 
information and thus delivering a representation that is more 
detailed than manual modeling and more precise and easier 
to handle than by using discovery only. Further, the import 
of models increases reuse and fosters consistency, for 
example, when importing the model of a CMS multiple 
times to represent different deployments of that software in 
different data centers of a company. 

Without going deeper into the challenges and methods of 
enterprise topology discovery and application model 
description and importing, we can state that the resulting 
enterprise topology graph may be very complex, containing a 
number of nodes which is not manageable without 
appropriate, automated abstraction techniques. These 
techniques should support analysis and management of the 
topologies relevant to different information demands and 
viewpoints of human users. For example, adjusting the level 
of granularity to abstract from technical details or focusing 
on a particular part of the enterprise topology graph that 
represents a particular business unit. The techniques we 
propose consider enterprise topology graph abstraction, 
aggregation, and segmentation, that can be coupled together 
to form complex analysis strategies, serving different 
information needs and levels of abstraction. The 
identification and description of these operations forms the 
main focus of this paper. Other related aspects like topology 
viewing, language-specific topology discovery, and the 
import of application models are ongoing work. 

B. Formalization of Enterprise Topology Graph 
The enterprise topology graph is a formalized graph 

which we use within this paper to describe snapshots of an 
enterprise IT. The graph-based representation enables the 
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definition of formal operations on enterprise topologies in 
order to reach the abstraction we are aiming for. 
Additionally, the formalization enables the application of 
proven graph algorithms to address particular enterprise 
architecture management problems. 

The formal model was defined in our previous work [15], 
in combination with a search operation that allows querying 
the graph, and does not represent a contribution of this paper. 
To make this paper self-contained, we briefly describe the 
conceptual model of an enterprise topology graph – depicted 
in Figure 2. The core element of the enterprise topology 
graph is represented by the entity component which 
subsumes the nodes and edges of the graph. Each of the 
generic entities has a type and a number of entity properties. 
The node types and edge types are structured as tree, which 
later on allows us to abstract types from a lower to a higher 
level. A segment refers to a subset of the enterprise topology 
graph by referencing a number of its entities. The operations, 
strategies, and objectives on the right side of Figure 2 
represent the abstraction capabilities we enable on the 
enterprise topology graph. We define transformation 
operations on segments and/or entities which can be 
composed into more complex transformation operations. The 
operations are used to implement analysis strategies which 
fulfill certain management objectives. 

 
Figure 2.  Conceptual model of the enterprise topology graph (left) 

and the support for abstraction (right). 

Formally, we define the set of nodes ܰ and the set of 
edges ܧ ك ܰ ൈ ܰ. An edge is a binary, directed, typed 
relation between two nodes. The set of entities subsumes 
both, nodes and edges, i.e., ݏ݁݅ݐ݅ݐ݊ܧ ൌ ܰ ׫  .ܧ

The sets ܰݏ݁݌ݕܶ݁݀݋ and ݏ݁݌ݕܶ݁݃݀ܧ hold the types 
which are assigned by the function ݁݌ݕݐ to the nodes and 
edges. Types are structured in a global tree, which is defined 
by the two functions ݏ݁݌ݕܶݐ݊݁ݎܽ݌ and ݄݈ܿ݅݀ܶݏ݁݌ݕ. In 
addition, users can define custom type trees with a different 
structure than the global type trees. We will show examples 
for custom type trees later in this paper. ܶݏ݁݌ݕ ൌ ݏ݁݌ݕܶ݁݀݋ܰ ׫ :݁݌ݕݐ  ݏ݁݌ݕܶ݁݃݀ܧ ݏ݁݅ݐ݅ݐ݊ܧ ՜ :݁݌ݕܶݐ݊݁ݎܽ݌ ݏ݁݌ݕܶ ݏ݁݌ݕܶ ՜  ݏ݁݌ݕܶ

:ݏ݁݌ݕ݈݄ܶ݀݅ܿ ݏ݁݌ݕܶ ՜ ݌    ,ݏ݁݌ݕܶ ฽ ሼܿ|݁݌ݕܶݐ݊݁ݎܽ݌ሺܿሻ ൌ  ሽ݌
A property is a key-value-pair which is associated with 

an entity. Valid keys of a property are all URIs, which are 
represent by the set ܲݏݕ݁ܭݕݐݎ݁݌݋ݎ. The valid property 
values are included in the set ܲݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎ, which are 
all strings. The function ݏ݁݅ݐݎ݁݌݋ݎ݌ assigns a set of key-
value-pairs to an entity. The ݕݐݎ݁݌݋ݎ݌ function returns a 
single property value for an entity and property key. The 
label of an entity is stored as property with a well-defined 
property key. ܲݏ݁݅ݐݎ݁݌݋ݎ ൌ ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ൈ ݏ݁݅ݐ݅ݐ݊ܧ   :ݏ݁݅ݐݎ݁݌݋ݎ݌ ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ՜ ݁   ,ݏ݁݅ݐݎ݁݌݋ݎܲ ฽ ሼሺ݇, ݇|ሻݒ א ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ר ݒ א ݏ݁݅ݐ݅ݐ݊ܧ   :ݕݐݎ݁݌݋ݎ݌ ሽݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ൈ ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ՜ ,ݕݐ݅ݐሺ݁݊   ,ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ሻݕ݁݇ ฽ ሼݒ|ሺ݇݁ݕ, ሻݒ א  ሻሽݕݐ݅ݐሺ݁݊ݏ݁݅ݐݎ݁݌݋ݎ݌

Based on the preceding definitions the enterprise 
topology graph is a 5-tuple of the set of nodes ܰ, edges ܧ, 
and ܶݏ݁݌ݕ, as well as the functions ݏ݁݅ݐݎ݁݌݋ݎ݌ and ݄݌ܽݎܩݕ݃݋݈݋݌݋ܶ݁ݏ݅ݎ݌ݎ݁ݐ݊ܧ :݁݌ݕݐൌ ሺܰ, ,ܧ ,ݏ݁݌ݕܶ ,݁݌ݕݐ  ሻݏ݁݅ݐݎ݁݌݋ݎ݌
C. Example of an Enterprise Topology Graph 

We provide a small extract of an enterprise topology 
graph in Figure 3. This graph consists of a Web service, an 
application server, and a relational database management 
system (RDBMS) node. The two outgoing edges of the Web 
service represent the hosted-on relation to the application 
server and the depends-on relation to the RDBMS. In 
addition, the Web service has a property name. ܰ ൌ ሼܹܵ, ,ܵܣ ܧ  ሽܤܦ ൌ ሼሺܹܵ, ,ሻܵܣ ሺܹܵ, ݏ݁݌ݕܶ݁݀݋ܰ  ሻሽܤܦ ൌ ሼܹܾ݁ܵ݁݁ܿ݅ݒݎ, ,ݎ݁ݒݎ݁ܵ݌݌ܣ ݏ݁݌ݕܶ݁݃݀ܧ  ሽܵܯܤܦܴ ൌ ሼ݄݊݋-݀݁ݐݏ݋, ݁݌ݕݐ  ሽ݊݋-ݏ݀݊݁݌݁݀ ൌ ሼሺܹܵ, ,ሻ݁ܿ݅ݒݎܾܹ݁ܵ݁ ሺܵܣ, ,ܤܦሻ,       ሺݎ݁ݒݎ݁ܵ݌݌ܣ ,ሻܵܯܤܦܴ ሺሺܹܵ, ,ሻܵܣ ,ሻ,       ሺሺܹܵ݊݋-݀݁ݐݏ݋݄ ,ሻܤܦ ݏ݁݅ݐݎ݁݌݋ݎ݌  ሻሽ݊݋-ݏ݀݊݁݌݁݀ ൌ ሼሺܹܵ, ሺԢ݊ܽ݉݁ᇱ, Ԣܵ݁ܿ݅ݒݎ݁ܵ݇ܿ݋ݐԢሻሻሽ  

As mentioned in the introduction we do not focus on 
topology viewing and, therefore, use an ad-hoc notation as 
defined in the legend of Figure 3. 

 
Figure 3.  Visualized example enterprise topology graph. 

III. SEGMENTATION  
Segments are used to refer to a part of the enterprise 

topology graph based on user selection or logical, 
organizational, or physical criteria, for example. Segments 
reference a subset of the nodes and edges in an enterprise 
topology graph. Segments may also overlap and changes to 
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the entities contained in one segment are immediately 
reflected in all other segments containing this entity. As 
segments are just references, changes also have an effect on 
the enterprise topology graph. Following this definition, the 
whole enterprise topology graph, a single node, or a single 
edge are segments which ensures general applicability of the 
operations defined later. We define a segment as follows and ܵ݁݃݉݁݊ݏݐ as the powerset containing all segments: ܵ݁݃݉݁݊ݐ ൌ ሺܵܰ ك ܰ, ܧܵ ك ,ܧ ,ݏ݁݌ݕܶ ,݁݌ݕݐ ݏݐ݊݁݉݃݁ܵ ሻݏ݁݅ݐݎ݁݌݋ݎ݌ ൌ 2ௌ௘௚௠௘௡௧ 

In addition, we define the border of a segment to contain 
the entities which connect the segment to its outside. This 
includes the edges crossing the segment border, i.e., the edge 
between a node in the segment with a node outside of the 
segment, and nodes which are target or source of an edge 
that is not part of the segment. ܾݎ݁݀ݎ݋: ݏݐ݊݁݉݃݁ܵ ՜ ܵ      ,ݏ݁݅ݐ݅ݐ݊ܧ ฽ ሼሺ݂, ,ሻ|ሺ݂ݐ ሻݐ א ܧܵ ר ሺ݂ ב ܵܰ ש ݐ ב ܵܰሻሽ ݊|ሼ݊      ׫ א ܵܰ ר ሺ׌ሺ݊, ሻݐ א :ܧ ݐ ב ש           ܰܵ ,ሺ݂׌ ݊ሻ א :ܧ ݂ ב ܵܰሻሽ 

In the following, we will first discuss the properties of 
segments and afterwards present two segmentation 
techniques used to define higher level analysis strategies. In 
the future, further segmentation techniques are likely to be 
defined, such as one based on clustering algorithms, logical 
operations, or based on a selection language. 

A. Properties of Segments 
To apply existing graph algorithms to segments we 

define possible properties of segments to be able to specify 
pre- and post-conditions of these algorithms. Segment 
properties denote what kind of segment the transformation 
operations and analysis strategies expect as input and which 
properties they assure for their output. 

(i) Connected: All entities of the segment are connected, 
i.e., no isles exist. When checking if the segment is 
connected we regard the segment as undirected graph, i.e., to 
prove connectedness an algorithm may walk in the opposite 
direction of a directed edge. For a formal definition how to 
check if a graph is connected see [16]. 

(ii) Acyclic: Some graph algorithms cannot operate on 
cyclic graphs or less efficient algorithms must be used. There 
are various ways to check directed graphs for cycles, e.g., the 
one described in [16]. 

(iii) Complete: Let ܵܰ and ܵܧ be the set of nodes and 
edges of segment ܵ and let ܧ be the set of edges of the 
enterprise topology graph. A segment is complete if for each 
pair of nodes ሺ݂, ሻݐ א ܵܰ ൈ ܵܰ in ܵ applies: If these nodes 
are connected through an edge in the enterprise topology 
graph, i.e., ሺ݂, ሻݐ א ,then this edge must also be in segment ܵ, i.e., ሺ݂ ,ܧ ሻݐ א  Completeness is defined in the context of .ܧܵ
enterprise topology graphs and therefore differs from other 
completeness definitions in graph research, like [16]. 

(iv) Single-Entry-Single-Exit (SESE): A connected 
segment ܵ has the property SESE if exactly two entities are 
in its border, i.e., |ܾݎ݁݀ݎ݋ሺܵሻ| ൌ 2, and one entity is 
crossing the border into ܵ and the other entity is crossing the 
border out of ܵ. This is validated for edges (1) and nodes (2) 

differently: (1) Let ሺ݂, ሻݐ א  ሺܵሻ be an edge in theݎ݁݀ݎ݋ܾ
border of ܵ, then the edge ሺ݂,  ,ሻ is crossing the border out of ܵ if the from-node is in the segment and the to-node is notݐ
i.e., ݂ א ܵ ר ݐ ב ܵ. (2) A node ݊ א  ሺܵሻ is crossingݎ݁݀ݎ݋ܾ
the border out of ܵ if there exits exactly one edge to a node 
outside of the segment, i.e., ׌! ሺ݊, ሻݐ א :ܧ ݐ ב ܵ. The 
validation for entities crossing the border into the segment is 
analogously to the definitions before. 

(v) Backtraceable: A segment is traceable back to the 
enterprise topology graph if no operation changed the 
segment in a way that a clear mapping to the enterprise 
topology graph was lost, for example, when removing a 
node. When a segment is backtraceable it is possible to 
maintain links into the enterprise topology graph and to 
apply changes made on segments back into the enterprise 
topology graph. This property is true for all newly created 
segments and maintained if all the operations applied to this 
segment conserve backtraceability. 

B. Technique #1: Node Neighborhood  
When working on a particular node of the enterprise 

topology graph, often only a limited segment surrounding 
this node is of interest. Therefore, this segmentation 
technique creates a segment of a node’s neighborhood to 
enable the stakeholders to focus on their current task. 

Let ݂ be the node whose neighborhood should be 
determined, let ܴ ൌ ሼ݂ሽ be the result segment, let ݀݁ݐݑܱ݄ݐ݌ 
and ݀݁݊ܫ݄ݐ݌ be the number of edges the algorithm follows 
to create the segment, and let ܶݐݑܱݏ݁݌ݕ ك ݊ܫݏ݁݌ݕܶ and ݏ݁݌ݕܶ݁݃݀ܧ ك  be the set of types to restrict the ݏ݁݌ݕܶ݁݃݀ܧ
edges to be followed. If a type set is empty, the set of all 
edge types is assigned to it, i.e., for ܶݐݑܱݏ݁݌ݕ: ݂݅ሺ|ܶݐݑܱݏ݁݌ݕ| ൌ 0ሻ ܶݐݑܱݏ݁݌ݕ ൌ  be the set of edges and ܰ be the set of nodes of the ܧ Further, let .ݏ݁݌ݕܶ݁݃݀ܧ
enterprise topology graph. For each node we store its depth 
with respect to node ݂ to decide if another edge should be 
followed or not using ݀݁ݐݑܱ݌݄ܽ݉ݐ݌: ܰ ՜ :݊ܫ݌݄ܽ݉ݐ݌݁݀ and ݐ݊݅ ܰ ՜ ሺ݂ሻݐݑܱ݌ܽܯ݄ݐ݌݁݀ :Then, this algorithm is executed .ݐ݊݅ ՚ ݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ    ࢕ࢊ ݏݓ݋ݎ݃ |ܴ| ࢋ࢒࢏ࢎ࢝ 0 א ሻ݁݀݋ሺ݊ݐݑܱ݌ܽܯ݄ݐ݌݁݀ ࢌ࢏        ࢕ࢊ ܴ ൏ ,݁݀݋ሺ݊ ࢎࢉࢇࢋ࢘࢕ࢌ            ࢔ࢋࢎ࢚ ݐݑܱ݄ݐ݌݁݀ ሻ݋ݐ א ݋ݐ ࢌ࢏                ࢕ࢊ ܧ ב ܴ ר ,݁݀݋൫ሺ݊݁݌ݕݐ ሻ൯݋ݐ א ሻ՚݋ݐሺݐݑܱ݌ܽܯ݄ݐ݌݁݀                      ࢔ࢋࢎ࢚ ݐݑܱݏ݁݌ݕܶ ሻ݁݀݋ሺ݊ݐݑܱ݌ܽܯ݄ݐ݌݁݀ ൅ 1                     ܴ ൌ ܴ ׫ ሼሺ݊݁݀݋, ,ሻ݋ݐ  ݊ܫݏ݁݌ݕܶ ݀݊ܽ ݊ܫ݄ݐ݌݁݀ ݎ݋݂ ݕ݈݈ܽܿ݅݃݋݈ܽ݊ܣ #        ሽ݋ݐ
C. Technique #2: Structural Matching 

In enterprise topology graphs it is important to locate 
segments having a certain structure. This might be of 
interest, for example, when organizations want to determine 
the occurrence of an application or in consolidation 
scenarios. In [15] we presented an algorithm to search in 
enterprise topology graphs which enables the definition of 
queries as segments. This algorithm maps search in 
enterprise topology graphs to the problem of sub-graph 
isomorphism and applies the VF2 algorithm presented in 



 

 

Cordella et al. [17]. The structural matching segmentation 
technique is based on this search function. It is invoked with 
one segment as search space, which may also be the whole 
enterprise topology graph, and a second segment as search 
query for which all isomorphic sub-graphs are determined. 

IV. TRANSFORMATION OPERATIONS 
Transformation operations are functions and algorithms 

on enterprise topology graphs which facilitate certain 
transformations on this graph. In this section we define a set 
of transformation operations to build complex analysis 
strategies that are described in Section V. It is important to 
note that parameters of the operations are references to graph 
objects (call-by-reference), i.e., the enterprise topology graph 
is changed. If the original graph should be kept, a copy of the 
whole enterprise topology graph or segments thereof must be 
made upfront, e.g., by using the detach operation described 
in Subsection IV.G. To enable composability of the 
transformation operations the exact specification of the 
operations’ side effects, pre-, and post-conditions are 
essential. In the following subsections we first present the 
possible properties of operations followed by the definition 
of the different transformation operations. 

A. Properties of Operations 
To make the effects of compositions of operations easier 

to understand we define two properties for operations: 
(i) Non-Ambiguity: For each input the transformation 

operation has exactly one set of results. An ambiguous 
operation has possibly multiple sets of results. 

(ii) Backtraceability-conserving: If a segment, to which 
the operation is applied to, was backtraceable before, it is 
also backtraceable after the particular operation has been 
executed. Backtraceability is also a segment property, 
defined in Section III.A. Thus, if a composition of operations 
contains at least one operation which is not backtraceability-
conserving, then the composite operation will also not satisfy 
this property. 

B. Type Abstraction 
Sometimes the actual type assigned to an entity is not of 

interest for particular application scenarios. For example, a 
stakeholder is only interested in the ratio of Windows and 
Linux systems that are running, regardless of the concrete 
versions. To address such different levels of granularity, 
node types and edge types of the enterprise topology graph 
are structured as trees. This structure can be used to abstract 
the types in a segment into higher level types, as shown in 
Figure 4. The user provides a custom type tree and a set of 
selected types pointing into this tree. In Figure 4, the selected 
types for this example are highlighted in bold. If a child type 
of a selected type exists in the segment, it is replaced by the 
selected type. Types without selected type as parent or types 
not included in the custom type tree are not changed. 

Formally, we define the backtraceability-conserving and 
non-ambiguous operation ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ as follows: Let ܵ 
be the segment in which the types should be abstracted, 
let ݁݁ݎܶ݁݌ݕݐ be the root of the type tree, and let ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ ك  be the set of types to which their ݏ݁݌ݕܶ

 

 
Figure 4.  The detailed segment on the left is abstracted into the segment 
depicted on the right through the type abstraction operation. The type tree 
in the center shows the structure of types and the selected types in bold. 

child types should be abstracted to. Then ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ 
can be implemented as: ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ݐ      ࢕ࢊ ܵ ൌ ݐ ࢋ࢒࢏ࢎ࢝      ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ ് ݐ ࢌ࢏           ࢕ࢊ ݁݁ݎܶ݁݌ݕݐ א ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ ࢔ࢋࢎ࢚ ݁݌ݕܶ݀݁ݐ݈ܿ݁݁ܵ ՚ ݐ ࢋ࢙࢒ࢋ          ݐ ൌ  ࢊ࢔ࢋ ሻݐሺ݁݌ݕܶݐ݊݁ݐݎܽ݌

C. Entity Property Aggregation 
This operation aggregates for all entities in a segment the 

property values associated with a certain key. For example, it 
can be used to determine the average utilization of the 
entities in a segment. The actual aggregation is done by the 
user-defined function ݂ܽ݃݃݁ݐܽ݃݁ݎ, which is called with the 
set of property values and must return exactly one value. 
Example aggregation functions are min, max, avg, count, 
concatenate, or sum. These functions are restricted to be 
used with particular data types only, for example, min is 
restricted to Integer, Long, Single, and Double. 

Let ܵ be the segment whose entity’s properties with key ݇ should be aggregated. Then we define: ݂ܽ݃݃2 :݁ݐܽ݃݁ݎ௉௥௢௣௘௥௧௬௏௔௟௨௘௦ ՜ ݏݐ݊݁݉݃݁ܵ      :ݕݐݎ݁݌݋ݎܲ݁ݐܽ݃݁ݎ݃݃ܽ ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ൈ ݏݕ݁ܭݕݐ݁݌݋ݎܲ ՜ ,ሺܵ      ,ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ݇ሻ ฽ ,ሺ݁ݕݐݎ݁݌݋ݎ݌ሺሼ݁ݐܽ݃݁ݎ݂݃݃ܽ ݇ሻ|݁ א ܵሽሻ  
D. Create and Remove Entities 

The operations ݊݁ݏ݁݌ݕܶ :݁݀݋ܰݓ ՜  ܰ and ݊݁݁݃݀ܧݓ:  ܰ ൈ ܰ ൈ ݏ݁݌ݕܶ ՜  add a new node or edge to the ܧ 
enterprise topology graph, assign a type, and return the 
entity. To add entities to a segment which already exist in the 
enterprise topology graph the operations ܽ݀݀ܰݏݐ݊݁݉݃݁ܵ :݁݀݋ ൈ ܰ ՜ ٣ and ܽ݀݀݁݃݀ܧ: ݏݐ݊݁݉݃݁ܵ ൈ ܧ ՜ ٣ 
are used. The third pair of operations, ݊݁ݏݐ݊݁݉݃݁ܵ :݃݁ܵ݁݀݋ܰݓ ൈ ݏ݁݌ݕܶ ՜  ܰ and ݊݁݃݁ܵ݁݃݀ܧݓ: ݏݐ݊݁݉݃݁ܵ ൈܰ ൈ ܰ ൈ ݏ݁݌ݕܶ ՜  create a new node or edge in the ,ܧ 
enterprise topology graph and adds them to the segment. 

Removing entities is more complex, for example, 
removing a node may leave half-edges, i.e., edges only 
attached with one side to a node. Therefore, the basic 
removing operations do not conserve backtraceability and 
may render the segment disconnected. Removing nodes from 
a segment is done using ݃݁ܵ݁݀݋ܰ݉ݎ: ݏݐ݊݁݉݃݁ܵ ൈ ܰ ՜٣ 
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and removing edges by ݃݁ܵ݁݃݀ܧ݉ݎ: ݏݐ݊݁݉݃݁ܵ ൈ ܧ ՜٣. 
When a node or edge is removed from the enterprise 
topology graph using the operations ݁݀݋ܰ݉ݎ: ܰ ՜٣ and ܧ :݁݃݀ܧ݉ݎ ՜٣, it is also removed from all segments.  

There are different strategies to facilitate the 
readjustment of half-edges when removing a node. We 
defined two of them as operations: (1) The operation ݁ݑݍܽ݌ܱ݁݀݋ܰ݉ݎ removes a node by replacing it with a 
node of type opaque. With this, the structure of the segment, 
as well as the edges, is fully conserved. In contrast to the first 
operation (2) removes the node and all of its edges. For 
readjustment new edges of type relation are added to show 
that there has been some kind of indirect relationship 
between these nodes. The removed node and edges are 
stored as property of the new edges for documentation 
purposes. The operation ݏ݊݋݅ݐ݈ܴܽ݁݌݁݁ܭ݁݀݋ܰ݉ݎ is defined 
as follows: Let ܰ be the set of nodes in the enterprise 
topology graph, let ݉ݎ א ܰ be the node to remove, let ܵ be 
the segment in which rm should be removed, and let ܵܧ be 
the set of edges in ܵ. Then, the sets of nodes related to ݉ݎ by 
an edge is ݏ݁݀݋ܰ݋ݐ ൌ ሼ݁݀݋ܰ݋ݐ|ሺ݉ݎ, ሻ݁݀݋ܰ݋ݐ א Sܧሽ and ݂ݏ݁݀݋ܰ݉݋ݎ ൌ ሼ݂݁݀݋ܰ݉݋ݎ|ሺ݂݁݀݋ܰ݉݋ݎ, ሻ݉ݎ א Sܧሽ. In 
the algorithm these nodes are pairwise connected by a new 
edge of type relation: ࢎࢉࢇࢋ࢘࢕ࢌ ሺ݂݉݋ݎ, ሻ݋ݐ א ݏ݁݀݋ܰ݉݋ݎ݂ ൈ ,݉݋ݎሺ݂݁݃݀ܧݓ݁݊      ࢕ࢊ ݏ݁݀݋ܰ݋ݐ ,݋ݐ  ሻ݊݋݅ݐ݈ܽ݁ݎ

Afterwards the node ݉ݎ and all edges from or to ݉ݎ are 
removed from the enterprise topology graph. 

E. Segment Aggregation 
If details represented in the enterprise topology graph are 

not important for a particular application scenario, the 
complexity can be reduced by aggregating a segment into a 
single node (e.g., a composite application) or edge (e.g., a 
communication or dependency channel). An example is 
shown in Figure 5 where the infrastructure is aggregated into 
a single node named supporting infrastructure. Creating the 
segment is not part of this operation; this is done by one of 
the segmentation techniques presented in Section III. 

If needed, entity properties can be aggregated from the 
segment to the aggregated entity with the operation ܽ݃݃ݏ݁݅ݐݎ݁݌݋ݎܲ݁ݐܽ݃݁ݎ defined in Section IV.C. 

Let ܵ be the connected and complete segment which 
should be aggregated and ܽ݃݃݁݌ݕܶ݁ݐܽ݃݁ݎ א  be the ݏ݁݌ݕܶ
type of the new aggregated node or edge. Then we define 
two algorithms, one to aggregate ܵ into one node and the 
 

 
Figure 5.  The user-defined segment on the left is aggregated into a single 

node called supporting infrastructure on the right. 

second to aggregate ܵ into one edge. Both algorithms do not 
conserve backtraceability as defined in IV.A. After executing 
one of the algorithms ܵ is not connected to the outside 
anymore and all nodes and edges in ܵ are removed. 

 ሺܵሻ to containݎ݁݀ݎ݋ܾ requires ݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ݃݃ܣ (1)
only edges. The algorithm creates the aggregated node and 
reassigns all edges in ܾݎ݁݀ݎ݋ሺܵሻ from the nodes in ܵ to the ܽ݃݃݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ .݁݀݋ܰ݀݁ݐܽ݃݁ݎ ൌ ,݉݋ݎሺ݂ ࢎࢉࢇࢋ࢘࢕ࢌ ሻ݁݌ݕܶ݁ݐܽ݃݁ݎሺܽ݃݃݁݀݋ܰݓ݁݊ ሻ݋ݐ א ݉݋ݎ݂ ࢌ࢏      ࢕ࢊ ሺܵሻݎ݁݀ݎ݋ܾ ב ݉݋ݎ݂ ࢔ࢋࢎ࢚ ܵ ՚ ݋ݐ ࢌ࢏      ࢊ࢔ࢋ ݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ ב ݋ݐ ࢔ࢋࢎ࢚ ܵ ՚  ࢊ࢔ࢋ ࢊ࢔ࢋ ݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ

 ሺܵሻ to containݎ݁݀ݎ݋ܾ requires ݁݃݀ܧ݋ܶ݁ݐܽ݃݁ݎ݃݃ܣ (2)
only nodes and in contrast to (1) that ܵ is an Single-Entry-
Single-Exit segment, as defined in III.A. It creates the 
aggregated edge between the two nodes in ܾݎ݁݀ݎ݋ሺܵሻ. The 
inner foreach-loop determines the direction of the edge 
between the two nodes. 
݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ  א ,ሺ݂ ࢎࢉࢇࢋ࢘࢕ࢌ      ࢕ࢊ ሺܵሻݎ݁݀ݎ݋ܾ ሻݐ א ݂ ࢌ࢏           ࢕ࢊ ܵ ൌ ݉݋ݎ݂ ࢔ࢋࢎ࢚ ݁݀݋݊ ՚ ݐ ࢌ࢏           ࢊ࢔ࢋ ݁݀݋݊ ൌ ݋ݐ ࢔ࢋࢎ࢚ ݁݀݋݊ ՚ ,݉݋ݎሺ݂݁݃݀ܧݓ݁݊ ࢊ࢔ࢋ ࢊ࢔ࢋ      ࢊ࢔ࢋ ݁݀݋݊ ,݋ݐ  ሻ݁݌ݕܶ݁ݐܽ݃݁ݎ݃݃ܽ

F. Filter 
In some cases only certain nodes and edges are of 

interest, for example, one does not want to have nodes of 
type OS and its child types in a segment, as shown in Figure 
6, or all entities in a segment should only have certain entity 
properties. For this scenario we have to distinguish between 
two cases: (1) filtering entities, i.e., removing certain nodes 
and edges from a segment, and (2) filtering properties which 
apply a filter to the properties of an entity.  

(1) Filter Entities: Let ܵ be the segment which should be 
filtered, let ܰ be the set of nodes, and ܧ the set of edges in 
the enterprise topology graph. Further, let ݁ݏ݁݅ݐ݅ݐ݊ܧ :݈ܽݒ ՜ሼ0, 1ሽ be an user-defined function which decides if an entity 
should be kept (=0) or removed (=1) from ܵ. We use the 
previously defined operation to remove entities which 
renders (1) not conserving backtraceability. 

Then, the algorithm for ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ is defined as 
follows on the next page: 

 

 
Figure 6.  From the enterprise topology graph on the left, the operating 

system node is filtered. All edges are of type hosted-on. 
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ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ሻݕݐ݅ݐሺ݈݁݊ܽݒ݁ ࢌ࢏      ࢕ࢊ ܵ ൌ 1 ר ݕݐ݅ݐ݊݁ א ,ሺܵ݊݋݅ݐ݈ܴܽ݁݌݁݁ܭ݁݀݋ܰ݉ݎ            ࢔ࢋࢎ࢚ ܰ ሻݕݐ݅ݐሺ݈݁݊ܽݒ݁ ࢌ࢏ ࢋ࢙࢒ࢋ      ሻݕݐ݅ݐ݊݁ ൌ 1 ר ݕݐ݅ݐ݊݁ א ,ሺܵ݃݁ܵ݁݃݀ܧ݉ݎ           ࢔ࢋࢎ࢚ ܧ  ሻݕݐ݅ݐ݊݁
The exemplary implementation of function ݈݁ܽݒ we 

applied in Figure 6 filters all nodes of type OS: ݈݁ܽݒ: ݕݐ݅ݐ݊݁ ฽ ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ א ሼܱܵሽ 
(2) The filter for entity properties is defined in the same 

way as ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ but with a different evaluation 
function ݈݁ܽݒ: ݕ݁ܭݕݐݎ݁݌݋ݎܲ ൈ ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ՜ ሼ0, 1ሽ, 
which decides if an property is kept (=0) or removed (=1). 
The algorithm ݂݈݅ݏ݁݅ݐݎ݁݌݋ݎܲݎ݁ݐ is defined as follows: ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ,ݕሺ݇݁ ࢎࢉࢇࢋ࢘࢕ࢌ      ࢕ࢊ ܵ ሻ݁ݑ݈ܽݒ א ,ݕሺሺ݈݇݁ܽݒ݁ ࢌ࢏           ࢕ࢊ ሻݕݐ݅ݐሺ݁݊ݏ݁݅ݐݎ݁݌݋ݎ݌ ሻሻ݁ݑ݈ܽݒ ൌ ,ݕݐ݅ݐሺ݁݊ݕݐݎ݁݌݋ݎ݌                 ࢔ࢋࢎ࢚ 1 ሻݕ݁݇ ՚٣   ݕݐݎ݁݌݋ݎ݌ ݁ݒ݋ܴ݉݁ #

The evaluation function enables the usage of different 
decision mechanisms, like regular expressions on the 
property key or other complex evaluations. 

G. Detach Segment 
In general, changes of nodes and edges are reflected in 

the enterprise topology graph and in all segments containing 
these entities, because segments only reference the entities of 
the enterprise topology graph. For transformations to be only 
reflected in the segment the respective operation is applied 
to, the segment must be detached before. Technically, the 
segment is copied and the entities are not bound to the 
enterprise topology graph anymore. The base of the segment 
is a new enterprise topology graph which contains only the 
nodes the detached segment refers to. Due to the fact that this 
is an out-of-band operation which cannot be described in our 
formal model, we are referring to it by its signature: ݄݀݁ܿܽݐሺܵ݁݃݉݁݊ݏ ݐሻ: ݕ݃݋݈݋݌݋ܶ݁ݏ݅ݎ݌ݎ݁ݐ݊ܧ 

V. ANALYSIS STRATEGIES 
An analysis strategy composes multiple transformation 

operations and segmentation techniques to provide the 
appropriate level of abstraction for the specific application 
scenario. During composition, the properties of segments and 
operations are used to determine the assurances of the 
resulting segments. For example, an assurance can be that 
changes to a resulting segment can be propagated 
automatically back into the enterprise topology graph. 

In this section we define three analysis strategies to 
address selected EAM problems. Each strategy is defined in 
terms of its objectives, the problem it addresses, a solution 
sketch, and a formalization composing previously defined 
transformation operations and segmentation techniques. 

A. Strategy 1: Impact Analysis 
Objectives: The objective of this strategy is to determine 

the importance of certain elements in an enterprise topology. 
The importance, i.e., how strong an element is related to 
business-critical elements, may be identified by discovering 
the dependencies between the entities of this enterprise 
topology graph. 

Problem: In complex enterprise topologies the 
consequences of node failures, i.e., of components in the IT 
landscape or changes of configurations are not foreseeable. 
This is due to the fact that it is not clear which nodes depend 
on another node, especially when taking into consideration 
all depending nodes, i.e., at arbitrary depth. For changes in 
Web services, for example, it is useful to have a clear insight 
which applications and workflows use a certain service that 
should be updated as well. 

 
Figure 7.  Sketch of Impact Analysis strategy showing focused, impacted, 
and not-impacted nodes of an example enterprise topology graph segment. 

Solution: The Impact Analysis in enterprise topology 
graphs determines which nodes, named impacted nodes, are 
depending on a specific node of interest, named focused 
node. As shown in Figure 7, the result is a segment 
containing the focused node together with its neighborhood, 
the impacted nodes. Impacted nodes are connected to the 
focused node through a configurable number (i.e., the depth 
parameter) of edges of configurable types. The DB and VM 
node, depicted by a dashed line in Figure 7, exemplarily 
show two nodes not impacted and, therefore, would normally 
not appear in the result segment. This impact analysis 
strategy provides an implementation for the Infrastructure 
Failure Impact Analysis pattern in [20] and broadens its 
analysis scope to all levels of enterprise topology, not only 
infrastructure. Our strategy is realized by using the 
segmentation techniques node neighborhood, defined in 
Section III.B, together with a set of edge types defined in this 
strategy. Figure 7 shows the different edge types and their 
directions. 

Formalization: This strategy configures the parameters 
for the node neighborhood segmentation technique, formally 
defined in Section III.B, as follows: ܶ݊ܫݏ݁݌ݕ ൌ ሼ݀݁݊݋-ݏ݀݊݁݌, ,݊݋-݀݁ݐݏ݋݄        ,݊݋-݈݈݀݁ܽݐݏ݊݅ ݐݑܱݏ݁݌ݕܶ  ሽ݊݋-݀݁ݕ݋݈݌݁݀ ൌ ሼ݄ݏݐݏ݋, ݊ܫ݄ݐ݌݁݀  ሽݏ݁ݐݑܿ݁ݔ݁ ൌ ݐݑܱ݄ݐ݌݁݀ ൌ 5  

When applying the node neighborhood segmentation 
technique with this configuration and the focused node ݂ 
being the Linux node, we get the segment of impacted nodes 
as depicted in Figure 7. 

B. Strategy 2: Workflow Deep-Dive 
Objectives: The application of this strategy aims at 

identifying how a specific process automation (i.e., a 
workflow which in most cases represents a business process 
or parts thereof) is mapped to its underlying infrastructure. 
This information might be important when, for example, 
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analyzing infrastructure migration possibilities or when 
determining the environmental impact of a business process.  

Problem: For example, when tackling the challenge of 
Service-oriented Architecture governance [19], the analysis 
of services and their orchestrations in workflows plays a 
central role. To analyze workflows, e.g., a service 
orchestration based on BPEL [13] or BPMN [14], the 
involved services and their realization have to be considered. 
The ecological indicators or security properties of a 
workflow, for example, highly depend on the invoked Web 
services as well as on the middleware and infrastructure 
hosting them. 

 
Figure 8.  Sketch of Workflow Deep-dive strategy showing the workflow 

and an exemplary set of nodes included in the deep-dive. Edges without an 
explicit type label are of type hosted-on. 

Solution: The Workflow Deep-Dive into the enterprise 
topology graph starts with a node representing a workflow. 
From this node all the outgoing edges of type invokes are 
followed to determine the set of relevant services. In 
addition, the infrastructure hosting the workflow is added by 
tracing the edges of the type hosted-on. These nodes build up 
the segment to start the actual deep-dive on, i.e., the first 
iteration of the result segment. In the following all nodes 
reachable through a hosted-on or depends-on edge from one 
of the nodes in the result segment are added to the result 
segment. For this strategy we may decide not to include 
network components and use a filter to remove all nodes 
representing network components. 

Formalization: Let ݓ be the node of type workflow for 
which the deep-dive should be determined, let ܧ be the set of 
edges in the enterprise topology graph, and let ܴ be the result 
segment containing the workflow deep-dive. Then, the deep-
dive is determined using the following algorithm: ܴ ൌ ሼ݋ݐ|ሺݓ, ሻ݋ݐ א ר            ܧ ,ݓ൫ሺ݁݌ݕݐ ሻ൯݋ݐ א ሼ݅݊ݏ݁݇݋ݒ, ݏ݁݌ݕܶ݁ݒ݅ܦ݌݁݁ܦ  ሽሽ݊݋-݀݁ݐݏ݋݄ ൌ ሼ݄݊݋-݀݁ݐݏ݋, א ݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ       ࢕ࢊ ݏݓ݋ݎ݃ |ܴ| ࢋ࢒࢏ࢎ࢝  ሽ݊݋-ݏ݀݊݁݌݁݀ ,݁݀݋ሺ݊׌ ࢌ࢏            ࢕ࢊ ܴ ሻ݋ݐ א ݋ݐ :ܧ ב ר                 ܴ ,݁݀݋ሺሺ݊݁݌ݕݐ ሻሻ݋ݐ א ,ሺܴ݁݀݋ܰ݀݀ܽ                ࢔ࢋࢎ࢚ ݏ݁݌ݕܶ݁ݒ݅ܦ݌݁݁ܦ   ሻ݋ݐ

To remove all nodes assigned with the type network and 
all child types of it, we define the following evaluation 
function, and apply it using the ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ operation: ܹܰ ൌ ڂ ሻஶ௜ୀ଴݇ݎ݋ݓݐ௜ሺ݊݁݁݌ݕ݈݄ܶ݀݅ܿ ݏ݁݅ݐ݅ݐ݊ܧ :݈ܽݒ݁   ՜ ሼ0, 1ሽ, ݕݐ݅ݐ݊݁ ฽ ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ א ,ሺܴݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ݈݂݅  ܹܰ   ሻ݈ܽݒ݁

C. Strategy 3: Abstract Enterprise Architecture 
Objectives: From an EAM perspective, the objective of 

this strategy is to simplify a given enterprise topology graph 
to address stakeholders that only need topology information 
on a high level of abstraction. 

Problem: Today, enterprise architecture models are 
mostly created manually with the problems mentioned in the 
introduction. When these models are created with automated 
techniques like discovery and application topology import, 
the level of abstraction of the resulting enterprise topology 
graph may not be adequate for some stakeholders. In some 
application scenarios, a higher level of abstraction is needed. 

 
Figure 9.  The structure of the LAMP abstraction, containing a Linux, 

Apache, MySQL, and PHP node. 

Solution: The Abstract Enterprise Architecture strategy 
creates a high-level enterprise architecture from a low-level 
enterprise topology graph. Before this strategy can be 
applied, a set of abstractions is defined. For example, the 
LAMP abstraction in Figure 9 denotes that the depicted 
Linux, Apache, MySQL, and PHP node should be 
aggregated into a single node of type LAMP. This strategy is 
applied to a user-defined segment containing, for example, 
the nodes of a specific datacenter. In the following we 
describe the steps of this strategy in detail, as denoted in 
Figure 10: (1) The types in the LAMP abstraction are 
extracted and used in (2) as the selected types of a custom 
type tree in the ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ operation. In step (2), the 
types of all entities in this segment are abstracted, for 
example, a Debian 6.0 node is abstracted to Linux. (3) With 
the structural matching segmentation technique and the 
LAMP structure as search query, the enterprise topology 
 

 
Figure 10.  Sketch of the Abstract Enterprise Architecture strategy showing 

the four steps how the enterprise topology graph segment on the left is 
abstracted towards and enterprise architecture model. 
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graph with the abstracted types is segmented. The result of 
the segmentation is a set of segments matching to the pre-
defined structure. Figure 10 depicts one result segment in the 
dashed box. (4) In the end, each segment is aggregated into a 
single node using the ܽ݃݃݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ operation. 

When applying a series of these abstractions we are able 
to extract, abstract, and automatically generate an enterprise 
architecture from the detailed enterprise topology graph. 

Formalization: Let segment ܧ be the section of the 
enterprise topology graph which should be abstracted, let 
segment ݊݋݅ݐܿܽݎݐݏܾܣ be the LAMP abstraction, and ݁݁ݎܶ݁݌ݕݐ the root of the tree of node types. 

(1) The set ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ, which is input of the ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ operation, is defined as ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ ൌሼ݁݌ݕݐሺ݊ሻ|݊ א  ሽ. In the example presented in݊݋݅ݐܿܽݎݐݏܾܽ
Figure 9 ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ is ሼݔݑ݊݅ܮ, ,݄݁ܿܽ݌ܣ ,ܮܳܵݕܯ  .ሽ݊݋-݀݁ݐݏ݋݄,ܲܪܲ

(2) All entities with a type which is the child of one of 
the types in ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ is changed to this type by the 
transformation operation ܾܽݏ݁݌ݕܶݐܿܽݎݐݏܾܽ .ݏ݁݌ݕܶݐܿܽݎݐݏሺܧ, ,݁݁ݎܶ݁݌ݕݐ  ሻݏ݁݌ݕܶ݀݁ݐ݈ܿ݁݁ܵ

(3) The structural segmentation technique is used to 
locate all segments matching the search query ݊݋݅ݐܿܽݎݐݏܾܣ. 
For the example depicted in Figure 10, the resulting segment 
is highlighted by the dashed box. ܴ ൌ ,ܧሺ݊݋݅ݐܽݐ݈݊݁݉݃݁ܵܽݎݑݐܿݑݎݐܵ  ሻ݊݋݅ݐܿܽݎݐݏܾܣ

(4) To each of the resulting segments we apply the 
operation ܽ݃݃ݏ ࢎࢉࢇࢋ࢘࢕ࢌ :݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ א ,ݏሺ݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ݃݃ܽ ࢕ࢊ ܴ  ࢊ࢔ࢋ ሻܲܯܣܮ

VI. RELATED WORK 
Increasing complexity and corresponding abstraction 

techniques have been a key challenge in information 
technology since its early beginnings. To narrow the scope of 
works related to our approach we focus in the following on 
approaches that operate on graphs. First, we inspect a work 
from graph visualization dealing with a very large number of 
nodes and edges. We then take a closer look at works dealing 
with process graphs, which only contain hundreds of nodes 
but which have high demands on readability and semantic 
correctness of the outcome of the abstraction. Afterwards, we 
discuss the abstraction of models of software systems in the 
field of software engineering. Finally, we will have a look on 
the related work of enterprise topology graphs 

Research on graph theory has a long tradition and a large 
set of proven algorithms with high efficiency exits. These 
algorithms can be made accessible to EAM through the 
usage of graphs to represent the enterprise IT landscape. 
However, a graph holding all details of an enterprise IT may 
contain millions of nodes and edges, demanding for graph 
abstraction algorithms, as we proposed in this paper. This 
characteristic makes approaches on visualizing large-scale 
graphs relevant to our work. Abello et al. [3] presented ASK-
GraphView, a system to efficiently visualize graphs up to 
200,000 nodes. The main idea of the approach is to construct 
a hierarchy on an arbitrary graph using a pipeline of the 
clustering algorithms Peeling, Biconnected Components, 

Markov Cluster Algorithm, and Contraction. However, 
labeling of created clusters is recognized as an important 
aspect. Maqbool et al. [12] present a generic algorithm to 
address this problem by using the frequency and inverse 
frequency of keywords contained in relevant properties like 
function identifiers. The work compares automatically 
calculated labels with labels defined by human experts for 
the same clusters which showed a high correspondence 
between both sets of labels and most of the automatically 
obtained labels are considered as meaningful and helpful for 
understanding. The aggregation operation we presented in 
Section IV.E can use this or similar mechanisms to create 
cluster labels. However, our approach addresses a much 
broader scope of abstractions beyond clustering and labeling. 

As business processes are a crucial factor for the success 
of an enterprise, it is of utmost importance to have a clear 
understanding of these processes. Due to the increasing 
complexity of process models, which are mainly investigated 
in the field of BPM, abstraction techniques of process graphs 
are gaining more and more importance. For instance, Sadiq 
et al. [2] presented an approach to make the analysis of 
complex processes more efficient through the use of graph 
reduction rules. Many further approaches targeting the 
abstraction of process graphs have been proposed in the 
meanwhile. In [4], the graph transformations that have been 
applied frequently in the state of the art of process 
abstraction have been described. These transformations 
range from structural abstraction like the omission and 
aggregation of process structures, over to different forms of 
information augmentation like semantic tagging, up to 
viewing functions that address the visualization of a process 
like graphical highlighting and usage of particular shapes. 
Regarding the structural transformation patterns, the 
enterprise topology approach applies all patterns except for 
the disconnected aggregation, which describes the 
aggregation of unconnected or transitively connected 
segments. Patterns concerning the augmentation of 
additional information from external data sources as well as 
concerning the graphical visualization need to be considered 
in further elaboration of the enterprise topology approach. 

For the abstraction of software models, Selic [1] 
proposed a set of common abstraction patterns frequently 
used by software architects to make complex system models 
more comprehensible. The patterns concerning abstraction of 
structure are (1) black box which abstracts a complex 
structure to a single component, (2) black line which 
abstracts a chain of components that serve as communication 
channel to a single edge, (3) cable which abstracts multiple 
edges to a single one called cable, (4) port group which 
abstracts a group of communication ports of a component to 
a single one called port group, and (5) platform layer which 
abstracts a connected structure to a coarse-grained unit by 
combining use of the black box and cable pattern. Selic also 
discusses refinement of abstracted models as inverse to 
applied patterns. The patterns Selic identified also apply to 
enterprise topology abstraction. The transformation 
operations we proposed cover all patterns and extend the set 
proposed by Selic by filtering of components and relations, 
as well as by fine-granular abstraction on property level. 



 

 

In [15] we evaluated the related work of enterprise 
topology graphs in detail. We would like to stress that in 
contrast to approaches describing application models [5][21] 
or architectural blueprints [8][22] an enterprise topology 
graph depicts a snapshot of the instances in the enterprise 
topology. When describing this relation in terms of object-
oriented programming the former can be seen as classes, the 
latter as the objects. Therefore, an enterprise topology graph 
might include a number of instantiated application models. 

VII. CONCLUSIONS AND OUTLOOK 
The presented approach helps organizations to reduce the 

complexity and to improve the manageability of their 
enterprise topologies through the use of segmentation 
techniques, transformation operations, and analysis 
strategies. The proposed abstraction methods address current 
EAM needs because enterprise topology graphs that contain 
all components of an enterprise IT, their supporting 
infrastructure, and corresponding relations may consist of 
millions of nodes and are growing tremendously. 

We argued that offering such analysis strategies 
contributes to increasing the efficiency and impact of EAM. 
However, there is some effort required to develop and tailor 
analysis strategies towards the application scenarios, internal 
policies, and IT strategy of an organization. Therefore, we 
propose to create a new role called Enterprise Information 
Designer to support the groups working on the enterprise 
architecture, a role similar to the Information Designer in 
Business Process Management [18] who specifies different 
views according to the requirements of different stakeholders 
of a business process. Enterprise Information Designers 
develop strategies and create appropriate segmentation 
techniques and transformation operations based on the 
information needs, requirements, and challenges of the 
groups working on the enterprise architecture. This new role 
can provide the partly lacking adaption to enterprise specifics 
in EAM [7]. Segmentation techniques, transformation 
operations, and analysis strategies could be consumed and 
hosted as a service by external providers, creating a 
marketplace for the works of Enterprise Information 
Designers. 

We formally defined those strategies, however, they have 
not been applied to real world enterprise topologies yet. This 
is due to the fact that the semi-automated creation and 
especially the automated discovery of enterprise topologies 
is not a trivial task and prototype implementations are still 
ongoing work. 

The proposed approach is not limited to enterprise 
topology graphs but also applicable to a wide variety of other 
graphs. We argue that the operations presented in this paper 
for enterprise topology graphs may also be applied to 
application models like TOSCA Topology Templates [5]. 

In future work we will define further analysis strategies 
to show the application of enterprise topology graphs to 
further problems of EAM. 
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