
© The authors
See CEUR-WS.org site:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-705/

@inproceedings{Wettinger2013,	

	
 	
 author	
 	
 	
 	
 =	
 {Johannes	
 Wettinger	
 and	
 Oliver	
 Kopp	
 and	
 Frank	
 Leymann},	

	
 	
 title	
 	
 	
 	
 	
 =	
 {Improving	
 Portability	
 of	
 Cloud	
 Service	
 Topology	
 Models	

Relying	
 on	
 Script-­‐Based	
 Deployment},	

	
 	
 booktitle	
 =	
 {Proceedings	
 of	
 the	
 5th	
 Central	
 European	
 Workshop	
 on	

Services	
 and	
 their	
 Composition	
 (ZEUS	
 2013)},	

	
 	
 year	
 	
 	
 	
 	
 	
 =	
 {2013},	

	
 	
 publisher	
 =	
 {CEUR-­‐WS.org}	

}	

:

Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wettinger, kopp, leymann}@iaas.uni-stuttgart.de

Improving Portability of Cloud Service Topology
Models Relying on Script-Based Deployment

Johannes Wettinger, Oliver Kopp, Frank Leymann

Institute of Architecture of Application Systems

Improving Portability of Cloud Service Topology
Models Relying on Script-Based Deployment

Johannes Wettinger, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

{wettinger, kopp, leymann}@iaas.uni-stuttgart.de

Abstract Portability is key for services running in the Cloud to prevent
vendor lock-in. Today, many Cloud services are portable and can thus be
moved from one Cloud provider to another. However, the management
of these services is often bound to provider-specific management tooling.
Thus, the way of management of a particular Cloud service may completely
change when moving it to another Cloud provider. This paper presents
concepts to improve the portability of Cloud service topology models
that are deployed and managed using scripts. We highlight the challenges
of a semi-automatic procedure to generate portable TOSCA-compliant
topology model components based on Juju topology model components.

Keywords: portability, service topology, topology model, script-based deploy-
ment, Cloud computing

1 Introduction

Reducing the costs of infrastructure and service management is one of the most
important aspects of Cloud computing because traditional IT service management
is costly. This goal is achieved by automating the whole management of services
running in the Cloud. Management of Cloud services is not limited to deploying
and decommissioning service instances; it includes several management tasks that
need to be performed once a particular service instance has been deployed. As an
example, the service instance has to scale up and down depending on the current
workload. Today, Cloud providers offer proprietary tooling to automate Cloud
service management such as “CloudFormation” and “Auto Scaling” provided
by Amazon Web Services1. The learning curve is flat because these tools are
easy to use. However, when the service is moved to another Cloud provider
the management tooling is different. Thus, the service may be managed in a
completely different manner. The service itself may be perfectly portable, so
it can be moved from one Cloud provider to another. However, this may not
be true for the service management. This is why portability is essential for
services running in the Cloud, especially when it comes to service management.
1 Amazon Web Services: http://aws.amazon.com

http://aws.amazon.com

To achieve management portability, this paper provides two key contributions:
(1) an approach to generate standard-compliant topology model components and
(2) concepts to improve portability of these generated components.

2 Background

We assume that the structure and management behavior of a Cloud service is
specified using a service topology model consisting of several topology model
components. As an example, two topology model components may be part of
a topology model for deploying and managing a Web application: an “Apache
Web server” and a “MySQL database server.” A topology model component
contains scripts that are typically implemented using a scripting language such
as Python or Perl. These scripts realize the management actions that can be
performed regarding a service instance of the particular topology model such
as deploying and updating its components. We focus on service deployment as
one of the most important management tasks, based on topology models. Today,
there are existing topology model components publicly available that can be used
to deploy and manage services in the Cloud. A prominent example is Juju2. The
community shares more than one hundred topology model components as open
source software. Such a component is called a “charm” and can be combined
with other “charms” to create a service topology model that can be instantiated
and managed in the Cloud. The core of a charm is a set of scripts to enable
automated management of a particular service instance. However, these scripts
are bound to Ubuntu Linux and thus are not portable. There are standardization
efforts going on in the field of model-driven Cloud management that are focusing
on management portability: the Topology and Orchestration Specification for
Cloud Applications (TOSCA)3 is an emerging standard supported by a number
of prominent companies in the industry such as IBM, SAP, and Hewlett-Packard.
TOSCA enables the specification of portable topology models and portable topol-
ogy model components. However, an ecosystem including an active community
sharing topology models and topology model components based on TOSCA is
still missing.

3 Generating Standard-Compliant
Topology Model Components

One goal of our work is to bring together the standardization efforts of TOSCA
enabling management portability with Juju’s growing ecosystem and active com-
munity. The first step to achieve this goal is outlined in this section: transform-
ing topology model components published by the Juju community to TOSCA-
compliant topology model components. Both TOSCA’s and Juju’s topology
models basically specify graphs consisting of nodes and relations between nodes
2 Juju: http://juju.ubuntu.com
3 TOSCA: http://www.tosca-open.org

http://juju.ubuntu.com
http://www.tosca-open.org

to define the structure of a Cloud service. In TOSCA, both relations and nodes
are explicitly modeled as separate topology model components, whereas Juju
specifies nodes as topology model components only. Consequently, two major
steps have to be performed: (1) a TOSCA-compliant topology model component
has to be generated for each Juju charm; as a result, each node that can be
modeled using Juju, can be modeled using TOSCA, too. However, the relations
between these nodes cannot be modeled in TOSCA because the corresponding
topology model components are missing. (2) Thus, additional TOSCA-compliant
topology model components have to be generated for each relation that can be
implicitly modeled using Juju.

As an example, for the Juju charms “WordPress application” and “MySQL
database server,” two corresponding topology model components are generated
that can represent nodes in a TOSCA topology model (service topology). For the
relation “WordPress application connects to MySQL database server,” which can
be implicitly modeled in Juju, a separate topology model component is generated
that can represent the corresponding relation in a TOSCA topology model.

4 Improving Portability of Generated
Topology Model Components

The generated topology model components as described in Section 3 are TOSCA-
compliant and thus follow an emerging standard. Service topology models using
these components can be deployed and managed using an arbitrary TOSCA
engine such as OpenTOSCA4 or IBM SmartCloud Orchestrator5. This is already
an improvement of portability because the original topology model components
shared by the Juju community can be processed by the Juju engine only. How-
ever, the scripts inside the topology model components are still restricting the
portability in two ways: (1) the scripts use a set of commands and environment
variables that are available on each virtual machine managed by Juju. (2) The
scripts are designed to be executed on Ubuntu Linux; as a result, their execution
fails on other Linux variants and other platforms.

The first restriction can be compensated by generating wrapper scripts that
prepare the execution environment and then call the actual scripts originating in
Juju charms. These wrapper scripts receive their input from the TOSCA engine
and expose commands and environment variables that are used by the actual
scripts. The second restriction is a greater challenge: the generated topology
model components have to be refined to further enhance their portability either by
improving the existing scripts so they also run on other platforms or by creating
and attaching additional scripts to support other platforms. These additional
scripts can be created by copying an existing script and semi-automatically
adapting it to be executable on another platform. This alternative realizes
separation of concerns and thus is the preferred one in contrast to directly
modifying an existing script.
4 OpenTOSCA: http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php
5 IBM SmartCloud Orchestrator: http://ibm.co/CPandO

http://www.iaas.uni-stuttgart.de/OpenTOSCA/indexE.php
http://ibm.co/CPandO

© Johannes Wettinger et al., IAAS 1

Challenges (cont’d)

 How to realize script conversion?

Original Script
for Ubuntu (1) generate

Define target
platform

Conversion
Descriptor

Manually check
and refine

Converted
Script for […]

Input
Reuse!

Figure 1. Conversion descriptors as a means of improving the portability of scripts

We are currently designing a semi-automatic, modular, and extensible proce-
dure to convert a script that is implemented for a specific platform to be executed
on another one. Figure 1 presents an example to show the basic concept of the
procedure: based on the original script that is bound to a specific platform such
as Ubuntu Linux and the definition of a particular target platform a conversion
descriptor gets generated. It specifies the changes that are required to make the
original script executable on a particular target platform such as Red Hat Linux.
Then, the generated conversion descriptor gets checked and refined manually
because some of the specified changes may be incorrect. Additionally, changes
that are actually required may not represented at all. Based on the refined
conversion descriptor the actual conversion procedure gets performed to create a
new version of the script that is executable on the target platform. The purpose
of generating a conversion descriptor is twofold: first, it enables a manual review
regarding correctness and completeness. Second, the conversion descriptor can
be reused and further refined for future versions of the original script.

The concepts described in Section 3 and Section 4 enable the creation of
portable topology models based on TOSCA using the generated and refined
topology model components owning a high degree of portability. In future, we
focus on reusing these concepts to generate additional topology model components
originating in communities of configuration management tools such as Chef6 or
Puppet7.

Acknowledgments The research leading to these results has partially received
funding from the 4CaaSt project part of the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 258862. Further, this
work was partially funded by the BMWi project CloudCycle (01MD11023).

6 Chef: http://www.opscode.com/chef
7 Puppet: http://www.puppetlabs.com

http://www.opscode.com/chef
http://www.puppetlabs.com

	Improving Portability of Cloud Service Topology Models Relying on Script-Based Deployment

