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Abstract Standardization efforts to simplify the management of cloud
applications are being conducted in isolation. The objective of this paper
is to investigate to which extend two promising specifications, USDL and
TOSCA, can be integrated to automate the lifecycle of cloud applications.
In our approach, we selected a commercial SaaS CRM platform, mod-
eled it using the service description language USDL, modeled its cloud
deployment using TOSCA, and constructed a prototypical platform to
integrate service selection with deployment. Our evaluation indicates that
a high level of integration is possible. We were able to fully automatize the
remote deployment of a cloud service after it was selected by a customer
in a marketplace. Architectural decisions emerged during the construction
of the platform and were related to global service identification and access,
multi-layer routing, and dynamic binding.

Keywords: USDL, TOSCA, cloud service lifecycle, service description,
service management

1 Introduction

Standardization efforts are paving the way which leads to the mainstream adoption
of SaaS (Software-as-a-Service) and cloud computing environments [1]. Currently,
different players (e.g., OMG, W3C, Eurocloud, NIST) are undertaking several
initiatives4 (e.g., USDL, TOSCA, CCRA, OCCI) to provide useful and usable
standards for cloud computing. In 2009, it was argued that no standard existed [2].
This has changed. For example, The Open Group is working on the Cloud
Computing Reference Architecture (CCRA) and EuroCloud is devising guidelines
on law, data privacy, and compliance.

4 http://cloud-standards.org

http://cloud-standards.org


Nonetheless, these initiatives have two limitations. On the one hand, efforts
are being conducted in isolation and it is not clear to which extend they can
be integrated and, on the other hand, there is a lack of certainty as to which
standards provide adequate levels of interoperability. For cloud providers (e.g.,
HostEurope.com and JiffyBox.de), advances in interoperability can simplify
the countless activities involved during the life cycle of applications.

The objective of this paper is to study to which extend current cloud spec-
ifications and standards are interoperable. In particular, we investigate how
USDL (Unified Service Description Language) [3,4] and TOSCA (Topology and
Orchestration Specification for Cloud Applications) [5] can be integrated to link
the description and the management of cloud services5, respectively. USDL is
being explored by several research projects to enhance the description of service
offerings to facilitate service discovery and selection [6]. TOSCA helps providers
to automate the deployment and management of services.

Our research design uses the SaaS application SugarCRM6, an open-source,
web-based customer relationship management (CRM) platform, as a represen-
tative use case for evaluating the interoperability level of USDL and TOSCA.
Therefore, the various SugarCRM service offerings were modeled with their pric-
ing models, software options, and legal statements in USDL. The SugarCRM
deployment, which included virtual machines, databases, and web servers, as well
as its management, was modeled with TOSCA. Based on these activities, the
development of a loosely coupled platform as a mean to achieve interoperability
between the two specifications was conducted, building the core part of the
proposed approach. The development of the platform, called SIOPP (ServIce
Offering and Provisioning Platform)7, involved taking architectural decisions to
enable the global and unique identification of services described with USDL, the
remote access and querying of USDL service descriptions, the intelligent routing
of service requests to providers, and the dynamic binding of TOSCA deployment
descriptors to service descriptions.

The evaluation of the platform indicated that a high degree of interoperability
was achieved. It became possible to select a cloud service from a marketplace,
route the request to a provider which had previously announced to offer the service,
and deploy the cloud service using plans which accounted for the characteristics
of the service. After setup and configuration, all these steps were conducted
automatically without requiring human intervention. Future work requires the
replication of our research using other emerging specifications (e.g., CloudAudit
for auditing and BSI-ESCC for security) to support the full life cycle of cloud
applications from cradle to grave.

This paper is structured as follows: In Section 2, we illustrate a motivating
scenario explaining the need to integrate cloud specifications. Section 3 explains
how the SaaS SugarCRM from our scenario was described using USDL and how
its deployment was specified using TOSCA. The requirements for a platform

5 We will use the terms service and cloud application to refer to Software-as-a-Service
6 http://www.sugarcrm.com/
7 SIOPP is pronounced ‘shop’
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to make USDL and TOSCA interoperable, as well as the main architectural
decisions are presented in Section 4. Section 5 evaluates the developed platform.
Section 6 provides a literature review. Section 7 discusses our conclusions.

2 Motivating scenario

Nowadays, the discovery and selection of cloud applications, such as a SaaS Sugar-
CRM system, is still mainly carried out manually by consumers. It is not possible
to effectively query services offered by different marketplaces (e.g., AppDirect,
Appcelerator, and the Service Delivery Broker from Portugal Telecom), because
they are not publicized using computer-understandable formats. Marketplaces
need to be searched manually. This is a first limitation we want to address.

After a purchase decision is made, and from the provider side, contracting
and billing is negotiated by the sales and procurement divisions, the selected
cloud application and its customization is given to an IT provider or department
without any formalization of the executables, technical requirements, management
best practices, and so on. Operators invest considerable efforts to learn how to
setup and manage the application. Customization is done manually and often
research or consulting is required to make a cloud solution work in a particular
environment. This manual and error-prone process is not suitable to address fast
changing markets and dynamic business requirements. Apart from solutions such
as Saleforce, Google Apps, or Microsoft Office 365, this is still the way software
is provisioned. This is the second limitation we want to address.

To solve these limitations, USDL is aiming to formalize, structure, and
simplify the discovery and selection of services, and TOSCA to automate their
management. When used in conjunction, they can automate parts of the lifecycle
of cloud applications, namely discovery, selection, deployment, and management.

3 Modeling SugarCRM with USDL and TOSCA

In this section we provide a brief introduction to the two specification languages
we will integrate. We also use USDL to describe the SaaS SugarCRM application
from our scenario and use TOSCA to model its deployment.

3.1 USDL overview

The Unified Service Description Language was developed in 2008 for describing
business, software, or real world services using machine-readable specifications
to make them tradable on the Internet [3]. Past efforts were concentrated on
developing languages, such as WSDL, CORBA IDL, and RPC IDL, which focused
on the description of software interfaces. Nonetheless, the Internet of Services
requires services to be traded, placing emphasis on the description of business-
related aspects such as pricing, legal aspects, and service level agreements. This
was the motivation to create USDL. The initial versions of USDL were ready



in 2009 [7,3]. Later, in 2011, based on the experiences gained from the first
developments, a W3C Incubator group8 was created and USDL was extended.
The extensions resulted from the experience gained in several European academic
and industrial projects (e.g., SOA4ALL, Reservoir, ServFace, Shape, etc.). In
2012, a new version named Linked USDL based on Linked Data principles [8]
and RDF was proposed. This recent version is currently being explored and
evaluated in several research projects such as FI-Ware (smart applications),
FInest (logistics), and Value4Cloud (value-added cloud services).

Linked USDL is segmented in 5 modules. The usdl-core module models
general information such as the participants involved during provisioning and
service options such as customer support. The cost and pricing plans are modeled
with usdl-price. The legal terms and conditions under which services may
be consumed are modeled with usdl-legal. The module usdl-sla gathers
information on the levels of service provided, e.g., availability, response time, etc.
Finally, usdl-sec models security features of a service. Due to its benefits, e.g.,
reusability of existing data models and simplicity in publishing and interlinking
services, Linked USDL was used in this research.

3.2 Describing SugarCRM with USDL

The information used to model the SaaS SugarCRM was retrieved from its web
site. A service and a vocabulary model were created. The vocabulary contained
domain dependent concepts from the field of CRM systems (e.g., taxonomies of
common installation options). Since Linked USDL only provides a generic service
description language, domain specific knowledge needs to be added to further
enrich the description of services. The excerpt from Listing 1.1 illustrates the
description of the SugarCRM service (in this paper, examples are written using
the Turtle language9).

1 <#service_SugarCRM> a usdl:Service ;

2 ...

3 dcterms:title "SugarCRM service instance"@en ;

4 usdl:hasProvider :provider_SugarCRM_Inc ;

5 usdl:hasLegalCondition :legal_SugarCRM ;

6 gr:qualitativeProductOrServiceProperty

7 crm:On_premise_or_cloud_deployment ,

8 crm:Scheduled_data_backups ,

9 crm:Social_media_integration ,

10 crm:Mobile_device_accessibility .

11 ...

Listing 1.1. SugarCRM service modeled with Linked USDL

The description starts with the identification of the provider (line 4), the
legal usage conditions (line 5), and the general properties of the service (e.g.,

8 http://www.w3.org/2005/Incubator/usdl/
9 Turtle – Terse RDF Triple Language, see http://www.w3.org/TR/turtle/
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deployment, scheduled backups, integration, and mobile accessibility). Service
offerings connect services to price plans. Listing 1.2 defines four price plans (lines
4-8): professional, corporate, enterprise, and ultimate. The professional
plan includes common features shared with the other plans such as sales force
automation, marketing automation, and support automation (lines 15-20). It
costs $30 per month (lines 21-25), the contract is annual and the billing is made
every month (not shown in this excerpt).

1 :offering_SugarCRM a usdl:ServiceOffering ;

2 ...

3 usdl:includes <#service_SugarCRM> ;

4 usdl:hasPricePlan

5 :pricing_SugarCRM_Professional ,

6 :pricing_SugarCRM_Corporate ,

7 :pricing_SugarCRM_Enterprise ,

8 :pricing_SugarCRM_Ultimate ;

9 usdl:hasServiceLevelProfile :slp_SugarCRM .

10 ...

11 :priceComponent_SugarCRM_Professional_General a price:PriceComponent ;

12 dcterms:title "General price"@en ;

13 dcterms:description "Fee for general usage of the instance."@en ;

14 price:isLinkedTo

15 crm:Sales_Force_Automation ,

16 crm:Support_Automation ,

17 crm:Integration_via_web_services_API ,

18 crm:Customizable_Reporting ,

19 ...

20 crm:MySQL_and_MS_SQL_server_database_support ;

21 price:hasPrice

22 [ a gr:UnitPriceSpecification ;

23 gr:hasCurrency "USD" ;

24 gr:hasCurrencyValue "30" ;

25 gr:hasUnitOfMeasurement "MON" ] .

Listing 1.2. Pricing plans for SugarCRM services

In this example, Linked USDL uses existing vocabularies such as Dublin Core
(shown in the model with :dcterms), GoodRelations (:gr), and the domain
vocabulary constructed for CRM systems (:crm).

3.3 TOSCA overview

The Topology and Orchestration Specification for Cloud Applications [5] was
standardized to enable automated deployment and management of applications
while being portable between different cloud management environments [9].
The management and operation of cloud applications are major concerns in
enterprise IT. For example, the pay-as-you-go model requires fast provisioning
and management of application instances. Since these applications typically
consist of numerous heterogenous distributed components, the management of the



components itself, the relationships among each other, and the whole application
is difficult and expensive in terms of time and money - especially when manual
work is required, e.g., deploying and executing scripts in a special order by hand
which is error prone. Thus, there is the need to automate management to decrease
the effort and reduce the error rate. In addition, to avoid vendor lock-in, which is a
major concern of customers when talking about outsourcing and cloud computing,
there is a need to create portable applications which can be moved between
different cloud providers. The TOSCA specification is currently standardized by
an OASIS Technical Commitee10 which already published a number of community
specification drafts. TOSCA is an XML-based exchange format. The application’s
architecture, the components it consists of, and the relationships among them
are modeled formally in a typed topology graph. Each node and relationship
defines the management operations it offers. These operations are exposed as web
services and are used to manage the individual components and relationships
on a fine-granular technical level. The overall management functionalities such
as deploying, scaling, backuping, and terminating the whole application are
modeled on a higher level of abstraction by using management plans. Plans are
implemented as workflows, e.g., in BPMN or BPEL, to benefit from compensation,
recovery, and transaction concepts [9].

TOSCA Service Archives package cloud applications with all the required
software artifacts such as installables or applications files as well as their man-
agement plans in a portable fashion. These archives can be installed in TOSCA
Runtime Environments which provide all functionalities to manage the archive
and execute management plans. This enables cloud providers to offer third party
services because management details, e.g., how to scale the application or how
security is achieved, are hidden and the archives can be treated and operated as
a self-contained black box. As the specification does not define a visual notation,
in this paper we use Vino4TOSCA [10] as a visual notation for TOSCA.

3.4 Modeling SugarCRM with TOSCA

In this section we show how the SugarCRM deployment was specified with
TOSCA, discuss different deployment options, and list possible variabilities.
Figure 1 shows one possible topology of a SugarCRM deployment.

The core components of the application are the SugarCrmApp, which is a PHP
application, and the SugarCrmDb representing the database used by SugarCRM,
indicated by the MySqlDbConnection. The PHP application requires an Apache
web server including a PHP runtime, which is provided by the installed PHP
module. To provide the database, a MySQL relational database management
system (MySQLRDBMS) is used. Currently, SugarCRM also supports Microsoft SQL,
Oracle 11g, and IBM DB2 which could be used in other deployment options.
Apache and MySQL themselves must be installed on an operating system which
is in turn provided as a virtual machine image. All nodes have properties, not
explicitly depicted in the figure, holding state and management information of

10 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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Figure 1. TOSCA Service Archive containing topology (top) and build plan (bottom)
for SugarCRM ultimate

the respective nodes. These properties are used to store information about the
application: static information such as the hardware specification of a virtual
machine, as well as runtime information such as IP-addresses. This information
is used and stored by plans during deployment, management, and termination of
the application. The fine grained decomposition into components is needed to
understand the interdependencies and variabilities exposed via Linked USDL.

One option to support different SugarCRM offerings is to use separate TOSCA
topologies with different quality of service (QoS) captured by USDL service
offerings. The ultimate deployment depicted in Figure 1 (upper box), for example,
hosts the web server and database on different virtual machines, whereas an
enterprise deployment can use the same virtual machine for both.

On the other hand, there are variations which do not change the structure of
the topology. For example, aspects like support options and variations impacting
how the application is technically provided. For the latter, possible configurations
offered by the VM node are the cloud provider, e.g., Amazon or Rackspace, the
physical location, e.g., US or Europe, as well as CPU power, memory size, and
hard disk capacity. Beside nodes, it is also possible to configure relations. For
example, to tackle security issues, the database connection may be encrypted.

Management plans read and write properties which hold runtime information
of nodes and relationships. TOSCA designates one plan as build plan, which
deploys and initializes the service. Figure 1 (lower box) shows a simplified example
of a build plan which sets up the ultimate version of SugarCRM based on two
virtual machines. A real executable plan needs additional activities and structural



components for data handling, compensation, and recovery mechanisms. The
shown plan sets up the two infrastructure stacks in parallel starting from the
bottom by calling management operations provided by the nodes (Figure 1 depicts
only three of these calls for simplicity reasons). After stacks are instantiated, the
database connection is established and the application is available.

4 USDL and TOSCA interoperability

Our study on USDL and TOSCA interoperability is timely and relevant because
despite standardization efforts clouds may develop in a way that lacks interop-
erability, portability, and reversibility, all crucial for the avoidance of lock-in.
Our approach connects in a best of breed manner two promising standardization
efforts, focusing on different aspects, and proposes an end to end solution for cloud
services including modeling, discovery, selection, deployment, and management.

A simple solution to integrate USDL and TOSCA consists in establishing a
static link between service descriptions and their corresponding archives. Nonethe-
less, since this approach is strongly coupled it would not be able to handle the
dynamics of a global service distribution network. For example, what would hap-
pen if the TOSCA descriptor associated with a USDL service description would
no longer be valid? What if the deployment provider has ceased its operations
and transferred its obligations to, presumably, some other provider which will
still handle the original function? How should the request be handled?

4.1 Architectural decisions

Engineering a platform to integrate service descriptions with service deploy-
ments is a major undertaking [6]. We require an architecture that enables a
simple transmission of service requests and deployment information between
customers and providers via marketplaces; which handles adding or removing
marketplaces and providers in a loosely coupled manner; which uses a standard
data representation and querying format to ease information exchange and enable
interoperability; and which can rely on existing applications, tools and technolo-
gies. When examining theoretical and technological advancements to serve as a
fundamental building block it becomes clear that the World-Wide Web combined
with semantic web technologies is a potential candidate. It is distributed, scalable,
reliable, extensible, simple, and equitable [11]. Therefore, the integration platform
developed was constructed based on three main underlying principles:

1. Global service identification and service description access,
2. Intelligent routing of service requests, and
3. Dynamic binding of deployment descriptors.

The description of cloud services using Linked USDL provides a global service
identification mechanism by using HTTP URIs. It also provides a global, standard,
and uniform data access [12] to service descriptions by using HTTP URLs



and RDF. In contrast to other approaches, e.g., APIs provided as REST or
WS-* endpoints [13], an uniform data access enables a simpler interoperability
and integration of the marketplace, containing service descriptions, and service
providers’ platforms responsible for SaaS deployment and management.

The routing of service requests from marketplaces to providers is achieved
using an intelligent content-based routing [14]. The analysis of Linked USDL
descriptions is implemented through SPARQL and can also make use of RDF-
based reasoning engines (e.g., Jena, Pellet, FaCT). Their use for content-based
routing enables a more flexible routing mechanism compared with web APIs,
because full remote access and querying of the service descriptions is possible.
Furthermore, the use of a routing mechanism decouples space and time between
marketplaces and providers.

Cloud providers use a publish-subscribe pattern [15] to establish a dynamic
binding of deployment descriptors with Linked USDL service offerings. This
enables cloud providers to quickly adapt to peak demand by scaling the number of
servers which handle deployment requests using TOSCA Runtime Environments.

These architectural considerations are evaluated in Section 5 with the imple-
mentation of the ServIce Offering and Provisioning Platform (SIOPP).

4.2 Global service identification and description access

Cloud applications, such as the SugarCRM of our scenario, can be advertised
in marketplaces [3] (e.g., SAP Service marketplace, Salesforce.com, and AppDi-
rect.com), or in any other system answering to HTTP URIs requests (e.g., the
provider’s web sites), which enables consumers to browse through various offer-
ings. A marketplace, or information system, is said to be USDL-compliant if all
service offerings are modeled with Linked USDL, and are externally visible and
accessible via HTTP URIs. Since Linked USDL relies on linked data principles,
two important features are inherited:

1. The use of HTTP URIs provides a simple way to create unique global identi-
fiers for services. Compared to, e.g., a universally unique identifier (UUID),
Linked USDL URIs are more adequate to service distribution networks since
they are managed locally by service providers following a process similar to
the domain name system (DNS).

2. The same HTTP URI, which provides a global unique identifier for a service,
also serves as endpoint to provide uniform data access to the service descrip-
tion. A Linked USDL URI can be used by, e.g., RDF browsers, RDF search
engines, and web query agents looking for cloud service descriptions.

When a suitable Linked USDL HTTP URI has been selected for purchase
(for example, our SugarCRM application), the customer can customize the ser-
vice, for example, by selecting the pricing plan which is most suitable to his
needs. Assuming that the ultimate plan is selected, the marketplace sends a
service request for routing. The service includes the URI and an optional part
(the customization string), separated by a question mark (“?”), that contains



customization information. The syntax is a sequence of <key>=<value> pairs
separated by a ampersand (“&”). Both, key and value, are URIs referencing
semantic concepts defined within the Linked USDL service description. For
example, the URI http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing_
SugarCRM_Ultimate in which the key pricePlan and value pricing SugarCRM

Ultimate are concepts defined within the Linked USDL description of the Sugar-
CRM application (in this example, the full URI was omitted to make the notation
more compact). The customization string adopts the same structure as query
strings, a recommendation of the W3C.

4.3 Intelligent routing of service requests

Based on the global service identification and description access, the SIOPP
platform relies on a content-based routing [14] strategy to forward service requests,
generated by service marketplaces, to TOSCA deployment providers. The routers
examine the content of Linked USDL service descriptions, apply SPARQL queries
and reasoning rules—providing some degree of intelligence within the router—to
determine the providers who are able to provide the respective service. The
mapping of Linked USDL URIs, pointing to an offering with the application
provisioned by TOSCA, is realized by the distributed routing logic depicted in
Figure 2. The proposed mechanism is designed with three routing layers: (i) the
Global Routing Layer (GRL), (ii) the Local Routing Layer (LRL), (iii) and the
TOSCA Routing Layer (TRL).

The Global Routing Layer uses a routing table to map Linked USDL URIs,
describing the high level requirements for the application provisioning, such as
pricing model, to providers which are able to provision the application accordingly.
The GRL receives an USDL URI from a marketplace, looks up appropriate
providers and selects one of them. This selection may take into consideration
further conditions defined by the user such as pricing, payment method, or
security requirements. However, these aspects are out of scope for this paper.
Each provider is referenced by an endpoint implementing an interface used by
the GRL to pass requests to the Local Routing Layer of the respective provider
in order to trigger the provisioning of the application.

The Local Routing Layer uses the Linked USDL URI and a (local) routing
table to select the corresponding TOSCA archive and TOSCA container, which
brings us to the TOSCA Routing Layer. The installations are referenced by a
TOSCA service id which can be used to trigger the provisioning of the service
by the Local Routing Layer via the TOSCA-Runtime Environment. In addition,
the routing table stores the input message used to invoke the build plan. This
input message contains provider-specific information, for example, IP ranges
or credentials, as well as field to pass the Linked USDL URI to the build
plan. The plan may use the URI to configure the application based on the
information represented by the URI or, in addition, may inspect the Linked
USDL service description to gather more information, e.g., details of the selected
price plan. Thus, the third TOSCA Routing Layer executes and configures the
actual provisioning of the service.

http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing_SugarCRM_Ultimate
http://rdfs.genssiz.org/SugarCRM?pricePlan=pricing_SugarCRM_Ultimate
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Figure 2. Intelligent content-based routing mechanism of SIOPP

Listing 1.3 shows an example of an input message used by the build plan
to deploy SugarCRM on Amazon EC2 (described in Section 3.4). The message
contains credentials of the Amazon account to be used (line 2 and 3), the
geographic region where the virtual machines should be located (line 4), and a
pointer to the USDL offering (line 5). The USDL URI is used by the plan to query
the Linked USDL offering by using SPARQL and adjust the deployment. In our
prototype, deciding between the deployment options enterprise or ultimate is
done based on the selected USDL pricing plan.

1 <BuildSugarCrmUltimateRequest>

2 <AmazonAccessKey>-key-</AmazonAccessKey>

3 <AmazonSecretKey>-secret-</AmazonSecretKey>

4 <EC2Endpoint>ec2.eu-west-1.amazonaws.com</EC2Endpoint>

5 <USDLURI>http://rdfs.genssiz.org/SugarCRM?pricePlan=

pricing_SugarCRM_Ultimate</USDLURI>

6 </BuildSugarCrmUltimateRequest>

Listing 1.3. SugarCRM build plan input message

Listing 1.4 shows the SPARQL query used by the build plan to inquire about
the options which are attached to the pricing plan included by the (customized)
USDL URI. The options are then installed automatically.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>



3 PREFIX usdl: <http://www.linked-usdl.org/ns/usdl-core#>

4 PREFIX price: <http://www.linked-usdl.org/ns/usdl-pricing#>

5 select ?option

6 where {

7 pricePlan + price:hasPriceComponent ?priceComponent .

8 ?priceComponent price:isLinkedTo ?option . }

Listing 1.4. The SPARQL query issued by the build plan

The use of Linked USDL enables the content-based routing to be (1) intelligent
and (2) adaptable. First, inference engines can be used to derive additional
information not explicitly contained in a service description. For example, the
Similarity Ontology (SO)[16] can be used to determine if the description of
a service to be routed is so:similar or so:related to some service target.
The use of transitive properties, such as so:matches, can be explored to infer
implicit routing rules. Second, an adaptable content-based routing is achieved. It
is possible to extend service descriptions with, for example, domain-dependent
information as done in the field of logistics with the FInest project11; or enhance
service descriptions with external information sources, for example, using dbpedia,
YAGO, or freebase12. This contrasts to existing approaches which rely on closed
schemas like WSDL. The routing mechanism works with the extensibility of
Linked USDL and is able to process extended service descriptions. The modeling
of our SaaS SugarCRM included domain-dependent vocabulary from the CRM
field (see Section 3.2). Nonetheless, the evaluation of the impact of additional
domain-dependent information on routing was out of scope for this paper.

4.4 Dynamic binding of deployment descriptors

The binding of Linked USDL service offerings to TOSCA service deployments
is done in a loosely coupled manner using TOSCA deployment descriptors. A
TOSCA deployment descriptor is the combination of (i) a TOSCA Service Archive
identifier, (ii) the endpoint of its build plan, and (iii) the respective input message
for the build plan. The provider’s TOSCA Runtime Environment is able to
automatically process the TOSCA deployment descriptors stored in the routing
table of the Local Routing Layer. The Local Routing Layer maps the USDL
URIs, passed by the Global Routing Layer to the provider, to the corresponding
TOSCA deployment descriptors solely based on this URI. Our approach uses
the publish-subscribe pattern which enables providers to dynamically offer their
provisioning capabilities to marketplaces. This design achieves advantages in
resource management, workload distribution, and maintenance operations. For
example, if a service instance is slowed down by a high request rate, the provider
is able to instantiate and subscribe a second instance to distribute the workload.

11 http://finest-ppp.eu/
12 http://dbpedia.org; www.mpi-inf.mpg.de/yago-naga; www.freebase.com
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5 Evaluation

An evaluation was conducted to assert the feasibility, performance, separation of
concerns, and limitations of the prototype developed:

Feasibility. The integration of USDL and TOSCA required a loosely coupled
platform to account for the dynamic nature of service advertisements and service
provisioning. Three main challenges emerged during the construction of the
SIOPP prototype: (i) global service identification and remote description access,
(ii) intelligent routing of service requests, (iii) and dynamic binding of deployment
descriptors. We were able to exploit USDL features (inherited from linked data
principles) to achieve an unique service identification schema using Linked USDL
URIs and a uniform data access [12] to service descriptions using Linked USDL
HTTP URIs. In contrast to using, e.g., web APIs, it enabled a simpler integration
of the marketplace and service providers’ platforms responsible for service deploy-
ment and management. The use of a decentralized management of unique service
identifiers was a scalable solution for the Internet of services. The use of SPARQL
for the content-based routing [14] of service requests enabled a more flexible
querying mechanism when compared, here again, with the access to web APIs to
retrieve service data, since a full access to the service specifications is possible
remotely. The dynamic association of a specific TOSCA deployment descriptor
with a USDL service offering was achieved using a publish-subscribe pattern [15].
This enables cloud providers to quickly adapt to peak demand by distributing
service requests to different TOSCA Runtime Environments. Compared to other
approaches, e.g., which use business process management or integration by web
services, the platform achieved a higher degree of decoupling, certainly more
suitable for large scale deployments.

Performance. Regardless of using SIOPP or not, the application has to be setup
using a build plan. Thus, we measured the performance of each component
separately, to analyze the added runtime. For the GRL we used a hashtable
with 500,000 entries and looked up 5,000 entries with a total lookup time of
3ms. To measure the LRL we used a hashtable with 10,000 entries and looked
up 1,000 entries which resulted in a total lookup time of 2ms. The measurement
setting was Win7-64bit, JRE 1.7, Intel i5-2410M, 2,3GHz. The build plan was
adapted to return immediately after executing the SPARQL query, i.e., before
the actual deployment at Amazon started, has an average runtime of 289ms
(σ = 76). The runtime of the plan deploying SugarCRM varies between 4 and
7 minutes, depending on the provisioning time of the VMs at Amazon EC2.
Thus, the overhead caused by SIOPP, even for peak demands, is negligible in our
scenario.

Separation of Concerns. The distributed multi-layer routing logic enables the
separation of concerns: The GRL reflects high level information, e.g., the global
routing table may store information about the country of the provider for legal



aspects. The LRL handles lower level aspects such as load balancing information,
e.g., new service instances can be registered in the local routing table for peak
demands. The TRL enables, for example, implementing security aspects directly
in management plans. This separation allows providers to focus on configuration
and subscription and to design their own strategies based on individual aspects
such as pricing. There is no need to understand the application’s management.

Limitations. Since our routing approach has only three fixed routing components,
it is not scalable for a global operation. One way to address this limitation is
to adopt a peer-to-peer architecture using an overlay network organized with,
e.g., the Simple Knowledge Organization System (SKOS). The network can be
partitioned according to service domains (e.g., healthcare, finance, and logistics).
Requests can be routed from domain to domain/subdomains linked using SKOS
properties (e.g., skos:narrower and skos:member). The customization string
(see Section 4.2), works well with simple customization. However, it is inadequate
for condition-based based customization, i.e. if logical conditions need to be sent
along with service requests. Also, associating USDL URIs with concrete input
values for build plans has been found to be difficult if there is no description on
how the values affect the deployment.

6 Related work

While several researchers have studied different architectures for marketplaces
(e.g., [17,18]), no known studies have been focused specifically on how cloud
service offerings can be connected to their automated provisioning. Furthermore,
except for a detailed study on cloud computing standardization efforts [19],
research on interoperability between cloud standards has been overlooked. Our
efforts to integrate service specifications and standards was first reported by
Cardoso et al. [20]. We concluded that the use of model-driven approaches to
transform models was too complex for large scale projects. Therefore, in this
paper we based our approach on Linked USDL [6] to achieve a more loosely
coupled and simpler alternative.

Pedrinaci et al. [21] propose the iServe platform to publish linked services,
which is a subclass of Linked USDL services representing WSDL, RESTful,
OWL-S, and WSMO services. Kirschnick et al. [22] reuse existing solutions to
install and configure software to cloud environments. In both of these works, the
question of how service offerings can trigger the remote deployment of a service
was not addressed.

Jayasena et al. [23] integrate different financial standards, such as IFX and
SWIFT, with an ontology to resolve semantic heterogeneity. This approach works
well when the standards being integrated represent similar information. Cardoso
et al. [24] follow a similar solution and add the notion of dynamic mappings to
establish relations between different specifications. Nonetheless, both achieve
limited results when overlap information is small, which is the case of USDL and
TOSCA.



While these works use a bottom-up approach, other research took a top-down
approach. For example, the Open Services for Lifecycle Collaboration (OSLC) [25]
community created specifications to prescribe how tools (e.g., requirements tools,
change management tools, testing tools, and so forth) should be implemented
and integrated to exchange data. While the approach has shown to be extremely
successful, it cannot be applied to the problem we tackle since the specifications
we integrate already exist and were developed by different organizations [19].

7 Conclusions

The emergence of cloud standards and specifications, such as USDL and TOSCA,
brings the necessity to evaluate to which extend they are interoperable. In the
presented approach we developed a prototypical platform to integrate both
specifications by modeling the description and deployment of a commercial
SaaS application: SugarCRM. The prototyping process enabled us to identify the
challenges and limitations of making USDL and TOSCA interoperable. Important
findings indicate that the use of a global service identification and description
access enables a ‘lightweight’ integration without having the need to agree on
proprietary web APIs. The multi-level and intelligent routing of service requests
allows making routing decisions on different levels of granularity (e.g., legal,
pricing, and security). The routing based on Linked USDL URIs achieves a high
performance since analysis can be made, in many scenarios, only at the URI level.
For a more advanced routing, Linked USDL descriptions can be remotely accessed.
Finally, the dynamic binding of deployment descriptors with services enables
providers to react to changing demands and workloads in a flexible manner.
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