
Institute of Architecture of Application Systems, 
University of Stuttgart, Germany

{lastname}@iaas.uni-stuttgart.de

Automated Discovery and Maintenance
of Enterprise Topology Graphs

Tobias Binz, Uwe Breitenbücher, Oliver Kopp, Frank Leymann

© 2013 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@inproceedings {INPROC-2013-50,
author = {Tobias Binz and Uwe Breitenb{\"u}cher and Oliver Kopp

and Frank Leymann},
title = {{Automated Discovery and Maintenance of Enterprise Topology Graphs}},
booktitle = {Proceedings of the 6th IEEE International Conference on Service

Oriented Computing \& Applications (SOCA 2013)},
publisher = {IEEE Computer Society},
pages = {126--134},
month = {December},
year = {2013},
doi={10.1109/SOCA.2013.29}, 

}

:

Institute of Architecture of Application Systems



Automated Discovery and Maintenance of Enterprise Topology Graphs

Tobias Binz1, Uwe Breitenbücher1, Oliver Kopp1,2, Frank Leymann1

1Institute of Architecture of Application Systems
2Institute for Parallel and Distributed Systems

University of Stuttgart, Stuttgart, Germany
lastname@informatik.uni-stuttgart.de

Abstract—Enterprise Topology Graphs (ETGs) represent a
snapshot of the complete enterprise IT, including all its applica-
tions, processes, services, components, and their dependencies.
In the past, ETGs have been applied in analysis, optimization,
and adaptation of enterprise IT. But how to discover and main-
tain a complete, accurate, fresh, and fine-grained Enterprise
Topology Graph? Existing approaches either do not provide
enough technical details or do not cover the complete scope
of Enterprise Topology Graphs. Although existing tools are
able to discover valuable information, there is no means for
seamless integration. This paper proposes a plugin-based ap-
proach and extensible framework for automated discovery and
maintenance of Enterprise Topology Graphs. The approach is
able to integrate various kinds of tools and techniques into a
unified model. We implemented the proposed approach in a
prototype and applied it to different scenarios. Due to the vital
role of discovery plugins in our approach, we support plugin
development with a systematic testing method and discuss
the lessons we learned. The results presented in this paper
enable new ways of enterprise IT optimization, analysis, and
adaptation. Furthermore, they unlock the full potential of past
research, which previously required manual modeling of ETGs.

Keywords-Enterprise Topology Graph; Enterprise IT; Discov-
ery; Maintenance; Crawling

I. INTRODUCTION

Due to the increasing importance of IT in enterprises,
there is a growing need for detailed technical insight –
especially into the dependencies between applications and
their components. Knowing which components exist, in which
configuration, and what their relations are, enables new
ways to analyze, optimize, and adapt IT. This insight is
currently often lacking, which causes problems with severe
negative impact on the business when making changes in
IT. In practice, dependencies between components are still
uncovered by “pulling the plug” of one server and analyze
the impact. To tackle this, the concept of Enterprise Topology
Graphs (ETG) as a technically fine-grained, formal, graph-
based model to depict snapshots of the complete enterprise
IT have been introduced [1]. An ETG includes all kinds of
components, from business processes and services to their
implementation and infrastructure, connected by typed edges
representing the relations between the components. ETGs
have already been applied to adapt [2], analyze [3], man-
age [4], and optimize enterprise IT, for example, by improving

the ecological sustainability of business processes [5] and
consolidating duplicate components [1]. Our current research
uses ETGs to migrate existing enterprise applications to the
Cloud [2], [6]. Migration and the other fields of application
require a depth and breadth of information not available in
a unified model before. To enable these fields of application,
the research question addressed by this paper is: How to
discover and maintain a complete, accurate, fresh, and fine-
grained Enterprise Topology Graph? Such models can be
discovered manually, but this is a time-consuming, costly, and
error-prone task [7]. Existing solutions are either restricted
to a particular scope (e. g., discovery on the level of network
[8], [9], storage [10], [11], application configuration [7],
or application [12]), focus on other aspects than analyzing,
optimizing, and adapting IT (e. g., monitoring, license man-
agement, vulnerability scanner), address a different level of
granularity (e. g., enterprise architecture documentation [3],
[13], [14]), or do not discover instance information at all
(e. g., software architecture reconstruction [15] or application
topologies in deployment automation solutions [16], [17]).
An approach covering enterprise IT from business process to
infrastructure offering an extensible framework for existing
solutions that enables developers to provide plugins has not
been created yet. In this paper, we present an approach to
automate ETG discovery and maintenance, i. e., crawling all
software and hardware components used in an enterprise’s IT
and keeping the discovered ETG up-to-date. Similar to search
engine crawlers discovering the Internet, the basic idea of
this approach is that component-specific plugins discover the
ETG. The goal is to automate most parts of the discovery
using our framework and let domain-experts define the logic
how to extract the information from the components as well
as their dependencies. Our framework orchestrates discovery
plugins, integrates information from a large variety of sources,
and reconciles data to improve the quality of the discovered
ETG. This enables the integration of existing solutions into
a unified model.

The contribution of this paper is threefold: (i) We propose
an extensible approach to discover and maintain ETGs.
(ii) To realize this approach, we present (a) an architecture,
(b) plugin framework, (c) scheduling algorithm, and (d)
concept for reconciliation (i. e., consolidation, integration,
and deduplication) based on which we implemented the



LEGEND 

PublicDNS: […] 
InstanceID: […] 
InstanceSize: m1.small 

URL: http://[...]:80/ 

SSHuser: ec2-user 
Certificate: […] 
Version: AMI 2013.03 

Version: 5.5 
Port: 3306 

[Similar to OsApache] 

[Similar to VmApache] 

dbName: moodledb 
dbUser: moodleadmin 
dbPassword: […] 

Version: 5.3.20 URL: http://[...]/moodle 

OsApache 
(OS Linux) 

VmApache 
(EC2 Server) 

WebServer 
(Apache Web Server) 

MoodleWebApp 
(MoodleWebApplication) 

PhpModule 
(PHP Module) 

depends-on 

OsMySQL 
(OS Linux) 

VmMySQL 
(EC2 Server) 

MySQL 
(MySQL RDBMS) 

MoodleDB 
(MoodleDB) 

connects-to 

Element 

Node 

Edge 

Property 

Segment 

from 

1 

* 

is-a 

properties 

to 
* * 

1 1 

Node Type 

type 

refers-to * 

* 

1 

* 

Conceptual Model 
Enterprise Topology Graph Moodle ETG instance 

parent 

child 

1 

* 

type 
1 

Edge Type 

parent 1 

* 

child 

* 

hosted-on 

Figure 1. Enterprise Topology Graph conceptual model on the left and an extracted ETG segment on the right (Node Types are depicted in parentheses
under its name, following the notation of [18]).

discovery framework. (iii) As plugins are important for a
successful discovery, we present a systematic testing method
as well as the lessons we learned while implementing plugins
for our validation. We evaluate the approach by applying it
to different scenarios.

The remainder of this paper is structured as follows: Sec-
tion II provides the fundamentals by introducing Enterprise
Topology Graphs. Our approach and framework are presented
in Section III. Section IV discusses plugin implementation
and systematic testing. We validate and evaluate our results in
Section V and discuss related work in Section VI. Section VII
concludes the paper and gives an outlook on future work.

II. ENTERPRISE TOPOLOGY GRAPHS

An Enterprise Topology Graph (ETG) [1] is a graph
capturing a fine-grained technical snapshot of the complete
enterprise IT, i. e., including all processes, services, software,
infrastructure, and Cloud offerings as nodes, as well as their
relations and dependencies as edges. Figure 1 shows the
conceptual model of ETGs on the left. The semantics of
nodes and edges are defined by types. Node Types represent
the semantic of a component, e. g., a Web service, Web
server, database, virtual machine, or network component.
Edge Types represent the semantic of the logical, functional,
and physical relationships between nodes, e. g., that a node is
hosted on another node, has a dependency, or communicates
with that other node. ETGs use the type system of the TOSCA
standard [16], which allows users to add new types, as well
as refining types through derivation. An Apache Web Server
node type, for example, is derived from the type Web Server,
connects-to is the parent of the edge types JDBC connection
and VPN tunnel. To attach further information, properties

may be attached to nodes and edges. For example, runtime
information, configuration, or implementation details. The
set of properties is defined by the element’s type.

The right-hand side of Figure 1 depicts an ETG segment
representing the school management and learning application
Moodle, which runs on a LAMP stack (Linux, Apache,
MySQL, PHP). For illustration purposes, this is only a small
extract of an ETG representing the whole enterprise IT, which
may have many thousands of nodes. The Figure shows that
the ETG is able to depict enterprise IT as decomposed, fine-
grained model, instead of a set of monolithic black boxes.

III. DISCOVERY APPROACH AND FRAMEWORK

This section presents our approach and framework for
ETG discovery. Starting from the requirements presented in
Section III-A, we introduce the approach in Section III-B and
describe the framework’s architecture in Section III-C. Sec-
tion III-D explains how the discovery plugins are scheduled
and Section III-E shows how this information is reconciled.

A. Requirements

The requirements steering our research have been identified
based on a literature study and our past works using
ETGs in different domains. In particular, Hauder et al. [19]
and Farwick et al. [20] discuss challenges for enterprise
architecture documentation, a related field of research. The
following requirements have been identified for automated
ETG discovery and maintenance:

R1: ETG Quality. The quality of the ETG is vital for
all fields of application. Therefore, the first requirement
is ensuring the quality of the resulting ETG. Based on
Batini et al. [21], Wang et al. [22], and Farwick et al. [20],



URL: http://[...]:80 

(WebServer) 

1 2 ITERATION 

deployed-on 

URL: http://[...]/app 

(Application) 

URL: http://[...]/app 

(Java Web App) 

URL: http://[...]:80 
Version: 7 

(Apache Tomcat) 

URL: http://[...]/app 

(Java Web App) 

Host: […] 

(OS) 

URL: http://[...]:80 
Version: 7.0.42 

(Apache Tomcat) 

URL: http://[...]/app 

(Java Web App) 

Host: […] 
CPU-Arch: 64-bit 

(OS Linux) 

Host: […] 

(Server) 

3 

Executed Plugin: 
• Application 

Executed Plugins: 
• ApplicationJava 
• WebServer 

Executed Plugins: 
• ApacheTomcatJMX 
• OperatingSystem 

installed-on 

URL: http://[...]:80 
Version: 7.0.42 

(Apache Tomcat) 

URL: http://[...]/app 
Status: running 
WAR: […] 

(Java Web App) 

[…] 
InstalledPackages: […] 
SSHuser: ubuntu 
Certificate: […] 

(Ubuntu Linux) 

PublicDNS: […] 
IP: […] 
InstanceID: […] 
InstanceSize: m1.large 

(EC2 Server) 

Executed Plugins: 
• ApacheTomcatHTTP 
• OSUbuntu 
• ServerEC2 

5 

Edge Types: 

hosted-on 

URL: http://[...]/app2 
Status: running 
WAR: […] 

(Java Web App) 

URL: http://[...]:80 
Version: 7.0.42 

(Apache Tomcat) 

URL: http://[...]/app 

(Java Web App) 

Host: […] 
CPU-Arch: 64-bit 
Vendor: Ubuntu 
Version: 12.04 LTS 

(Ubuntu Linux) 

PublicDNS: […] 
IP: […] 

(EC2 Server) 

4 

Executed Plugins: 
• OSLinux 
• Server 

Figure 2. Growing example ETG before and after five iterations of the discovery approach. The types of the nodes are depicted in parentheses and the
edge types with different kinds of arrows described in the legend on the left. Values too long to be depicted in this figure have been substituted by [...].

we define four criteria of ETG quality: (i) Completeness.
All components of the enterprise IT and their relations are
included in the ETG (cf. [20], [21]). (ii) Accuracy. The ETG
is correct, consistent, and does not contain more or less
components and relations than the enterprise IT (cf. [22],
consistency in [20] and [21]). (iii) Freshness. The ETG does
reflect the current state of enterprise IT (cf. actuality in [20],
currency and timeliness in [21], part of relevancy in [22]).
(iv) Granularity. The ETG represents the level of abstraction
required for the desired field of application (cf. [20]). Putting
these criteria into metrics and enable automated calculation
of each metric for a given ETG is future work.

R2: Open-world Assumption. Neither the type of compo-
nents, their configuration, and relations used in enterprise IT
in the future, nor the evolutions in processes, architecture,
software, and hardware can be predicted. Therefore, the
framework must not limit the types of components and
relations to be discovered. This is also an implication of
using TOSCA’s type system [16], which embraces the open-
world assumption by foreseeing the addition and refinement
of types. In addition, the framework must not require the
applications to be built in a certain way or use technology of
a certain vendor. This demands the approach to be extensible
and enables domain- or enterprise-specific extensions.

R3: Integration. The integration of existing information
sources, tools, and solutions must be supported (cf. challenges
DC2 and TC in [19]; requirement AR1 in [20]), because there
are existing solutions which provide valuable information
for certain parts of enterprise IT (cf. Section VI).

R4: Update. Enterprise IT changes frequently and the
ETG must reflect these changes timely to ensure up-to-date

analysis results and optimization recommendations (cf. DC3
in [19]; IR1 in [20]).

R5: Minimize Operational Impact. The plugin’s operational
impact, i. e., the additional load caused by analyzing a
production component, must be minimized (cf. DC1 in [19]).

B. Automated Discovery Approach

This section presents the iterative discovery approach
implemented by our framework. The core architectural
decision is that the discovery logic for the different types of
components and relations is provided by type-specific plugins.
A plugin can do anything to find out information about a
component or relation. Plugins have to pull information
from the respective component, because no component in
enterprise IT should be aware of the discovery framework
by pushing information to it: Enterprise IT components
pushing change events or updates to the discovery framework
would render the approach unusable for discovering existing
enterprise IT components as well as violating the require-
ments open-world assumption (R2) and minimize operational
impact (R5). Due to its extensible architecture, the framework
is able to support all kinds of protocols (HTTP, SSH, SCP,
SNMP, JMX, etc.) and is able to extract information from
all kinds of data formats (XML with different schemas,
text, property files, databases, console output, logs, etc.).
Figure 2 shows how an ETG, starting from a given node,
grows through five iterations: The application node (cf. ETG
before iteration 1 in Figure 2) is provided by the user or
another system, depending on the use case. For migration, the
entry node (i. e., the interface or endpoint of the application,
where the users engages with it) of the application to be



ETG 

Plugin 
Manager 

Discovery 
Manager 

Scheduler 

Framework 

G
U

I 
D

is
co

ve
ry

 
D

at
a 

WebServer 

OS 

… 

Existing 
Tools 

Enterprise IT 

Recon-
ciliation 

Discovery Management GUI 

ETG 
Operations 

Figure 3. Discovery Framework Architecture.

discovered and migrated must be provided. Based on this
ETG, our framework is started and in each iteration one or
more plugins are executed. The executed plugins of each
iteration are listed at the bottom of Figure 2. The WebServer
plugin, for example, is able to extract the type and version
of the Web server (iteration 2 in Figure 2). Depending on
the information the plugin is able to discover, it may change
the type, modify properties, or add new nodes and edges
to the ETG. For example, the operating system node is
created by the WebServer plugin, which, however, is not able
to determine additional information. After creating the OS
node, it is connected to the Tomcat node with an edge of
type installed-on. By using different types for edges and the
possibility to attach properties to them (not shown in this
example), rich and fine-grained semantics can be added to
the ETG. The OS Linux node gets processed in iteration 4
by the OS Linux plugin, which determines that the Linux
derivate is Ubuntu as well as its version. Therefore, the type
is changed to Ubuntu Linux to enable processing of the
OS Ubuntu plugin. The Ubuntu specific plugin then adds
information such as the installed packages in iteration 5. The
implementation of plugins is discussed in Section IV.

Plugins are able to work together by refining and extending
each other’s information, as shown before. The different
plugins are loosely coupled through the ETG and their
cooperation works solely based on the types and properties
of the nodes and edges in the ETG. This is possible because
the ETG type system defines the properties which can be
assigned to a node/edge as well as their semantics. Therefore,
one plugin knows where to store the information it discovered
and another plugins knows the meaning of a property when
processing the respective node/edge. Plugins are orchestrated
by the scheduler discussed in Section III-D.

C. Framework Architecture

The framework’s architecture (shown in Figure 3) is split
into three layers: GUI (graphical user interface), discovery,
and data. The right-hand side of Figure 3 represents the
real world enterprise IT to be discovered. The data layer
stores the Enterprise Topology Graphs as well as framework
information such as available plugins, ongoing discoveries,
and their configuration. In the discovery layer, the discovery

manager controls the overall discovery as well as the user
interactions. The actual discovery is done by the plugins
on the right hand side of Figure 3. The plugin manager
is responsible for maintaining the available plugins and
invoking them. Between the discovery and plugin manager,
the scheduler implements an algorithm deciding in which
order the plugins are invoked (cf. Section III-D). The access
to the ETG is encapsulated by the ETG Operations, which
offer basic operations such as getting, adding, editing, and
deleting nodes or edges as well as complex operations such
as subgraph isomorphism. Operations of plugins on the ETG
are reconciled (cf. Section III-E) before they are applied.

D. Scheduling

The scheduler controls the iterative discovery process
and decides when and on which ETG node a plugin is
executed. For this task, the scheduler maintains four kinds
of data: (i) Each plugin registered in the Plugin Manager
provides a list of node types it is able to process. Based
on this information, the scheduler maintains the function
compatiblePlugins which maps each type to a prioritized
(i. e., ordered) list of plugins able to process this type.
The order of the list can be configured in the framework
based on statistics or experience, e. g., to put the plugins
discovering the information required for the current use
case first. Let Types be the set of all node types and
Plugins the set of all registered plugins, then we define
compatiblePlugins : Types → 2Plugins . (ii) Plugins define
their required inputs explicitly through topology queries.
Topology queries are executed on the ETG and return nodes,
edges, or a property of a node/edge. For example, a plugin
using an SSH connection to discover information might
require the host, user name, and SSH certificate of the hosting
operating system. The topology queries are made available
to the scheduler through the function inputs: Let Queries
be the set of possible topology queries, then we define
inputs : Plugins → 2Queries . (iii) For each node and edge a
version counter is stored, which is incremented if the type or a
property of a node or edge is changed. We define the function
vc, which represents the counter values of all nodes and
edges at time t ∈ N0 as vc : N0 → (Nodes ∪ Edges → N0).
(iv) The time of the last execution of a plugin on a node
is stored in le : (Plugins ×Nodes)→ N0 ∪ {⊥}, where ⊥
states that this plugin was not executed on this node before.

In each iteration, Algorithm 1 (see next page) determines
the plugin to be executed next. The main for all loop (Line 1)
iterates over the compatible plugins of the currently processed
node type. Line 2 executes the topology queries on the ETG
to determine the values of the plugin’s inputs. Given the
query results, the plugin may decide if it is able to operate
in a meaningful way (Line 3). Plugins may, for example,
check if an input (i. e., query result) is empty or does match
the expected format or granularity. If there is no time of
last execution for this plugin on the given node (Line 6)



Algorithm 1 nextPlugin(node ∈ Nodes, t ∈ N0)

1: for all plugin ∈ compatiblePlugins(type(node)) do
2: Run all queries in inputs(plugin)
3: if plugin cannot operate on query results then
4: continue with next plugin
5: end if
6: if le(plugin,node) is ⊥ then
7: return plugin
8: end if
9: if vc(t)(node) 6= vc(le(plugin,node))(node) then

10: return plugin
11: end if
12: for all query ∈ inputs(plugin) do
13: r ← query result (node, edge, or property)
14: if vc(t)(r) 6= vc(le(plugin,node))(r) then
15: return plugin
16: end if
17: end for
18: end for
19: return ⊥

it is the next plugin to be executed (Line 7). Then it is
determined whether the node (Lines 9-10) or the plugin’s
inputs (Lines 12-17) changed since the last execution of
the plugin by comparing the version counters of the last
execution with the current version counter. If yes, the plugin
is returned and executed. The computational complexity of
Algorithm 1 is primarily tied to the number of compatible
plugins (Line 1) and secondarily to the number of queries
(Lines 2 and 12), i. e., the inputs required by the respective
plugin. Potentially, the number of compatible plugins and
queries may be arbitrarily large. However, based on our
experience, we found both numbers are usually lower than
five in practice.

Algorithm 2 does the overall discovery for the current
point in time t. If each compatible plugin was executed on
each node without discovering anything new, i. e., vc did not
change and thus ⊥ was returned, the discovery terminates.

Algorithm 2 discover()

1: while additional information has been discovered do
2: for all node ∈ Nodes do
3: if nextPlugin(node, t) 6= ⊥ then
4: execute nextPlugin(node, t)
5: end if
6: end for
7: end while

The presented scheduler is efficient, because only plugins
which might discover additional information are executed.
This is ensured through defining the plugin’s inputs and using
version counters to detect changes relevant for a plugin.

Maintaining an existing ETG (cf. requirement R4) is started
manually or periodically, because the discovery framework

is not informed about changes in enterprise IT. Our approach
observes enterprise IT from the outside, i. e., the components
are not aware of the discovery framework. Maintaining
existing ETGs uses the same plugins and scheduler as used
for the initial discovery. An update is initiated by deleting
the history of past executions (le is deleted, but not the ETG
itself), which makes the plugins run again on the respective
nodes. However, when processing an existing ETG fewer
plugin executions are required. In addition, plugins can take
additional measures to reduce the effort of their execution,
e. g., only check if the component still exists and validate if
the data changed. For example, the Tomcat plugin, which
added the installed applications to the ETG during the last
discovery, updates the ETG by checking whether the set
of installed applications changed. Based on this, it adds or
removes application nodes as well as the respective hosted-on
edges to the Tomcat node.

E. Reconciliation

Variations in naming, format, and granularity of informa-
tion discovered by different plugins, as well as duplication of
nodes and edges found by different plugins independently, re-
duces the quality of the ETG. To prevent this (cf. requirement
R1 ETG Quality in Section III-A), reconciliation consolidates,
integrates, and deduplicates data in the ETG. For example,
if the same Web service is invoked by two applications,
the resulting ETG might contain two Web service nodes,
including their whole stacks.

The basic idea of the reconciliation concept is to always
have a clean ETG and check the operations changing the ETG
whether they keep the ETG clean or not. Therefore, we have
to answer the questions: (i) How to determine the equality
of nodes and edges? (ii) How to reconcile this situation?
Benefiting from the common data model and strong typing
in the ETG, question (i) is tackled by specifying the identity
of a node or edge on a per type basis. For each type, one or
more properties are defined as identifier, similar to primary
keys in relational databases. For the Apache node in our
example (cf. Figure 1) this is the URL, i. e., host and port.
However, if the same server node is one time added with
its domain name (e. g., “example.org”) and another time
with its IP address (e. g., “1.2.3.4”), a simple identifier does
not work. One solution to determine equality would be to
resolve the domain name to an IP. Due to the open-world
assumption (cf. R2) this requires type-specific processing,
because the semantics of the nodes, edges, and properties
are type-specific. For all adding or modifying operations
on the ETG, the reconciliation components uses either the
generic identifier or, if available, the type-specific logic to
determine whether the respective node or edge is already
contained in the ETG. If a duplication has been found, the two
nodes or edges must be merged to conserve the discovered
information of the existing and the duplicate node. This
brings us to question (ii): Merging nodes or edges is done by



merging their properties, which also requires type-specific
knowledge. For example, how to merge two nodes with the
version property values “7” and “7.0.42”, which have been
discovered by different plugins? By knowing the semantics
of the properties, the second, more detailed, version number
would be selected. The type-specific logic is supplied by
Reconciliation Plugins in the reconciliation component of
the architecture (cf. Figure 3).

IV. IMPLEMENTING DISCOVERY PLUGINS

One key of the described framework are plugins dis-
covering different IT components. The framework tries
to take as much of the heavy lifting from the plugin
developer, so that the domain-expert can focus on the type-
specific logic to extract the relevant information. To simplify
the development process of plugins, this section discusses
lessons learned (Section IV-A), the implementation of a
plugin (Section IV-B), and how to test and improve plugins
(Section IV-C).

A. Lessons Learned

This section discusses the lessons we have learned while
implementing 21 plugins using Java: (i) Common function-
ality, such as making an SSH connection, downloading
files, and formatting URLs are used by many discovery
plugins and, therefore, extracted as reusable helpers. With
a growing number of helpers, the effort to create new
plugins reduces progressively. (ii) Different plugins may
determine the same information (e. g., version number) in
different granularity (e. g., Tomcat version “7” or version
“7.0.42”). For each property of a node or edge, its type
documents the syntax and semantics. This enables plugins
to overwrite the less precise value. In case it is sensible to
hold a high level and detailed representation of a property,
an additional property should be introduced. For example,
Tomcat’s compile parameters and code revision are more
precise, but cannot replace the version number. (iii) In terms
of plugin granularity, we decided to implement many small
plugins instead of monolithic blocks covering multiple types.
(iv) Our approach does not restrict how plugins gather their
information, neither the sources nor the way they are retrieved.
Based on analyzing components existing in enterprise IT
and our experience in developing plugins, we identified the
following six classes of information sources: Component
configuration, component communication, component code,
monitoring and auditing, people and documentation, and
IT/systems/datacenter management solutions.

B. Example Plugins

To show how plugins may be implemented and how
they interact, we selected the discovery of a Tomcat node
as a simple example of a well-known component. In this
example, we start with a node of type WebServer, with the
properties host (IP or domain name) and port, which have

been discovered by another plugin before. The plugin for
generic Web server sends an HTTP GET request for the root
page and analyzes the response headers. If the server header
exists and its value is known by the plugin, the type of the
node is changed respectively. The node type is changed to
Apache Tomcat in this example, because the server header was
“Apache-Coyote/1.1”. If the server property is empty or not
available (e. g., to obfuscate the type of server due to security
concerns), the plugin uses the Web server fingerprinting
tool httprint1 to find out the type. This tool is integrated by
calling it on the command line of the machine running the
discovery plugin and parsing its output (cf. requirement R3).
To determine the exact Tomcat version, installed applications,
and hosting operating system, the Apache Tomcat HTTP
plugin tries to load the server’s management and status page.
Similarly, the Apache Tomcat JMX plugin connects to the
JMX management service if the credentials are available. If
accesible using HTTP or JMX, the information is extracted
from the server’s reply and put into the properties of the
respective ETG node. The version (“Apache Tomcat/7.0.42”)
is put into the Tomcat node’s version property. For each
application, a node of type Java Web App with the property
url as well as an edge of type hosted-on to the Tomcat node
are created. Next, an operating system node is created and the
Tomcat node is hosted on this operating system by creating
the respective edge. If no further information about the
operating system is available, we use Nmap2 which also uses
fingerprinting techniques, to determine the operating system
properties type (“Linux”), vendor/derivative (“Ubuntu”), and
version (“12.04 LTS”). In the following, the created nodes
are further discovered and their information is completed by
other plugins.

C. Systematic Testing Method

The quality of the plugins is crucial to the overall utility
of the ETG and applications relying on its data. Therefore,
this section presents a systematic method to develop and
test plugins and quantify their quality (cf. requirement R1 in
Section III-A). Following the definition of a systematic test
by Ludewig et al. [23], our method has five steps: (i) Create
Test Cases. First, describe one or a set of applications in a
machine-readable format to be discovered as part of the test
case. (ii) Deploy Test Cases. To prepare the test run, the test
cases are deployed into a test environment. For testing it is,
therefore, preferable to use languages capable of automated
deployment, such as TOSCA [16], [24], CloudFormation,
or Chef. (iii) Test Discovery. In this step, the discovery
framework discovers the test application. (iv) Compare. After
the discovery has finished, the discovered ETG (i. e., the
application instances) is compared with the original topology
of the test case (i. e., the application models). Based on

1http://www.net-square.com/httprint.html
2http://nmap.org/

http://www.net-square.com/httprint.html
http://nmap.org/


this, the two test metrics recall and precision are calculated,
following their definition in data mining [25]. The recall
metric denotes the fraction of the nodes and edges in the
discovered ETG which were modeled in the test case (and
deployed). The precision metric denotes the fraction of the
properties in the discovered ETG which have been expected.
Automating the metric calculation is an open issue for future
research. (v) Evaluate. In the end, the results are analyzed
and, if the results are not sufficient, the plugins are adapted.
Afterwards, one returns to step (ii) to rerun the test and check
if the metrics were improved.

V. VALIDATION AND EVALUATION

We evaluated the discovery approach presented in this
paper in terms of feasibility and general applicability, ex-
tensibility, and economics as well as the fulfillment of the
requirements of Section III-A:

(i) Feasibility and General Applicability. To proof the
discovery approach and the framework’s feasibility and
general applicability, we discovered four scenarios of different
size (up to 1,060 nodes) from different hosting environments
(local machine, Amazon EC2, Microsoft Azure). This has
been done using 21 different kinds of discovery plugins,
ranging from EC2 Server (infrastructure) to PHP application
(software) and Active MQ (middleware) to BPEL (process).
The fact that it was possible to implement this diverse set of
plugins indicates that our approach is able to deliver on its
goal to cover a wide range of components in enterprise IT.

For plugin development we applied the systematic testing
method presented in Section IV-C with the four aforemen-
tioned scenarios as test cases. Following the testing method
we did a number of iterations to develop and improve the
plugins. Moreover, we were able to cover each scenario with
the resulting ETG being complete and accurate, according
to requirement ETG Quality (R1).

To understand the relation between the number of nodes
discovered and the discovery time, we used the largest of
our four scenarios in terms of nodes and split it into 10
equally sized segments. We did 10 test runs starting with the
discovery of the first segment and adding one segment after
each test run. Figure 4 depicts the relation of the number
of nodes in the discovered ETG (x-axis) to the discovery
time in seconds (y-axis). Although the split of the ETG
into segments was artificial, the numbers indicate that the
discovery time increases linearly with the number of nodes
in the ETG. These measurements also point out that the
discovery time, for our scenarios and the implemented set
of plugins, is in a range which seems to be well suited for
practical applicability.

Another scenario is the discovery of the school manage-
ment and learning application Moodle from a larger virtual-
ized environment to enable its migration. This is a scenario of
the German government-funded project CloudCycle3, which

3http://cloudcycle.org/en

0

50

100

150

200

250

106 212 318 424 530 636 742 848 954 1060

D
is

co
ve

ry
  t

im
e 

 [
s]

 

Number of Nodes 

Figure 4. Relation between number of nodes and discovery time.

has the goal to provide security- and privacy-aware Cloud
services for schools and to migrate their existing applications.
We have been able to discover Moodle including its complete
hosting stack in a level of detail enabling us to deploy
it in another environment. This shows that the discovery
framework is able to discover ETGs in a quality which is
suitable for the intended use cases.

(ii) Extensibility. Due to the framework’s plugin architec-
ture and the ETG’s extensible type system, our approach
is extensible and fulfills the open-world assumption (cf.
requirement R2). Plugins can do literally everything to extract
information using the capabilities of Java as well as discovery
logic invoked from within Java, for example, operating
system functionality, executables, scripts, or Web services.
We showed that existing tools, such as Nmap and httprint,
can be integrated through plugins (cf. requirement R3). The
framework ensures integration and reconciliation of the data
from different sources and, therefore, maintains the ETG’s
quality (cf. requirement R1).

(iii) Economics. The goal of reducing IT operation cost is
facilitated by automating a former manual, time-consuming,
and error-prone task [7]. Our approach separates concerns
between the discovery framework covering the tasks which
can be automated and domain experts developing plugins.

VI. RELATED WORK

In contrast to Enterprise Architectures (EA) [26], ETGs
are technically fine grained models, i. e., address a different
perspective on enterprise IT. The information captured
in Enterprise Architecture Management (EAM) is often
modeled manually, which is a time-consuming and error-
prone task, and techniques to analyze these models are
rather informal [26]. Thus, we focus in the following on the
research to automate EA documentation, which is concerned
with the creation of EA models. Hauder et al. [19] defines
the research challenges in this field, which are reflected
by the requirements of our approach. Farwick et al. [27]
presents organizational processes to discover and maintain
EAs. Buschle et al. [13] map the network scan output of the
vulnerability scanner Nexpose onto the technology layer of
an EA model. Our approach has more depth and breadth in

http://cloudcycle.org/en


discovery because it covers the complete enterprise IT from
infrastructure to processes (cf. ETG in Section II), discovers
relations not visible in a network scan, and integrates data of
different solutions as well as additional discovery logic via
plugins. In [3], we showed how EA and ETG complement
each other: Strategic IT decisions are made based on the EA
and the technical realization is done using ETGs.

Software Architecture Reconstruction (SAR) has the goal
to determine the architecture of a given software, in con-
trast to our broader scope to discover runtime information
and relations between different software and infrastructure
components. A state of the art, including a taxonomy and
definition of SAR, is provided by Ducasse and Pollet [15].

Network-based discovery is applied for inventory and
asset management, for example, while creating IT outsourc-
ing contracts or to determine license numbers. Network
information is used, for example, by Kind et al. [8] or
Chen et al. [9] to extract traffic dependencies based on
network package contents and timing. Other approaches
exist for specific domains of enterprise IT, for example, by
Joukov et al. for Java EE applications [12] and storage [10].
Galapagos [11] is a template-based approach focusing on
mapping the data dependencies and storage locations of
application data. There exists a multitude of tools to extract
information about a certain operating system or machine, we
are naming only a few here: Httprint and Nmap have already
been integrated in our framework to enable identification of
Web servers and operating systems, find open ports of running
services, and so on. From Linux’s proc4 file system, various
system information can be read. Multi-platform tools like
Opscode Ohai5 or Puppet Labs Facter6 offer only a subset of
information but across different platforms. Menzel et al. [28]
use Ohai to extract the configuration (e.g., installed packages)
of Amazon EC2 virtual machine images. On the other hand,
network and systems monitoring solutions such as Nagios7 or
Zenoss8 provide additional valuable information. The number
of solutions providing information for particular aspects or
classes of components points out the need to integrate and
consolidate them, as we demonstrated with two examples.

A generic discovery framework for technical details, aimed
at analyzing variations in the application configuration, is
discussed by Machiraju et al. [7]. It uses template models
representing the structure and properties of the application as
well as how to retrieve them. The discovered model is used to
analyze variations in the configuration of the application in-
stances to simplify installation and customization. Ritter [29]
presents an approach to discover the business network built
on the IT, but not reflecting the technical level in depth.

4https://www.kernel.org/doc/Documentation/filesystems/proc.txt
5http://docs.opscode.com/ohai.html
6http://puppetlabs.com/puppet/related-projects/facter/
7http://www.nagios.org/
8http://www.zenoss.org/

Similarly to our approach, TADDM9 uses agent-less discovery
to create an application topology and provides analytics
functionality based on this data. However, TADDM only
detects few well-known enterprise software packages [28]
and requires templates to discover business applications. A
study at our institute [30] evaluated 20 commercial and open-
source products/tools for enterprise topology discovery and
related fields. An approach, like ours, covering enterprise IT
from business process to infrastructure offering an extensible
framework for existing solutions and enabling developers to
provide plugins has not been published.

VII. CONCLUSIONS

The lack of an automated way to discover Enterprise
Topology Graphs (ETG) causes a lack of insight into the
enterprise IT. This might lead to wrong decisions, resulting
in problems with severe negative impact on the business. In
this paper, we proposed an approach to discover and maintain
ETGs which help to adapt, analyze, and optimize enterprise
IT. The presented approach enables the integration of existing
tools into a unified model by reconciling information of
different sources. We implemented a framework realizing
the approach and 21 discovery plugins. We validated and
evaluated our results by discovering four scenarios. In the
future, we envision the application of ETGs in the field of due
diligence, compliance, and analysis in general. Automating
the discovery of ETGs, as presented in this paper, enables
the efficient usage of the previously presented and future
fields of application.

ACKNOWLEDGMENTS

This work was partially funded by the BMWi project
CloudCycle (01MD11023). The authors thank Jakob Krein
for his part in the implementation.

REFERENCES

[1] T. Binz, C. Fehling, F. Leymann, A. Nowak, and D. Schumm,
“Formalizing the Cloud through Enterprise Topology Graphs,”
in Proceedings of 2012 IEEE International Conference on
Cloud Computing, 2012.

[2] V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch, “How
to adapt applications for the Cloud environment,” Computing,
Springer, December 2012.

[3] T. Binz, F. Leymann, A. Nowak, and D. Schumm, “Improving
the Manageability of Enterprise Topologies Through Seg-
mentation, Graph Transformation, and Analysis Strategies,” in
Proceedings of 16th IEEE International Enterprise Distributed
Object Computing Conference, September 2012.

[4] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-
based Runtime Management of Composite Cloud Applications,”
in Proceedings of the 3rd International Conference on Cloud
Computing and Service Science. SciTePress, 2013.

9http://ibm.co/K9IDni

https://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://docs.opscode.com/ohai.html
http://puppetlabs.com/puppet/related-projects/facter/
http://www.nagios.org/
http://www.zenoss.org/
http://ibm.co/K9IDni


[5] A. Nowak, T. Binz, F. Leymann, and N. Urbach, “Determining
Power Consumption of Business Processes and their Activities
to Enable Green Business Process Reengineering,” in Proceed-
ings of 17th IEEE International Enterprise Distributed Object
Computing Conference, September 2013.

[6] T. Binz, F. Leymann, and D. Schumm, “CMotion: A Frame-
work for Migration of Applications into and between Clouds,”
in Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, 2011.

[7] V. Machiraju, M. Dekhil, K. Wurster, P. Garg, M. Griss, and
J. Holland, “Towards generic application auto-discovery,” in
Proceedings of IEEE/IFIP Network Operations and Manage-
ment Symposium, 2000.

[8] A. Kind, D. Gantenbein, and H. Etoh, “Relationship discovery
with netflow to enable business-driven it management,” in
Proceedings of Business-Driven IT Management, 2006.

[9] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl, “Automating
network application dependency discovery: Experiences, limi-
tations, and new solutions,” in Proceedings of USENIX Sym-
posium on Operationg Systems Design and Implementation,
2008.

[10] N. Joukov, B. Pfitzmann, H. V. Ramasamy, and M. V.
Devarakonda, “Application-Storage Discovery,” in Proceedings
of the 3rd Annual Haifa Experimental Systems Conference.
ACM, 2010.

[11] K. Magoutis, M. Devarakonda, N. Joukov, and N. G. Vogl,
“Galapagos: Model-driven discovery of end-to-end application-
storage relationships in distributed systems,” IBM Journal of
Research and Development, vol. 52, no. 4.5, 2008.

[12] N. Joukov, V. Tarasov, J. Ossher, B. Pfitzmann, S. Chicherin,
M. Pistoia, and T. Tateishi, “Static Discovery and Remediation
of Code-Embedded Resource Dependencies,” in Proceedings
of IFIP/IEEE Symposium on Integrated Network Management,
2011.

[13] M. Buschle, H. Holm, T. Sommestad, M. Ekstedt, and
K. Shahzad, “A tool for automatic enterprise architecture
modeling,” in IS Olympics: Information Systems in a Diverse
World. Springer, 2012, vol. 107.

[14] M. Farwick, R. Breu, M. Hauder, S. Roth, and F. Matthes,
“Enterprise architecture documentation: Empirical analysis
of information sources for automation,” in 46th Hawaii
International Conference on System Sciences, 2013.

[15] S. Ducasse and D. Pollet, “Software architecture reconstruc-
tion: A process-oriented taxonomy,” IEEE Transactions on
Software Engineering, vol. 35, no. 4, 2009.

[16] OASIS, Topology and Orchestration Specification for Cloud
Applications Version 1.0 Committee Specification 01, March
2013. [Online]. Available: http://docs.oasis-open.org/tosca/
TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

[17] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann,
A. Nowak, and S. Wagner, “OpenTOSCA – a runtime for
TOSCA-based cloud applications,” in ICSOC, ser. LNCS, vol.
8274. Springer, 2013.

[18] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and
D. Schumm, “Vino4TOSCA: A Visual Notation for Applica-
tion Topologies based on TOSCA,” in Proceedings of the 20th

International Conference on Cooperative Information Systems,
2012.

[19] M. Hauder, F. Matthes, and S. Roth, “Challenges for automated
enterprise architecture documentation,” in Trends in Enterprise
Architecture Research and Practice-Driven Research on En-
terprise Transformation. Springer, 2012.

[20] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and
I. Hanschke, “Requirements for automated enterprise architec-
ture model maintenance - a requirements analysis based on
a literature review and an exploratory survey.” SciTePress,
2011.

[21] C. Batini and M. Scannapieco, Data Quality: Concepts,
Methodologies and Techniques (Data-Centric Systems and
Applications). Springer, 2006.

[22] R. Y. Wang and D. M. Strong, “Beyond accuracy: What data
quality means to data consumers,” Journal of Management
Information Systems, 1996.

[23] J. Ludewig and H. Lichter, Software Engineering: Grundlagen,
Menschen, Prozesse, Techniken. Dpunkt.Verlag GmbH, 2010.

[24] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable
Cloud Services Using TOSCA,” IEEE Internet Computing,
vol. 16, no. 03, May 2012.

[25] D. L. Olson and D. Delen, Advanced Data Mining Techniques.
Springer, 2008.

[26] K. Winter, S. Buckl, F. Matthes, and C. M. Schweda,
“Investigating the state-of-the-art in enterprise architecture
management method in literature and practice,” in Proceedings
of Mediterranean Conference on Information Systems, 2010.

[27] M. Farwick, B. Agreiter, R. Breu, S. Ryll, K. Voges, and
I. Hanschke, “Automation processes for enterprise architecture
management,” in Proceedings of 15th IEEE International En-
terprise Distributed Object Computing Conference Workshops.
IEEE Computer Society, 2011.

[28] M. Menzel, M. Klems, H. A. Lê, and S. Tai, “A configuration
crawler for virtual appliances in compute clouds,” in IEEE
International Conference on Cloud Engineering, März 2013.

[29] D. Ritter, “From network mining to large scale business
networks,” in Proceedings of the 21st International Conference
Companion on World Wide Web. ACM, 2012.

[30] S. Bahle, C. Endres, and M. Fetzer, “Evaluierung von Ansätzen
zur Identifizierung und Ermittlung der Enterprise IT in
Forschung und Produkten,” Student Report 178, Software
Engineering, University of Stuttgart, June 2013.

All links were last followed on October 8, 2013.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

