
1IAAS, 2IPVS, University of Stuttgart, Germany
firstname.lastname@informatik.uni-stuttgart.de

OpenTOSCA – A Runtime for
TOSCA-based Cloud Applications

Tobias Binz1, Uwe Breitenbücher1, Florian Haupt1, Oliver Kopp1,2,
Frank Leymann1, Alexander Nowak1, and Sebastian Wagner1

@InProceedings{OpenTOSCA,
 Title = {{OpenTOSCA} -- A Runtime for {TOSCA}-based Cloud Applications},
 Author = {Tobias Binz and Uwe Breitenb\"{u}cher and Florian Haupt and
 Oliver Kopp and Frank Leymann and Alexander Nowak and
 Sebastian Wagner},
 Booktitle = {11th International Conference on
 Service-Oriented Computing},
 Year = {2013},
 Publisher = {Springer},
 Series = {LNCS}
}

:

Institute of Architecture of Application Systems

© 2013 Springer-Verlag.
The original publication is available at www.springerlink.com
See also LNCS-Homepage: http://www.springeronline.com/lncs

OpenTOSCA – A Runtime for
TOSCA-based Cloud Applications

Tobias Binz1, Uwe Breitenbücher1, Florian Haupt1, Oliver Kopp1,2,
Frank Leymann1, Alexander Nowak1, and Sebastian Wagner1

1IAAS, 2IPVS, University of Stuttgart, Germany
firstname.lastname@informatik.uni-stuttgart.de

Abstract TOSCA is a new standard facilitating platform independent descrip-
tion of Cloud applications. OpenTOSCA is a runtime for TOSCA-based Cloud
applications. The runtime enables fully automated plan-based deployment and
management of applications defined in the OASIS TOSCA packaging format
CSAR. This paper outlines the core concepts of TOSCA and provides a system
overview on OpenTOSCA by describing its modular and extensible architecture,
as well as presenting our prototypical implementation. We demonstrate the use of
OpenTOSCA by deploying and instantiating the school management and learning
application Moodle.

Keywords: TOSCA; Cloud Applications; Automation; Management; Portability

1 Background: TOSCA and TOSCA-based Moodle

The Topology and Orchestration Specification for Cloud Applications [4] (TOSCA) is a
new OASIS standard to describe Cloud-based applications in a portable and interoperable
way. TOSCA standardizes the description of the structure and management aspects
(i. e., deployment, operation, termination) of applications. The structure of TOSCA-
based applications is defined by a topology—a graph of typed nodes and directed
typed edges. Nodes represent components forming an application and edges define the
relations and dependencies between them. For instance, the topology of the Moodle
application (www.moodle.org) consists of the actual PHP module, an Apache Web
Server, a MySQL database, two operating systems (one for the Web server and one
for the MySQL database), and two virtual machines (Fig. 1). The relationships in this
topology define, for instance, that the Moodle application is “hosted on” a Web server
and that the application “connects to” the MySQL database. The types of nodes and
relationships specify their properties and management operations. The type “Apache Web
Server” defines properties, such as “port” or “version”, and management operations, such
as “start” or “deploy”. The actual implementation of a node is provided by one or many
Deployment Artifacts, e. g., a Linux VM image, an operating system package for the
Apache Web Server, or an archive containing the PHP files of Moodle. In addition, types
may define Implementation Artifacts that implement the management operations for the
respective element. The TOSCA topology and related artifacts are bundled into a Cloud
Service ARchive (CSAR), the standardized packaging format for TOSCA applications.

www.moodle.org

2 Binz et al.

OsApache
(OperatingSystem)

VmApache
(Server)

Apache
(ApacheWebServer)

Moodle
(WebApplication)

PhpModule
(PhpModule)

OsMySQL
(OperatingSystem)

VmMySql
(Server)

MySql
(MySqlRDBMS)

MoodleDB
(MoodleDB)

(hosted on)

(connects to)

(depends on)

Figure 1. Moodle Application Topology modeled using Vino4TOSCA [2].

TOSCA topologies can be processed by a TOSCA runtime in an imperative or
declarative way [5]: Imperative processing relies on the implementation of management
plans that can be executed fully automated to perform the desired management task,
e. g., to instantiate, backup, upgrade, or terminate an application. These high-level
management tasks are implemented by orchestrating low-level management operations
provided by Implementation Artifacts of nodes and relationships. Because management
plans are typically implemented by the application developer, they enable operators to
manage the application by running pre-defined plans without the need to understand all
the technical details of the management task [1]. Technically, management plans are
implemented as workflows. Thus, they inherit properties of workflow technology such
as traceability, recoverability, human interaction, and portability. Declarative processing,
on the other hand, shifts the deployment and management logic from plans to the runtime.
To perform the aforementioned high-level management tasks, the runtime has to know the
operations that have to be called and their order. Declarative processing is well suited for
the deployment of simple applications but is not able to facilitate complex management
tasks for various kinds of application structures. For more details, including the TOSCA
role model, we recommend the TOSCA specification [4] and TOSCA primer [5].

In summary, TOSCA provides means to describe procedures for managing applica-
tions in a standardized way that enable automated and portable processing. With more
and more applications described in TOSCA it will enable more and more applications to
be hosted in the Cloud.

2 OpenTOSCA: Architecture and Demonstration

OpenTOSCA is a runtime supporting imperative processing of TOSCA applications.
Imperative means that the deployment and management logic is provided by plans.
The key tasks of OpenTOSCA, addressed by the architecture depicted in Fig. 2, are to
operate management operations, run plans, and manage state. Requests to the Container
API are passed to the Control component, which orchestrates the different components,
tracks their progress, and interprets the TOSCA application. The Core component offers
common services to other components, e. g., managing data or validating XML.

Management operations of nodes and relationships are either provided by running
(Web) services, e. g., the Amazon EC2 API, or by Implementation Artifacts contained

OpenTOSCA – A Runtime for TOSCA-based Cloud Applications 3

in the CSAR. In the latter case, the Implementation Artifact Engine is responsible to
run these artifacts in order to make them available for plans. Implementation Artifacts,
e. g., a SOAP Web service implemented as Java Web archive (WAR), are processed
by a corresponding plugin of the engine which knows where and how to run this kind
of artifact. The plugins deploy the respective artifacts and return the endpoints of the
deployed management operations to be stored in the Endpoints database.

The management plans contained in CSARs are processed by the Plan Engine, which
also employs plugins to support different workflow languages, e. g., BPMN or BPEL,
and their runtime environments. Plans only define abstractly which kind of service they
require but not their concrete endpoints. Therefore, the corresponding plan plugin binds
each service invoked by the plan to the endpoint of the management operation before it
deploys the plan to the respective workflow runtime. The service’s endpoint was added to
the endpoint database before by the Implementation Artifact Engine. This way of binding
workflows ensures portability of management plans between different environments
and runtimes [1]. By using the Plan Portability API, management plans can access the
topology and instance information, e. g., the property values of nodes and relationships.

The plugin architecture of the Implementation Artifact Engine and Plan Engine
ensure extensibility. Portability is ensured by the two engines working together when
binding management plans. Strict separation of architectural components through well-
defined OSGi interfaces enables the replacement of implementations of components.
This also allows each component to be scaled independently.

Demonstration In the following, we demonstrate how the OpenTOSCA runtime de-
ploys CSARs and how instances of Cloud applications are created. After uploading
the CSAR to OpenTOSCA, the deployment of the TOSCA application follows three
steps: (i) First, the CSAR is unpacked and the files are put into the Files store, which is
backed either by the local file system or Amazon S3. (ii) Then, the TOSCA XML files
are loaded, resolved, validated, and processed by the Control component, which calls
the Implementation Artifact Engine and the Plan Engine. The Implementation Artifact
Engine deploys the referenced Implementation Artifacts (cf. (a) in Fig. 2) and stores their

a

b

Container API
Implementation Artifact

Runtime

Operation

Plan Portability API
Plan Runtime

Plug-Ins

Component

Ext. Systems

External APIs

Control

Datastore

Core

Admin UI
Self-Service

Portal
Modeling

Tool

Model
Instance

data
Files

End-
points

Plans

Management Plan

c

d Implementation
Artifact Engine …

Plugin

Plan Engine

Plugin

…

Figure 2. OpenTOSCA Architecture Overview and Processing Sequence.

4 Binz et al.

endpoints in the Endpoints database. (iii) Finally, the Plan Engine binds and deploys
the application’s management plans (cf. (b) in Fig. 2). The endpoints of the Moodle
management plans are stored in the Plans database.

The deployed application can be instantiated by executing the build plan of the
application. This plan is either started through the Self-Service Portal, which provides an
UI for end user access to the deployed applications, or by sending a SOAP message to it.
Credentials (e. g., for Amazon EC2) or configurations (e. g., machine size) are passed as
input message to the workflow. The Plan Portability API acts as access point for the plans
to the container. By using this API, the topology model, endpoints, and instance data,
such as properties of nodes (e. g., the port of a Web server) and relationships, can be read
and written (cf. (c) in Fig. 2). Having these data available, the build plan orchestrates
the management operations of nodes and relationships to provision and configure the
Cloud application (cf. (d) in Fig. 2). To instantiate Moodle, the build plan first starts two
virtual machines with a Linux operating system and installs Apache Web Server and
MySQL on them. Then, it uses the respective management operations to install the PHP
application, import the database schema, and establish the database connection. After
completion, a build plan may return certain information, for example, the Web address
of the deployed application instance. The Moodle build plan returns the URL of the
running Moodle instance, which includes the public URL of the virtual machine running
the Apache Web Server. This demonstration is also featured in the OpenTOSCA demo
video (online at demo.opentosca.org).

Currently, OpenTOSCA is used together with the modeling tool “Winery” [3] in the
German government-funded projects CloudCycle and Migrate! as well as in industry
and research cooperations of our institute.

Next Steps To deploy simple applications without the need to model build plans we
plan to add declarative processing of applications to OpenTOSCA. We are also working
on building a community around OpenTOSCA at www.opentosca.org.

Acknowledgments This work was partially funded by the BMWi projects CloudCy-
cle (01MD11023) and Migrate! (01ME11055). We thank Christian Endres, Matthias
Fetzer, Markus Fischer, Nedim Karaoğuz, Kálmán Képes, Rene Trefft, and Michael
Zimmermann for their help with the implementation of OpenTOSCA.

References
1. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using TOSCA. IEEE

Internet Computing 16(03), 80–85 (May 2012)
2. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA: A Visual

Notation for Application Topologies based on TOSCA. In: CoopIS (2012)
3. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – Modeling Tool for TOSCA-based

Cloud Applications. In: 11th International Conference on Service-Oriented Computing. LNCS,
Springer (2013)

4. OASIS: OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
Version 1.0 Committee Specification 01 (2013)

5. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA) Primer
Version 1.0 (January 2013)

demo.opentosca.org
www.opentosca.org

