
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Improving the Manageability of Enterprise Topologies
Through Segmentation, Graph Transformation, and

Analysis Strategies

Tobias Binz, Frank Leymann, Alexander Nowak, David Schumm

© 2012 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@inproceedings {INPROC-2012-21,
 author = {Tobias Binz and Frank Leymann and Alexander Nowak and David Schumm},
 title = {{Improving the Manageability of Enterprise Topologies Through
 Segmentation, Graph Transformation, and Analysis Strategies}},
 booktitle = {Proceedings of 2012 Enterprise Distributed Object
 Computing Conference (EDOC)},
 publisher = {IEEE Computer Society Conference Publishing Services},
 month = {September},
 year = {2012}
}

:

Institute of Architecture of Application Systems

Improving the Manageability of Enterprise Topologies
Through Segmentation, Graph Transformation, and Analysis Strategies

Tobias Binz, Frank Leymann, Alexander Nowak, David Schumm
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract—Software systems running in an enterprise consist of
countless components, having complex dependencies, are
hosted on physical or virtualized environments, and are
scattered across the infrastructure of an enterprise, ranging
from on-premise data centers up to public cloud deployments.
The resulting topology of the current IT landscape of an
enterprise is often extremely complex. We show that
information about this complex ecosystem can be captured in a
graph-based structure, the enterprise topology graph. We
argue that by using such a graph-based representation many
challenges in Enterprise Architecture Management (EAM) can
be tackled through the aid of graph processing algorithms.
However, the high complexity of an enterprise topology graph
is the main obstacle to this approach. An enterprise topology
graph may consist of millions of nodes, each representing an
element of the enterprise IT landscape. Further, these nodes
comprise a large variety of properties and relationships,
making the topology hardly manageable by human users and
software tools. To address this complexity problem, we propose
different mechanisms to make enterprise topology graphs
manageable. Segmentation techniques, tailored to specific use
cases, extract manageable segments from the enterprise
topology graph. Based on a set of formally defined
transformation operations we then demonstrate the power of
the approach in three application scenarios.

Keywords-enterprise topology; enterprise topology graph;
EAM; topology abstraction; segmentation; aggregation.

I. INTRODUCTION
Information technology and corresponding software

systems are an important factor for the competitiveness of
today’s enterprises. For example, solutions like Business
Process Management Systems (BPMS) help in managing the
processes that drive an enterprise. BPMS support the
automation of business processes and workflows and aim at
structuring and optimizing reoccurring human tasks.
Furthermore, through the use of new technologies the cost of
business operation can be decreased, operations can be
accelerated, and business-to-business relationships can be
made more flexible. For instance, the efficient use of cloud
computing is currently considered as one of the key success
factors for enterprises [10]. However, through the increasing
use of IT in almost any part of an enterprise, the management
of the emerging IT landscape becomes a difficult challenge,
as its complexity also increases steadily [9].

Enterprise Architecture Management (EAM) deals with
the complexity of today’s enterprise IT landscapes. EAM

considers different layers of an enterprise, capturing the
business, processes, integration, software, and infrastructure
in models on different levels of abstraction to support
business-IT alignment, transformation, and maintenance [6].
As EAM is being recognized as a major challenge for an
enterprise, a variety of management approaches and
corresponding methods has been developed. However, a
commonly accepted reference model has not yet evolved
from these efforts and, furthermore, the different EAM
approaches vary significantly in terms of granularity and
scope, as concluded by Winter et al. [7]. Another result of
this study is that software tools are an important aspect in
EAM to capture and visualize information. EAM tools like
Iteraplan EAM [8], for example, can be used to model the
topology of an enterprise IT landscape, plan transformations,
and run advanced reporting functions on different aspects of
such a topology. However, the information captured with
these tools is often (re-)modeled manually and techniques to
analyze such enterprise architecture descriptions are rather
informal [7]. Due to limited human resources and the costs
of maintaining such a topology, typically a high level of
abstraction is applied. Hence, manually modeled topologies
only map a fraction of the whole enterprise IT onto such a
model. For instance, a Content Management System (CMS)
can be abstractly represented as one node in a topology, or as
a complex graph consisting of several dozen nodes and edges
which represent components of that CMS, their relationships,
and dependencies. When modeling the topology manually,
such level of detail can hardly be achieved in day-to-day
practice. To address the shortcomings of modeling the
enterprise IT landscape manually, we advocate another
option that builds on automated discovery and pre-modeled
application templates that reveal the inner structure of
complex architecture components. The resulting complex
enterprise topology graph allows applying certain
transformation operations presented in this paper to be able
to address the different information needs of various
stakeholders. As an example, imagine a manager who wants
to know all IT-systems that are used within his department
including the dependencies to other systems or departments.

The contributions of this work are (i) a formal definition
of segments and two segmentation techniques, (ii) a set of
transformation operations to support the management of
complex and large-scale enterprise topology graphs, and
(iii) different analysis strategies, which use the contributions
(i) and (ii) to address relevant challenges in EAM.

The remainder of this paper is structured as follows: We
present the enterprise topology graph in Section II. In
Section III segments and segmentation of the enterprise
topology graph are discussed. The transformation operations
on the formal enterprise topology graph and its segments are
presented in Section IV. Building on these fundamentals, we
exemplify the approach along three analysis strategies that
address the EAM concerns Impact Analysis in Section V.A,
Workflow Deep-Dive in Section V.B, and Abstract
Enterprise Architecture in Section V.C. Related work is
reviewed in Section VI. In the conclusion and outlook in
Section VII we reflect on the benefits and challenges of our
approach and give a brief overview on future work.

II. ENTERPRISE TOPOLOGY GRAPH
An enterprise topology represents a snapshot of all

services and applications in an enterprise, together with their
supporting infrastructure and relations. Figure 1 shows a
complete view of our approach and the focus in this paper.

A. Buiding up an Enterprise Topology Graph
The central artifact of our approach shown in Figure 1 is

the enterprise topology graph. We have identified different
methods to build up the topology: it can either be manually
modeled, automatically discovered, imported from existing
application descriptions, or it can be built up by applying an
arbitrary combination of these. The manual modeling of a
topology comes with the drawbacks we have already
discussed in the introduction. The rather informal
descriptions as well as different abstraction levels harm the
creation of a holistic topology.

The modeling can be complemented with the automated
discovery of an enterprise IT landscape. This is not a novel
field and has been brought up over a decade ago in the
context of network topology discovery. For example,
Machiraju et al. [11] present an auto-discovery engine to
overcome the disadvantages of manual discovery. In contrast
to automated methods, Machiraju et al. characterize manual
discovery as time consuming and inconsistent with a lack of
reuse and the problem of distributed intelligence. Analogous
to a search engine crawler that discovers the internet,
topology discovery automatically analyzes the interiors of
applications to get insight into its constituent parts and the
relationships among them as well as the relationships to
other components in the IT landscape. However, for
discovering the relationships of particular applications, like a
BPEL process or a Perl script, particular language-specific
algorithms and processing functions are required. Such
application-specific relation discovery is not state of the art.

Another way that we propose to discover an application
landscape is to use existing application descriptions of
deployed applications. This, however, assumes that the
application that is known to be used in the enterprise has
already been modeled using a nonproprietary format, for
instance provided by the application vendor. In the context of
cloud computing recently a specification for application
models and their management has been proposed for
standardization, which is very relevant to this aspect.
TOSCA [5], the Topology and Orchestration Specification

Figure 1. Overview of the enterprise topology approach. The areas this

paper is focusing on are highlighted in black.

for Cloud Applications, describes a format to model an
application, its constituent parts, and their relationships. The
aim of the specification is to ease cloud portability, enable
automated deployment of software on an enterprise scale,
and to ease and automate the management of applications.
We argue that such application models can be another way to
build up the enterprise topology graph by importing the
information and thus delivering a representation that is more
detailed than manual modeling and more precise and easier
to handle than by using discovery only. Further, the import
of models increases reuse and fosters consistency, for
example, when importing the model of a CMS multiple
times to represent different deployments of that software in
different data centers of a company.

Without going deeper into the challenges and methods of
enterprise topology discovery and application model
description and importing, we can state that the resulting
enterprise topology graph may be very complex, containing a
number of nodes which is not manageable without
appropriate, automated abstraction techniques. These
techniques should support analysis and management of the
topologies relevant to different information demands and
viewpoints of human users. For example, adjusting the level
of granularity to abstract from technical details or focusing
on a particular part of the enterprise topology graph that
represents a particular business unit. The techniques we
propose consider enterprise topology graph abstraction,
aggregation, and segmentation, that can be coupled together
to form complex analysis strategies, serving different
information needs and levels of abstraction. The
identification and description of these operations forms the
main focus of this paper. Other related aspects like topology
viewing, language-specific topology discovery, and the
import of application models are ongoing work.

B. Formalization of Enterprise Topology Graph
The enterprise topology graph is a formalized graph

which we use within this paper to describe snapshots of an
enterprise IT. The graph-based representation enables the

Application
Toplogy

Application

Import

Modeling

Enterprise
Topology

Graph

Enterprise IT
Landscape

Discovery Deployment

Topology
Abstraction

Segmentation Techniques,
Transformation Operations,

and Analysis Strategies

Topology
Viewing

Presentation
and Layout

definition of formal operations on enterprise topologies in
order to reach the abstraction we are aiming for.
Additionally, the formalization enables the application of
proven graph algorithms to address particular enterprise
architecture management problems.

The formal model was defined in our previous work [15],
in combination with a search operation that allows querying
the graph, and does not represent a contribution of this paper.
To make this paper self-contained, we briefly describe the
conceptual model of an enterprise topology graph – depicted
in Figure 2. The core element of the enterprise topology
graph is represented by the entity component which
subsumes the nodes and edges of the graph. Each of the
generic entities has a type and a number of entity properties.
The node types and edge types are structured as tree, which
later on allows us to abstract types from a lower to a higher
level. A segment refers to a subset of the enterprise topology
graph by referencing a number of its entities. The operations,
strategies, and objectives on the right side of Figure 2
represent the abstraction capabilities we enable on the
enterprise topology graph. We define transformation
operations on segments and/or entities which can be
composed into more complex transformation operations. The
operations are used to implement analysis strategies which
fulfill certain management objectives.

Figure 2. Conceptual model of the enterprise topology graph (left)

and the support for abstraction (right).

Formally, we define the set of nodes ܰ and the set of
edges ܧ ك ܰ ൈ ܰ. An edge is a binary, directed, typed
relation between two nodes. The set of entities subsumes
both, nodes and edges, i.e., ݏ݁݅ݐ݅ݐ݊ܧ ൌ ܰ ׫ .ܧ

The sets ܰݏ݁݌ݕܶ݁݀݋ and ݏ݁݌ݕܶ݁݃݀ܧ hold the types
which are assigned by the function ݁݌ݕݐ to the nodes and
edges. Types are structured in a global tree, which is defined
by the two functions ݏ݁݌ݕܶݐ݊݁ݎܽ݌ and ݄݈ܿ݅݀ܶݏ݁݌ݕ. In
addition, users can define custom type trees with a different
structure than the global type trees. We will show examples
for custom type trees later in this paper. ܶݏ݁݌ݕ ൌ ݏ݁݌ݕܶ݁݀݋ܰ ׫ :݁݌ݕݐ ݏ݁݌ݕܶ݁݃݀ܧ ݏ݁݅ݐ݅ݐ݊ܧ ՜ :݁݌ݕܶݐ݊݁ݎܽ݌ ݏ݁݌ݕܶ ݏ݁݌ݕܶ ՜ ݏ݁݌ݕܶ

:ݏ݁݌ݕ݈݄ܶ݀݅ܿ ݏ݁݌ݕܶ ՜ ݌ ,ݏ݁݌ݕܶ ฽ ሼܿ|݁݌ݕܶݐ݊݁ݎܽ݌ሺܿሻ ൌ ሽ݌
A property is a key-value-pair which is associated with

an entity. Valid keys of a property are all URIs, which are
represent by the set ܲݏݕ݁ܭݕݐݎ݁݌݋ݎ. The valid property
values are included in the set ܲݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎ, which are
all strings. The function ݏ݁݅ݐݎ݁݌݋ݎ݌ assigns a set of key-
value-pairs to an entity. The ݕݐݎ݁݌݋ݎ݌ function returns a
single property value for an entity and property key. The
label of an entity is stored as property with a well-defined
property key. ܲݏ݁݅ݐݎ݁݌݋ݎ ൌ ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ൈ ݏ݁݅ݐ݅ݐ݊ܧ :ݏ݁݅ݐݎ݁݌݋ݎ݌ ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ՜ ݁ ,ݏ݁݅ݐݎ݁݌݋ݎܲ ฽ ሼሺ݇, ݇|ሻݒ א ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ר ݒ א ݏ݁݅ݐ݅ݐ݊ܧ :ݕݐݎ݁݌݋ݎ݌ ሽݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ൈ ݏݕ݁ܭݕݐݎ݁݌݋ݎܲ ՜ ,ݕݐ݅ݐሺ݁݊ ,ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ሻݕ݁݇ ฽ ሼݒ|ሺ݇݁ݕ, ሻݒ א ሻሽݕݐ݅ݐሺ݁݊ݏ݁݅ݐݎ݁݌݋ݎ݌

Based on the preceding definitions the enterprise
topology graph is a 5-tuple of the set of nodes ܰ, edges ܧ,
and ܶݏ݁݌ݕ, as well as the functions ݏ݁݅ݐݎ݁݌݋ݎ݌ and ݄݌ܽݎܩݕ݃݋݈݋݌݋ܶ݁ݏ݅ݎ݌ݎ݁ݐ݊ܧ :݁݌ݕݐൌ ሺܰ, ,ܧ ,ݏ݁݌ݕܶ ,݁݌ݕݐ ሻݏ݁݅ݐݎ݁݌݋ݎ݌
C. Example of an Enterprise Topology Graph

We provide a small extract of an enterprise topology
graph in Figure 3. This graph consists of a Web service, an
application server, and a relational database management
system (RDBMS) node. The two outgoing edges of the Web
service represent the hosted-on relation to the application
server and the depends-on relation to the RDBMS. In
addition, the Web service has a property name. ܰ ൌ ሼܹܵ, ,ܵܣ ܧ ሽܤܦ ൌ ሼሺܹܵ, ,ሻܵܣ ሺܹܵ, ݏ݁݌ݕܶ݁݀݋ܰ ሻሽܤܦ ൌ ሼܹܾ݁ܵ݁݁ܿ݅ݒݎ, ,ݎ݁ݒݎ݁ܵ݌݌ܣ ݏ݁݌ݕܶ݁݃݀ܧ ሽܵܯܤܦܴ ൌ ሼ݄݊݋-݀݁ݐݏ݋, ݁݌ݕݐ ሽ݊݋-ݏ݀݊݁݌݁݀ ൌ ሼሺܹܵ, ,ሻ݁ܿ݅ݒݎܾܹ݁ܵ݁ ሺܵܣ, ,ܤܦሻ, ሺݎ݁ݒݎ݁ܵ݌݌ܣ ,ሻܵܯܤܦܴ ሺሺܹܵ, ,ሻܵܣ ,ሻ, ሺሺܹܵ݊݋-݀݁ݐݏ݋݄ ,ሻܤܦ ݏ݁݅ݐݎ݁݌݋ݎ݌ ሻሽ݊݋-ݏ݀݊݁݌݁݀ ൌ ሼሺܹܵ, ሺԢ݊ܽ݉݁ᇱ, Ԣܵ݁ܿ݅ݒݎ݁ܵ݇ܿ݋ݐԢሻሻሽ

As mentioned in the introduction we do not focus on
topology viewing and, therefore, use an ad-hoc notation as
defined in the legend of Figure 3.

Figure 3. Visualized example enterprise topology graph.

III. SEGMENTATION
Segments are used to refer to a part of the enterprise

topology graph based on user selection or logical,
organizational, or physical criteria, for example. Segments
reference a subset of the nodes and edges in an enterprise
topology graph. Segments may also overlap and changes to

Entity

Node

Edge

Property

Segment

from

1

*

subset

properties

to
* *

1 1

Operation

*

*

compose

Strategy

Node Type

type

Objective

refers-to uses

fulfill

*

*

1
*

operates-
on

Enterprise Topology Graph Abstraction

parent

child

1

*

type1

Edge Type

parent1
*

child

*

Data-
base

Web
Service

App.
Server

hosted-on
depends-on

Node

Edge

Legend

the entities contained in one segment are immediately
reflected in all other segments containing this entity. As
segments are just references, changes also have an effect on
the enterprise topology graph. Following this definition, the
whole enterprise topology graph, a single node, or a single
edge are segments which ensures general applicability of the
operations defined later. We define a segment as follows and ܵ݁݃݉݁݊ݏݐ as the powerset containing all segments: ܵ݁݃݉݁݊ݐ ൌ ሺܵܰ ك ܰ, ܧܵ ك ,ܧ ,ݏ݁݌ݕܶ ,݁݌ݕݐ ݏݐ݊݁݉݃݁ܵ ሻݏ݁݅ݐݎ݁݌݋ݎ݌ ൌ 2ௌ௘௚௠௘௡௧

In addition, we define the border of a segment to contain
the entities which connect the segment to its outside. This
includes the edges crossing the segment border, i.e., the edge
between a node in the segment with a node outside of the
segment, and nodes which are target or source of an edge
that is not part of the segment. ܾݎ݁݀ݎ݋: ݏݐ݊݁݉݃݁ܵ ՜ ܵ ,ݏ݁݅ݐ݅ݐ݊ܧ ฽ ሼሺ݂, ,ሻ|ሺ݂ݐ ሻݐ א ܧܵ ר ሺ݂ ב ܵܰ ש ݐ ב ܵܰሻሽ ݊|ሼ݊ ׫ א ܵܰ ר ሺ׌ሺ݊, ሻݐ א :ܧ ݐ ב ש ܰܵ ,ሺ݂׌ ݊ሻ א :ܧ ݂ ב ܵܰሻሽ

In the following, we will first discuss the properties of
segments and afterwards present two segmentation
techniques used to define higher level analysis strategies. In
the future, further segmentation techniques are likely to be
defined, such as one based on clustering algorithms, logical
operations, or based on a selection language.

A. Properties of Segments
To apply existing graph algorithms to segments we

define possible properties of segments to be able to specify
pre- and post-conditions of these algorithms. Segment
properties denote what kind of segment the transformation
operations and analysis strategies expect as input and which
properties they assure for their output.

(i) Connected: All entities of the segment are connected,
i.e., no isles exist. When checking if the segment is
connected we regard the segment as undirected graph, i.e., to
prove connectedness an algorithm may walk in the opposite
direction of a directed edge. For a formal definition how to
check if a graph is connected see [16].

(ii) Acyclic: Some graph algorithms cannot operate on
cyclic graphs or less efficient algorithms must be used. There
are various ways to check directed graphs for cycles, e.g., the
one described in [16].

(iii) Complete: Let ܵܰ and ܵܧ be the set of nodes and
edges of segment ܵ and let ܧ be the set of edges of the
enterprise topology graph. A segment is complete if for each
pair of nodes ሺ݂, ሻݐ א ܵܰ ൈ ܵܰ in ܵ applies: If these nodes
are connected through an edge in the enterprise topology
graph, i.e., ሺ݂, ሻݐ א ,then this edge must also be in segment ܵ, i.e., ሺ݂ ,ܧ ሻݐ א Completeness is defined in the context of .ܧܵ
enterprise topology graphs and therefore differs from other
completeness definitions in graph research, like [16].

(iv) Single-Entry-Single-Exit (SESE): A connected
segment ܵ has the property SESE if exactly two entities are
in its border, i.e., |ܾݎ݁݀ݎ݋ሺܵሻ| ൌ 2, and one entity is
crossing the border into ܵ and the other entity is crossing the
border out of ܵ. This is validated for edges (1) and nodes (2)

differently: (1) Let ሺ݂, ሻݐ א ሺܵሻ be an edge in theݎ݁݀ݎ݋ܾ
border of ܵ, then the edge ሺ݂, ,ሻ is crossing the border out of ܵ if the from-node is in the segment and the to-node is notݐ
i.e., ݂ א ܵ ר ݐ ב ܵ. (2) A node ݊ א ሺܵሻ is crossingݎ݁݀ݎ݋ܾ
the border out of ܵ if there exits exactly one edge to a node
outside of the segment, i.e., ׌! ሺ݊, ሻݐ א :ܧ ݐ ב ܵ. The
validation for entities crossing the border into the segment is
analogously to the definitions before.

(v) Backtraceable: A segment is traceable back to the
enterprise topology graph if no operation changed the
segment in a way that a clear mapping to the enterprise
topology graph was lost, for example, when removing a
node. When a segment is backtraceable it is possible to
maintain links into the enterprise topology graph and to
apply changes made on segments back into the enterprise
topology graph. This property is true for all newly created
segments and maintained if all the operations applied to this
segment conserve backtraceability.

B. Technique #1: Node Neighborhood
When working on a particular node of the enterprise

topology graph, often only a limited segment surrounding
this node is of interest. Therefore, this segmentation
technique creates a segment of a node’s neighborhood to
enable the stakeholders to focus on their current task.

Let ݂ be the node whose neighborhood should be
determined, let ܴ ൌ ሼ݂ሽ be the result segment, let ݀݁ݐݑܱ݄ݐ݌
and ݀݁݊ܫ݄ݐ݌ be the number of edges the algorithm follows
to create the segment, and let ܶݐݑܱݏ݁݌ݕ ك ݊ܫݏ݁݌ݕܶ and ݏ݁݌ݕܶ݁݃݀ܧ ك be the set of types to restrict the ݏ݁݌ݕܶ݁݃݀ܧ
edges to be followed. If a type set is empty, the set of all
edge types is assigned to it, i.e., for ܶݐݑܱݏ݁݌ݕ: ݂݅ሺ|ܶݐݑܱݏ݁݌ݕ| ൌ 0ሻ ܶݐݑܱݏ݁݌ݕ ൌ be the set of edges and ܰ be the set of nodes of the ܧ Further, let .ݏ݁݌ݕܶ݁݃݀ܧ
enterprise topology graph. For each node we store its depth
with respect to node ݂ to decide if another edge should be
followed or not using ݀݁ݐݑܱ݌݄ܽ݉ݐ݌: ܰ ՜ :݊ܫ݌݄ܽ݉ݐ݌݁݀ and ݐ݊݅ ܰ ՜ ሺ݂ሻݐݑܱ݌ܽܯ݄ݐ݌݁݀ :Then, this algorithm is executed .ݐ݊݅ ՚ ݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ ࢕ࢊ ݏݓ݋ݎ݃ |ܴ| ࢋ࢒࢏ࢎ࢝ 0 א ሻ݁݀݋ሺ݊ݐݑܱ݌ܽܯ݄ݐ݌݁݀ ࢌ࢏ ࢕ࢊ ܴ ൏ ,݁݀݋ሺ݊ ࢎࢉࢇࢋ࢘࢕ࢌ ࢔ࢋࢎ࢚ ݐݑܱ݄ݐ݌݁݀ ሻ݋ݐ א ݋ݐ ࢌ࢏ ࢕ࢊ ܧ ב ܴ ר ,݁݀݋൫ሺ݊݁݌ݕݐ ሻ൯݋ݐ א ሻ՚݋ݐሺݐݑܱ݌ܽܯ݄ݐ݌݁݀ ࢔ࢋࢎ࢚ ݐݑܱݏ݁݌ݕܶ ሻ݁݀݋ሺ݊ݐݑܱ݌ܽܯ݄ݐ݌݁݀ ൅ 1 ܴ ൌ ܴ ׫ ሼሺ݊݁݀݋, ,ሻ݋ݐ ݊ܫݏ݁݌ݕܶ ݀݊ܽ ݊ܫ݄ݐ݌݁݀ ݎ݋݂ ݕ݈݈ܽܿ݅݃݋݈ܽ݊ܣ # ሽ݋ݐ
C. Technique #2: Structural Matching

In enterprise topology graphs it is important to locate
segments having a certain structure. This might be of
interest, for example, when organizations want to determine
the occurrence of an application or in consolidation
scenarios. In [15] we presented an algorithm to search in
enterprise topology graphs which enables the definition of
queries as segments. This algorithm maps search in
enterprise topology graphs to the problem of sub-graph
isomorphism and applies the VF2 algorithm presented in

Cordella et al. [17]. The structural matching segmentation
technique is based on this search function. It is invoked with
one segment as search space, which may also be the whole
enterprise topology graph, and a second segment as search
query for which all isomorphic sub-graphs are determined.

IV. TRANSFORMATION OPERATIONS
Transformation operations are functions and algorithms

on enterprise topology graphs which facilitate certain
transformations on this graph. In this section we define a set
of transformation operations to build complex analysis
strategies that are described in Section V. It is important to
note that parameters of the operations are references to graph
objects (call-by-reference), i.e., the enterprise topology graph
is changed. If the original graph should be kept, a copy of the
whole enterprise topology graph or segments thereof must be
made upfront, e.g., by using the detach operation described
in Subsection IV.G. To enable composability of the
transformation operations the exact specification of the
operations’ side effects, pre-, and post-conditions are
essential. In the following subsections we first present the
possible properties of operations followed by the definition
of the different transformation operations.

A. Properties of Operations
To make the effects of compositions of operations easier

to understand we define two properties for operations:
(i) Non-Ambiguity: For each input the transformation

operation has exactly one set of results. An ambiguous
operation has possibly multiple sets of results.

(ii) Backtraceability-conserving: If a segment, to which
the operation is applied to, was backtraceable before, it is
also backtraceable after the particular operation has been
executed. Backtraceability is also a segment property,
defined in Section III.A. Thus, if a composition of operations
contains at least one operation which is not backtraceability-
conserving, then the composite operation will also not satisfy
this property.

B. Type Abstraction
Sometimes the actual type assigned to an entity is not of

interest for particular application scenarios. For example, a
stakeholder is only interested in the ratio of Windows and
Linux systems that are running, regardless of the concrete
versions. To address such different levels of granularity,
node types and edge types of the enterprise topology graph
are structured as trees. This structure can be used to abstract
the types in a segment into higher level types, as shown in
Figure 4. The user provides a custom type tree and a set of
selected types pointing into this tree. In Figure 4, the selected
types for this example are highlighted in bold. If a child type
of a selected type exists in the segment, it is replaced by the
selected type. Types without selected type as parent or types
not included in the custom type tree are not changed.

Formally, we define the backtraceability-conserving and
non-ambiguous operation ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ as follows: Let ܵ
be the segment in which the types should be abstracted,
let ݁݁ݎܶ݁݌ݕݐ be the root of the type tree, and let ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ ك be the set of types to which their ݏ݁݌ݕܶ

Figure 4. The detailed segment on the left is abstracted into the segment
depicted on the right through the type abstraction operation. The type tree
in the center shows the structure of types and the selected types in bold.

child types should be abstracted to. Then ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ
can be implemented as: ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ݐ ࢕ࢊ ܵ ൌ ݐ ࢋ࢒࢏ࢎ࢝ ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ ് ݐ ࢌ࢏ ࢕ࢊ ݁݁ݎܶ݁݌ݕݐ א ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ ࢔ࢋࢎ࢚ ݁݌ݕܶ݀݁ݐ݈ܿ݁݁ܵ ՚ ݐ ࢋ࢙࢒ࢋ ݐ ൌ ࢊ࢔ࢋ ሻݐሺ݁݌ݕܶݐ݊݁ݐݎܽ݌

C. Entity Property Aggregation
This operation aggregates for all entities in a segment the

property values associated with a certain key. For example, it
can be used to determine the average utilization of the
entities in a segment. The actual aggregation is done by the
user-defined function ݂ܽ݃݃݁ݐܽ݃݁ݎ, which is called with the
set of property values and must return exactly one value.
Example aggregation functions are min, max, avg, count,
concatenate, or sum. These functions are restricted to be
used with particular data types only, for example, min is
restricted to Integer, Long, Single, and Double.

Let ܵ be the segment whose entity’s properties with key ݇ should be aggregated. Then we define: ݂ܽ݃݃2 :݁ݐܽ݃݁ݎ௉௥௢௣௘௥௧௬௏௔௟௨௘௦ ՜ ݏݐ݊݁݉݃݁ܵ :ݕݐݎ݁݌݋ݎܲ݁ݐܽ݃݁ݎ݃݃ܽ ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ൈ ݏݕ݁ܭݕݐ݁݌݋ݎܲ ՜ ,ሺܵ ,ݏ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ݇ሻ ฽ ,ሺ݁ݕݐݎ݁݌݋ݎ݌ሺሼ݁ݐܽ݃݁ݎ݂݃݃ܽ ݇ሻ|݁ א ܵሽሻ
D. Create and Remove Entities

The operations ݊݁ݏ݁݌ݕܶ :݁݀݋ܰݓ ՜ ܰ and ݊݁݁݃݀ܧݓ: ܰ ൈ ܰ ൈ ݏ݁݌ݕܶ ՜ add a new node or edge to the ܧ
enterprise topology graph, assign a type, and return the
entity. To add entities to a segment which already exist in the
enterprise topology graph the operations ܽ݀݀ܰݏݐ݊݁݉݃݁ܵ :݁݀݋ ൈ ܰ ՜ ٣ and ܽ݀݀݁݃݀ܧ: ݏݐ݊݁݉݃݁ܵ ൈ ܧ ՜ ٣
are used. The third pair of operations, ݊݁ݏݐ݊݁݉݃݁ܵ :݃݁ܵ݁݀݋ܰݓ ൈ ݏ݁݌ݕܶ ՜ ܰ and ݊݁݃݁ܵ݁݃݀ܧݓ: ݏݐ݊݁݉݃݁ܵ ൈܰ ൈ ܰ ൈ ݏ݁݌ݕܶ ՜ create a new node or edge in the ,ܧ
enterprise topology graph and adds them to the segment.

Removing entities is more complex, for example,
removing a node may leave half-edges, i.e., edges only
attached with one side to a node. Therefore, the basic
removing operations do not conserve backtraceability and
may render the segment disconnected. Removing nodes from
a segment is done using ݃݁ܵ݁݀݋ܰ݉ݎ: ݏݐ݊݁݉݃݁ܵ ൈ ܰ ՜٣

MySQL
8.3.18

Stock
Service

Debian
6.0 i386

Tomcat
6.0.35

abstract

Node

RDBMS

Web
Service

Linux

App.
Server

typeTree

…

RDBMS
MySQL

PostgreSQL
MySQL 8.3.18

Operating System
Windows

…

Linux
Debian

6.0 i386

Application Server
Tomcat

…
JBoss

6.0.35

Web Service
Stock Service

and removing edges by ݃݁ܵ݁݃݀ܧ݉ݎ: ݏݐ݊݁݉݃݁ܵ ൈ ܧ ՜٣.
When a node or edge is removed from the enterprise
topology graph using the operations ݁݀݋ܰ݉ݎ: ܰ ՜٣ and ܧ :݁݃݀ܧ݉ݎ ՜٣, it is also removed from all segments.

There are different strategies to facilitate the
readjustment of half-edges when removing a node. We
defined two of them as operations: (1) The operation ݁ݑݍܽ݌ܱ݁݀݋ܰ݉ݎ removes a node by replacing it with a
node of type opaque. With this, the structure of the segment,
as well as the edges, is fully conserved. In contrast to the first
operation (2) removes the node and all of its edges. For
readjustment new edges of type relation are added to show
that there has been some kind of indirect relationship
between these nodes. The removed node and edges are
stored as property of the new edges for documentation
purposes. The operation ݏ݊݋݅ݐ݈ܴܽ݁݌݁݁ܭ݁݀݋ܰ݉ݎ is defined
as follows: Let ܰ be the set of nodes in the enterprise
topology graph, let ݉ݎ א ܰ be the node to remove, let ܵ be
the segment in which rm should be removed, and let ܵܧ be
the set of edges in ܵ. Then, the sets of nodes related to ݉ݎ by
an edge is ݏ݁݀݋ܰ݋ݐ ൌ ሼ݁݀݋ܰ݋ݐ|ሺ݉ݎ, ሻ݁݀݋ܰ݋ݐ א Sܧሽ and ݂ݏ݁݀݋ܰ݉݋ݎ ൌ ሼ݂݁݀݋ܰ݉݋ݎ|ሺ݂݁݀݋ܰ݉݋ݎ, ሻ݉ݎ א Sܧሽ. In
the algorithm these nodes are pairwise connected by a new
edge of type relation: ࢎࢉࢇࢋ࢘࢕ࢌ ሺ݂݉݋ݎ, ሻ݋ݐ א ݏ݁݀݋ܰ݉݋ݎ݂ ൈ ,݉݋ݎሺ݂݁݃݀ܧݓ݁݊ ࢕ࢊ ݏ݁݀݋ܰ݋ݐ ,݋ݐ ሻ݊݋݅ݐ݈ܽ݁ݎ

Afterwards the node ݉ݎ and all edges from or to ݉ݎ are
removed from the enterprise topology graph.

E. Segment Aggregation
If details represented in the enterprise topology graph are

not important for a particular application scenario, the
complexity can be reduced by aggregating a segment into a
single node (e.g., a composite application) or edge (e.g., a
communication or dependency channel). An example is
shown in Figure 5 where the infrastructure is aggregated into
a single node named supporting infrastructure. Creating the
segment is not part of this operation; this is done by one of
the segmentation techniques presented in Section III.

If needed, entity properties can be aggregated from the
segment to the aggregated entity with the operation ܽ݃݃ݏ݁݅ݐݎ݁݌݋ݎܲ݁ݐܽ݃݁ݎ defined in Section IV.C.

Let ܵ be the connected and complete segment which
should be aggregated and ܽ݃݃݁݌ݕܶ݁ݐܽ݃݁ݎ א be the ݏ݁݌ݕܶ
type of the new aggregated node or edge. Then we define
two algorithms, one to aggregate ܵ into one node and the

Figure 5. The user-defined segment on the left is aggregated into a single

node called supporting infrastructure on the right.

second to aggregate ܵ into one edge. Both algorithms do not
conserve backtraceability as defined in IV.A. After executing
one of the algorithms ܵ is not connected to the outside
anymore and all nodes and edges in ܵ are removed.

 ሺܵሻ to containݎ݁݀ݎ݋ܾ requires ݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ݃݃ܣ (1)
only edges. The algorithm creates the aggregated node and
reassigns all edges in ܾݎ݁݀ݎ݋ሺܵሻ from the nodes in ܵ to the ܽ݃݃݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ .݁݀݋ܰ݀݁ݐܽ݃݁ݎ ൌ ,݉݋ݎሺ݂ ࢎࢉࢇࢋ࢘࢕ࢌ ሻ݁݌ݕܶ݁ݐܽ݃݁ݎሺܽ݃݃݁݀݋ܰݓ݁݊ ሻ݋ݐ א ݉݋ݎ݂ ࢌ࢏ ࢕ࢊ ሺܵሻݎ݁݀ݎ݋ܾ ב ݉݋ݎ݂ ࢔ࢋࢎ࢚ ܵ ՚ ݋ݐ ࢌ࢏ ࢊ࢔ࢋ ݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ ב ݋ݐ ࢔ࢋࢎ࢚ ܵ ՚ ࢊ࢔ࢋ ࢊ࢔ࢋ ݁݀݋ܰ݀݁ݐܽ݃݁ݎ݃݃ܽ

 ሺܵሻ to containݎ݁݀ݎ݋ܾ requires ݁݃݀ܧ݋ܶ݁ݐܽ݃݁ݎ݃݃ܣ (2)
only nodes and in contrast to (1) that ܵ is an Single-Entry-
Single-Exit segment, as defined in III.A. It creates the
aggregated edge between the two nodes in ܾݎ݁݀ݎ݋ሺܵሻ. The
inner foreach-loop determines the direction of the edge
between the two nodes.
݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ א ,ሺ݂ ࢎࢉࢇࢋ࢘࢕ࢌ ࢕ࢊ ሺܵሻݎ݁݀ݎ݋ܾ ሻݐ א ݂ ࢌ࢏ ࢕ࢊ ܵ ൌ ݉݋ݎ݂ ࢔ࢋࢎ࢚ ݁݀݋݊ ՚ ݐ ࢌ࢏ ࢊ࢔ࢋ ݁݀݋݊ ൌ ݋ݐ ࢔ࢋࢎ࢚ ݁݀݋݊ ՚ ,݉݋ݎሺ݂݁݃݀ܧݓ݁݊ ࢊ࢔ࢋ ࢊ࢔ࢋ ࢊ࢔ࢋ ݁݀݋݊ ,݋ݐ ሻ݁݌ݕܶ݁ݐܽ݃݁ݎ݃݃ܽ

F. Filter
In some cases only certain nodes and edges are of

interest, for example, one does not want to have nodes of
type OS and its child types in a segment, as shown in Figure
6, or all entities in a segment should only have certain entity
properties. For this scenario we have to distinguish between
two cases: (1) filtering entities, i.e., removing certain nodes
and edges from a segment, and (2) filtering properties which
apply a filter to the properties of an entity.

(1) Filter Entities: Let ܵ be the segment which should be
filtered, let ܰ be the set of nodes, and ܧ the set of edges in
the enterprise topology graph. Further, let ݁ݏ݁݅ݐ݅ݐ݊ܧ :݈ܽݒ ՜ሼ0, 1ሽ be an user-defined function which decides if an entity
should be kept (=0) or removed (=1) from ܵ. We use the
previously defined operation to remove entities which
renders (1) not conserving backtraceability.

Then, the algorithm for ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ is defined as
follows on the next page:

Figure 6. From the enterprise topology graph on the left, the operating

system node is filtered. All edges are of type hosted-on.

Data-
base

Web
Service

OS

App.
Server

Web
Service

Supporting
Infrastructure

aggregate

Node

Segment

Aggregated Node

filter

Node

RDBMS

Web
Service

App.
Server

RDBMS

Web
Service

OS

App.
Server

ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ሻݕݐ݅ݐሺ݈݁݊ܽݒ݁ ࢌ࢏ ࢕ࢊ ܵ ൌ 1 ר ݕݐ݅ݐ݊݁ א ,ሺܵ݊݋݅ݐ݈ܴܽ݁݌݁݁ܭ݁݀݋ܰ݉ݎ ࢔ࢋࢎ࢚ ܰ ሻݕݐ݅ݐሺ݈݁݊ܽݒ݁ ࢌ࢏ ࢋ࢙࢒ࢋ ሻݕݐ݅ݐ݊݁ ൌ 1 ר ݕݐ݅ݐ݊݁ א ,ሺܵ݃݁ܵ݁݃݀ܧ݉ݎ ࢔ࢋࢎ࢚ ܧ ሻݕݐ݅ݐ݊݁
The exemplary implementation of function ݈݁ܽݒ we

applied in Figure 6 filters all nodes of type OS: ݈݁ܽݒ: ݕݐ݅ݐ݊݁ ฽ ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ א ሼܱܵሽ
(2) The filter for entity properties is defined in the same

way as ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ but with a different evaluation
function ݈݁ܽݒ: ݕ݁ܭݕݐݎ݁݌݋ݎܲ ൈ ݁ݑ݈ܸܽݕݐݎ݁݌݋ݎܲ ՜ ሼ0, 1ሽ,
which decides if an property is kept (=0) or removed (=1).
The algorithm ݂݈݅ݏ݁݅ݐݎ݁݌݋ݎܲݎ݁ݐ is defined as follows: ݕݐ݅ݐ݊݁ ࢎࢉࢇࢋ࢘࢕ࢌ א ,ݕሺ݇݁ ࢎࢉࢇࢋ࢘࢕ࢌ ࢕ࢊ ܵ ሻ݁ݑ݈ܽݒ א ,ݕሺሺ݈݇݁ܽݒ݁ ࢌ࢏ ࢕ࢊ ሻݕݐ݅ݐሺ݁݊ݏ݁݅ݐݎ݁݌݋ݎ݌ ሻሻ݁ݑ݈ܽݒ ൌ ,ݕݐ݅ݐሺ݁݊ݕݐݎ݁݌݋ݎ݌ ࢔ࢋࢎ࢚ 1 ሻݕ݁݇ ՚٣ ݕݐݎ݁݌݋ݎ݌ ݁ݒ݋ܴ݉݁ #

The evaluation function enables the usage of different
decision mechanisms, like regular expressions on the
property key or other complex evaluations.

G. Detach Segment
In general, changes of nodes and edges are reflected in

the enterprise topology graph and in all segments containing
these entities, because segments only reference the entities of
the enterprise topology graph. For transformations to be only
reflected in the segment the respective operation is applied
to, the segment must be detached before. Technically, the
segment is copied and the entities are not bound to the
enterprise topology graph anymore. The base of the segment
is a new enterprise topology graph which contains only the
nodes the detached segment refers to. Due to the fact that this
is an out-of-band operation which cannot be described in our
formal model, we are referring to it by its signature: ݄݀݁ܿܽݐሺܵ݁݃݉݁݊ݏ ݐሻ: ݕ݃݋݈݋݌݋ܶ݁ݏ݅ݎ݌ݎ݁ݐ݊ܧ

V. ANALYSIS STRATEGIES
An analysis strategy composes multiple transformation

operations and segmentation techniques to provide the
appropriate level of abstraction for the specific application
scenario. During composition, the properties of segments and
operations are used to determine the assurances of the
resulting segments. For example, an assurance can be that
changes to a resulting segment can be propagated
automatically back into the enterprise topology graph.

In this section we define three analysis strategies to
address selected EAM problems. Each strategy is defined in
terms of its objectives, the problem it addresses, a solution
sketch, and a formalization composing previously defined
transformation operations and segmentation techniques.

A. Strategy 1: Impact Analysis
Objectives: The objective of this strategy is to determine

the importance of certain elements in an enterprise topology.
The importance, i.e., how strong an element is related to
business-critical elements, may be identified by discovering
the dependencies between the entities of this enterprise
topology graph.

Problem: In complex enterprise topologies the
consequences of node failures, i.e., of components in the IT
landscape or changes of configurations are not foreseeable.
This is due to the fact that it is not clear which nodes depend
on another node, especially when taking into consideration
all depending nodes, i.e., at arbitrary depth. For changes in
Web services, for example, it is useful to have a clear insight
which applications and workflows use a certain service that
should be updated as well.

Figure 7. Sketch of Impact Analysis strategy showing focused, impacted,
and not-impacted nodes of an example enterprise topology graph segment.

Solution: The Impact Analysis in enterprise topology
graphs determines which nodes, named impacted nodes, are
depending on a specific node of interest, named focused
node. As shown in Figure 7, the result is a segment
containing the focused node together with its neighborhood,
the impacted nodes. Impacted nodes are connected to the
focused node through a configurable number (i.e., the depth
parameter) of edges of configurable types. The DB and VM
node, depicted by a dashed line in Figure 7, exemplarily
show two nodes not impacted and, therefore, would normally
not appear in the result segment. This impact analysis
strategy provides an implementation for the Infrastructure
Failure Impact Analysis pattern in [20] and broadens its
analysis scope to all levels of enterprise topology, not only
infrastructure. Our strategy is realized by using the
segmentation techniques node neighborhood, defined in
Section III.B, together with a set of edge types defined in this
strategy. Figure 7 shows the different edge types and their
directions.

Formalization: This strategy configures the parameters
for the node neighborhood segmentation technique, formally
defined in Section III.B, as follows: ܶ݊ܫݏ݁݌ݕ ൌ ሼ݀݁݊݋-ݏ݀݊݁݌, ,݊݋-݀݁ݐݏ݋݄ ,݊݋-݈݈݀݁ܽݐݏ݊݅ ݐݑܱݏ݁݌ݕܶ ሽ݊݋-݀݁ݕ݋݈݌݁݀ ൌ ሼ݄ݏݐݏ݋, ݊ܫ݄ݐ݌݁݀ ሽݏ݁ݐݑܿ݁ݔ݁ ൌ ݐݑܱ݄ݐ݌݁݀ ൌ 5

When applying the node neighborhood segmentation
technique with this configuration and the focused node ݂
being the Linux node, we get the segment of impacted nodes
as depicted in Figure 7.

B. Strategy 2: Workflow Deep-Dive
Objectives: The application of this strategy aims at

identifying how a specific process automation (i.e., a
workflow which in most cases represents a business process
or parts thereof) is mapped to its underlying infrastructure.
This information might be important when, for example,

Linux

WFMS
App.

Server

DB

Work-
flow

Work-
flow

VM
hosted-on

depends-on

deployed-on deployed-on

Focused node

Impacted node

Not-impacted node

hosts installed-on

analyzing infrastructure migration possibilities or when
determining the environmental impact of a business process.

Problem: For example, when tackling the challenge of
Service-oriented Architecture governance [19], the analysis
of services and their orchestrations in workflows plays a
central role. To analyze workflows, e.g., a service
orchestration based on BPEL [13] or BPMN [14], the
involved services and their realization have to be considered.
The ecological indicators or security properties of a
workflow, for example, highly depend on the invoked Web
services as well as on the middleware and infrastructure
hosting them.

Figure 8. Sketch of Workflow Deep-dive strategy showing the workflow

and an exemplary set of nodes included in the deep-dive. Edges without an
explicit type label are of type hosted-on.

Solution: The Workflow Deep-Dive into the enterprise
topology graph starts with a node representing a workflow.
From this node all the outgoing edges of type invokes are
followed to determine the set of relevant services. In
addition, the infrastructure hosting the workflow is added by
tracing the edges of the type hosted-on. These nodes build up
the segment to start the actual deep-dive on, i.e., the first
iteration of the result segment. In the following all nodes
reachable through a hosted-on or depends-on edge from one
of the nodes in the result segment are added to the result
segment. For this strategy we may decide not to include
network components and use a filter to remove all nodes
representing network components.

Formalization: Let ݓ be the node of type workflow for
which the deep-dive should be determined, let ܧ be the set of
edges in the enterprise topology graph, and let ܴ be the result
segment containing the workflow deep-dive. Then, the deep-
dive is determined using the following algorithm: ܴ ൌ ሼ݋ݐ|ሺݓ, ሻ݋ݐ א ר ܧ ,ݓ൫ሺ݁݌ݕݐ ሻ൯݋ݐ א ሼ݅݊ݏ݁݇݋ݒ, ݏ݁݌ݕܶ݁ݒ݅ܦ݌݁݁ܦ ሽሽ݊݋-݀݁ݐݏ݋݄ ൌ ሼ݄݊݋-݀݁ݐݏ݋, א ݁݀݋݊ ࢎࢉࢇࢋ࢘࢕ࢌ ࢕ࢊ ݏݓ݋ݎ݃ |ܴ| ࢋ࢒࢏ࢎ࢝ ሽ݊݋-ݏ݀݊݁݌݁݀ ,݁݀݋ሺ݊׌ ࢌ࢏ ࢕ࢊ ܴ ሻ݋ݐ א ݋ݐ :ܧ ב ר ܴ ,݁݀݋ሺሺ݊݁݌ݕݐ ሻሻ݋ݐ א ,ሺܴ݁݀݋ܰ݀݀ܽ ࢔ࢋࢎ࢚ ݏ݁݌ݕܶ݁ݒ݅ܦ݌݁݁ܦ ሻ݋ݐ

To remove all nodes assigned with the type network and
all child types of it, we define the following evaluation
function, and apply it using the ݂݈݅ݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ operation: ܹܰ ൌ ڂ ሻஶ௜ୀ଴݇ݎ݋ݓݐ௜ሺ݊݁݁݌ݕ݈݄ܶ݀݅ܿ ݏ݁݅ݐ݅ݐ݊ܧ :݈ܽݒ݁ ՜ ሼ0, 1ሽ, ݕݐ݅ݐ݊݁ ฽ ሻݕݐ݅ݐሺ݁݊݁݌ݕݐ א ,ሺܴݏ݁݅ݐ݅ݐ݊ܧݎ݁ݐ݈݂݅ ܹܰ ሻ݈ܽݒ݁

C. Strategy 3: Abstract Enterprise Architecture
Objectives: From an EAM perspective, the objective of

this strategy is to simplify a given enterprise topology graph
to address stakeholders that only need topology information
on a high level of abstraction.

Problem: Today, enterprise architecture models are
mostly created manually with the problems mentioned in the
introduction. When these models are created with automated
techniques like discovery and application topology import,
the level of abstraction of the resulting enterprise topology
graph may not be adequate for some stakeholders. In some
application scenarios, a higher level of abstraction is needed.

Figure 9. The structure of the LAMP abstraction, containing a Linux,

Apache, MySQL, and PHP node.

Solution: The Abstract Enterprise Architecture strategy
creates a high-level enterprise architecture from a low-level
enterprise topology graph. Before this strategy can be
applied, a set of abstractions is defined. For example, the
LAMP abstraction in Figure 9 denotes that the depicted
Linux, Apache, MySQL, and PHP node should be
aggregated into a single node of type LAMP. This strategy is
applied to a user-defined segment containing, for example,
the nodes of a specific datacenter. In the following we
describe the steps of this strategy in detail, as denoted in
Figure 10: (1) The types in the LAMP abstraction are
extracted and used in (2) as the selected types of a custom
type tree in the ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ operation. In step (2), the
types of all entities in this segment are abstracted, for
example, a Debian 6.0 node is abstracted to Linux. (3) With
the structural matching segmentation technique and the
LAMP structure as search query, the enterprise topology

Figure 10. Sketch of the Abstract Enterprise Architecture strategy showing

the four steps how the enterprise topology graph segment on the left is
abstracted towards and enterprise architecture model.

Data-
base

WFMS
Web

Service

VM

Web
Service

Work-
flow

VM

deployed-on

Workflow

Deep-Dive

invokes

App.
Server

App.
Server

VM

invokes

database
con.

LAMP Abstraction

Linux

Apache

MySQL

PHP

hosted
-on

hosted
-on

(3) Seg-
mentation

(4)
Aggregation

(2) Type
Abstraction

Linux

Apache

MySQL

PHP

hosted
-on

hosted
-on

CGI

Web
service

hosted
-on

LAMP

Web
service

hosted
-on

Debian
6.0 i386

Apache
2.4.1

MySQL
8.3.18

PHP
5.3.10

hosted
-on

hosted
-on

CGI

Web
service

hosted
-on

Node

Segment

Clustered node

Original Enterprise Topology Graph Abstracted Enterprise Architecture Model

LAMP
Abstraction

(1) Extract
Types

typeTree

…

RDBMS
MySQL

PostgreSQL
MySQL 8.3.18

Operating System
Windows

…

Linux
Debian

6.0 i386

Web server
Apache
…

LAMP Abstraction

Linux

Apache

MySQL

PHP

hosted
-on

hosted
-on

graph with the abstracted types is segmented. The result of
the segmentation is a set of segments matching to the pre-
defined structure. Figure 10 depicts one result segment in the
dashed box. (4) In the end, each segment is aggregated into a
single node using the ܽ݃݃݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ operation.

When applying a series of these abstractions we are able
to extract, abstract, and automatically generate an enterprise
architecture from the detailed enterprise topology graph.

Formalization: Let segment ܧ be the section of the
enterprise topology graph which should be abstracted, let
segment ݊݋݅ݐܿܽݎݐݏܾܣ be the LAMP abstraction, and ݁݁ݎܶ݁݌ݕݐ the root of the tree of node types.

(1) The set ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ, which is input of the ܾܽݏ݁݌ݕܶݐܿܽݎݐݏ operation, is defined as ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ ൌሼ݁݌ݕݐሺ݊ሻ|݊ א ሽ. In the example presented in݊݋݅ݐܿܽݎݐݏܾܽ
Figure 9 ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ is ሼݔݑ݊݅ܮ, ,݄݁ܿܽ݌ܣ ,ܮܳܵݕܯ .ሽ݊݋-݀݁ݐݏ݋݄,ܲܪܲ

(2) All entities with a type which is the child of one of
the types in ݈ܵ݁݁ܿݏ݁݌ݕܶ݀݁ݐ is changed to this type by the
transformation operation ܾܽݏ݁݌ݕܶݐܿܽݎݐݏܾܽ .ݏ݁݌ݕܶݐܿܽݎݐݏሺܧ, ,݁݁ݎܶ݁݌ݕݐ ሻݏ݁݌ݕܶ݀݁ݐ݈ܿ݁݁ܵ

(3) The structural segmentation technique is used to
locate all segments matching the search query ݊݋݅ݐܿܽݎݐݏܾܣ.
For the example depicted in Figure 10, the resulting segment
is highlighted by the dashed box. ܴ ൌ ,ܧሺ݊݋݅ݐܽݐ݈݊݁݉݃݁ܵܽݎݑݐܿݑݎݐܵ ሻ݊݋݅ݐܿܽݎݐݏܾܣ

(4) To each of the resulting segments we apply the
operation ܽ݃݃ݏ ࢎࢉࢇࢋ࢘࢕ࢌ :݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ א ,ݏሺ݁݀݋ܰ݋ܶ݁ݐܽ݃݁ݎ݃݃ܽ ࢕ࢊ ܴ ࢊ࢔ࢋ ሻܲܯܣܮ

VI. RELATED WORK
Increasing complexity and corresponding abstraction

techniques have been a key challenge in information
technology since its early beginnings. To narrow the scope of
works related to our approach we focus in the following on
approaches that operate on graphs. First, we inspect a work
from graph visualization dealing with a very large number of
nodes and edges. We then take a closer look at works dealing
with process graphs, which only contain hundreds of nodes
but which have high demands on readability and semantic
correctness of the outcome of the abstraction. Afterwards, we
discuss the abstraction of models of software systems in the
field of software engineering. Finally, we will have a look on
the related work of enterprise topology graphs

Research on graph theory has a long tradition and a large
set of proven algorithms with high efficiency exits. These
algorithms can be made accessible to EAM through the
usage of graphs to represent the enterprise IT landscape.
However, a graph holding all details of an enterprise IT may
contain millions of nodes and edges, demanding for graph
abstraction algorithms, as we proposed in this paper. This
characteristic makes approaches on visualizing large-scale
graphs relevant to our work. Abello et al. [3] presented ASK-
GraphView, a system to efficiently visualize graphs up to
200,000 nodes. The main idea of the approach is to construct
a hierarchy on an arbitrary graph using a pipeline of the
clustering algorithms Peeling, Biconnected Components,

Markov Cluster Algorithm, and Contraction. However,
labeling of created clusters is recognized as an important
aspect. Maqbool et al. [12] present a generic algorithm to
address this problem by using the frequency and inverse
frequency of keywords contained in relevant properties like
function identifiers. The work compares automatically
calculated labels with labels defined by human experts for
the same clusters which showed a high correspondence
between both sets of labels and most of the automatically
obtained labels are considered as meaningful and helpful for
understanding. The aggregation operation we presented in
Section IV.E can use this or similar mechanisms to create
cluster labels. However, our approach addresses a much
broader scope of abstractions beyond clustering and labeling.

As business processes are a crucial factor for the success
of an enterprise, it is of utmost importance to have a clear
understanding of these processes. Due to the increasing
complexity of process models, which are mainly investigated
in the field of BPM, abstraction techniques of process graphs
are gaining more and more importance. For instance, Sadiq
et al. [2] presented an approach to make the analysis of
complex processes more efficient through the use of graph
reduction rules. Many further approaches targeting the
abstraction of process graphs have been proposed in the
meanwhile. In [4], the graph transformations that have been
applied frequently in the state of the art of process
abstraction have been described. These transformations
range from structural abstraction like the omission and
aggregation of process structures, over to different forms of
information augmentation like semantic tagging, up to
viewing functions that address the visualization of a process
like graphical highlighting and usage of particular shapes.
Regarding the structural transformation patterns, the
enterprise topology approach applies all patterns except for
the disconnected aggregation, which describes the
aggregation of unconnected or transitively connected
segments. Patterns concerning the augmentation of
additional information from external data sources as well as
concerning the graphical visualization need to be considered
in further elaboration of the enterprise topology approach.

For the abstraction of software models, Selic [1]
proposed a set of common abstraction patterns frequently
used by software architects to make complex system models
more comprehensible. The patterns concerning abstraction of
structure are (1) black box which abstracts a complex
structure to a single component, (2) black line which
abstracts a chain of components that serve as communication
channel to a single edge, (3) cable which abstracts multiple
edges to a single one called cable, (4) port group which
abstracts a group of communication ports of a component to
a single one called port group, and (5) platform layer which
abstracts a connected structure to a coarse-grained unit by
combining use of the black box and cable pattern. Selic also
discusses refinement of abstracted models as inverse to
applied patterns. The patterns Selic identified also apply to
enterprise topology abstraction. The transformation
operations we proposed cover all patterns and extend the set
proposed by Selic by filtering of components and relations,
as well as by fine-granular abstraction on property level.

In [15] we evaluated the related work of enterprise
topology graphs in detail. We would like to stress that in
contrast to approaches describing application models [5][21]
or architectural blueprints [8][22] an enterprise topology
graph depicts a snapshot of the instances in the enterprise
topology. When describing this relation in terms of object-
oriented programming the former can be seen as classes, the
latter as the objects. Therefore, an enterprise topology graph
might include a number of instantiated application models.

VII. CONCLUSIONS AND OUTLOOK
The presented approach helps organizations to reduce the

complexity and to improve the manageability of their
enterprise topologies through the use of segmentation
techniques, transformation operations, and analysis
strategies. The proposed abstraction methods address current
EAM needs because enterprise topology graphs that contain
all components of an enterprise IT, their supporting
infrastructure, and corresponding relations may consist of
millions of nodes and are growing tremendously.

We argued that offering such analysis strategies
contributes to increasing the efficiency and impact of EAM.
However, there is some effort required to develop and tailor
analysis strategies towards the application scenarios, internal
policies, and IT strategy of an organization. Therefore, we
propose to create a new role called Enterprise Information
Designer to support the groups working on the enterprise
architecture, a role similar to the Information Designer in
Business Process Management [18] who specifies different
views according to the requirements of different stakeholders
of a business process. Enterprise Information Designers
develop strategies and create appropriate segmentation
techniques and transformation operations based on the
information needs, requirements, and challenges of the
groups working on the enterprise architecture. This new role
can provide the partly lacking adaption to enterprise specifics
in EAM [7]. Segmentation techniques, transformation
operations, and analysis strategies could be consumed and
hosted as a service by external providers, creating a
marketplace for the works of Enterprise Information
Designers.

We formally defined those strategies, however, they have
not been applied to real world enterprise topologies yet. This
is due to the fact that the semi-automated creation and
especially the automated discovery of enterprise topologies
is not a trivial task and prototype implementations are still
ongoing work.

The proposed approach is not limited to enterprise
topology graphs but also applicable to a wide variety of other
graphs. We argue that the operations presented in this paper
for enterprise topology graphs may also be applied to
application models like TOSCA Topology Templates [5].

In future work we will define further analysis strategies
to show the application of enterprise topology graphs to
further problems of EAM.

ACKNOWLEDGMENT
This work was partially funded by the BMWi project

CloudCycle (01MD11023) and Migrate! (01ME11055). D.

Schumm would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology (EXC
310/1) at the University of Stuttgart.

REFERENCES
[1] B.V. Selic, “A Short Catalogue of Abstraction Patterns for Model-

Based Software Engineering,” International Journal of Software and
Informatics, vol.5, no.2, pp. 313–334, 2011.

[2] W. Sadiq and M. Orlowska, “Analyzing Process Models Using Graph
Reduction Techniques,” Information Systems, vol.25, no.2, pp. 117–
134, Elsevier, 2000.

[3] J. Abello, F. van Ham, and N. Krishnan, “ASK-GraphView: A Large
Scale Graph Visualization System,” IEEE Transactions on
Visualization and Computer Graphics, vol.12, no.5, IEEE, 2006.

[4] D. Schumm, F. Leymann, and A. Streule, “Process Viewing
Patterns,” Proceedings of the 14th IEEE International EDOC
Conference, IEEE Computer Socienty, 2010.

[5] “Topology and Orchestration Specification for Cloud Applications
(TOSCA),” OASIS, Oct. 2011.

[6] R. Winter and R. Fischer, “Essential Layers, Artifacts, and
Dependencies of Enterprise Architecture,” Journal of Enterprise
Architecture, pp. 7–18, 2007.

[7] K. Winter, S. Buckl, F. Matthes, and C. Schweda, “Investigating the
State-of-the-Art in Enterprise Architecture Management Methods in
Literature and Practice,” MCIS 2010 Proceedings, AIS Library, 2010.

[8] Iteratec, “Iteraplan EAM,” online at http://www.iteraplan.de/en, 2012.
[9] J. Garbani, T. Mendel, and E. Radcliffe, “The Writing on IT’s

Complexity Wall,” Forrester Research, June 2010.
[10] Gartner, “Gartner Identifies the Top 10 Strategic Technologies for

2011,” Press Release, 2010.
[11] V. Machiraju, M. Dekhil, K. Wurster, J. Holland, M. Griss, and P.

Garg, “Towards Generic Application Auto-discovery,” HP
Laboratories Palo Alto, July 1999.

[12] O. Maqbool and H. Babri, “Automated Software Clustering: An
Insight using Cluster Labels,” The Journal of Systems and Software,
vol.19, no.11, pp. 1632–1648, Elsevier, 2006.

[13] “Web Services Business Process Execution Language (BPEL)
Version 2.0.,” OASIS specification, 2007.

[14] “Business Process Model and Notation (BPMN) Version 2.0,” Object
Management Group specification, Jan. 2011.

[15] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm,
“Formalizing the Cloud through Enterprise Topology Graphs,”
Proceedings of the 5th International Conference on Cloud Computing
(IEEE Cloud), 2012.

[16] G. Valiente, “Algorithms on Trees and Graphs,” Springer, 2002.
[17] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)Graph

Isomorphism Algorithm for matching large Graphs,” Pattern Analysis
and Machine Intelligence, IEEE Transactions, vol.26, no.10, pp.
1367–1372, Oct. 2004.

[18] D. Schumm, “Information Design for Business Process
Management,” Poster in the 5th Summer School on Service Oriented
Computing, 2011.

[19] B. Wolf, “Introduction to SOA governanve,” IBM developer works,
Jul. 2007.

[20] S. Buckl, F. Matthes, and C. Schweda, “EAM Pattern Catalog,”
online at http://wwwmatthes.in.tum.de/wikis/eam-pattern-catalog/.

[21] W. Arnold, T. Eilam, M. Kalantar, A. Konstantinou, A. Totok,
“Pattern Based SOA Deployment,” Proceedings of 5th International
conference on Service-Oriented Computing (ICSOC), 2007.

[22] D. Garlan, R. Monroe, and D. Wile, “Acme: An Architecture
Description Interchange Language,” CASCON First Decade High
Impact Papers, ACM, pp. 159–173, 2010.

