
1Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{fehling, leymann}@iaas.uni-stuttgart.de

2Clausthal University of Technology,
Clausthal-Zellerfeld, Germany

stefan.t.ruehl@tu-clausthal.de

3T-Systems International GmbH,
Frankfurt, Germany

{marc.rudek, stephan.verclas}@t-systems.com

Service Migration Patterns - Decision Support and Best
Practices for the Migration of Existing Service-based

Applications to Cloud Environments
Christoph Fehling1, Frank Leymann1, Stefan T. Ruehl2, Marc Rudek3, Stephan Verclas3

© 2013 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{FehlingLRR2013,	
	 	 author	 	 	 	 =	 {Christoph Fehling and Frank Leymann and Stefan T. Ruehl and Marc

 Rudek and Stephan Verclas},	
	 	 title	 	 	 	 	 =	 {Service	 Migration	 Patterns	 -‐	 Decision	 Support	 and	 Best	 Practices	 	

	 	 for	 the	 Migration	 of	 Existing	 Service-‐based	 Applications	 to	
	 	 	 Cloud	 Environments},	

	 	 booktitle	 =	 {Proceedings	 of	 the	 6th	 IEEE	 International	 Conference	 on	 Service	
	 	 Oriented	 Computing	 and	 Application	 (SOCA)},	

	 	 year	 	 	 	 	 	 =	 {2013},	
	 	 pages	 	 	 	 	 =	 {9-‐-‐16},	
	 	 doi	 	 	 	 	 	 	 =	 {10.1109/SOCA.2013.41},	
	 	 publisher	 =	 {IEEE	 Computer	 Society}	
}	

:

Institute of Architecture of Application Systems

Service Migration Patterns
Decision Support and Best Practices

for the Migration of Existing Service-based Applications to Cloud Environments

Christoph Fehling, Frank Leymann
Institute of Architecture of Application

Systems – University of Stuttgart
Stuttgart, Germany
{fehling, leymann}

@iaas.uni-stuttgart.de

Stefan T. Ruehl
Clausthal University of Technology

Clausthal-Zellerfeld, Germany
stefan.t.ruehl@tu-clausthal.de

Marc Rudek, Stephan Verclas
T-Systems International GmbH

Frankfurt, Germany
{marc.rudek, stephan.verclas}

@t-systems.com

Abstract— In many ways cloud computing is an extension of
the service-oriented computing (SOC) approach to create
resilient and elastic hosting environments and applications.
Service-oriented Architectures (SOA), thus, share many
architectural properties with cloud environments and cloud
applications, such as the distribution of application functionality
among multiple application components (services) and their
loosely coupled integration to form a distributed application.
Existing service-based applications are, therefore, ideal
candidates to be moved to cloud environments in order to benefit
from the cloud properties, such as elasticity or pay-per-use
pricing models. In order for such an application migration and
the overall restructuring of an IT application landscape to be
successful, decisions have to be made regarding (i) the portion of
the application stack to be migrated and (ii) the process to follow
during the migration in order to guarantee an acceptable service
level to application users. In this paper, we present best practices
how we addressed these challenges in form of service migration
patterns as well as a methodology how these patterns should be
applied during the migration of a service-based application or
multiples thereof. Also, we present an implementation of the
approach, which has been used to migrate a web-application
stack from Amazon Web Services to the T-Systems cloud
offering Dynamic Services for Infrastructure (DSI).

Keywords—SOA; cloud; migration; compliance

I. INTRODUCTION

Many companies evaluate the migration of existing
applications to cloud environments for reasons such as the
ability to scale resources flexibly [24] [18] and pay for
resources on a pay-as-you-go basis [28] [20]. To benefit from a
cloud, an application, however, has to respect the properties of
this powerful environment in its architecture and its runtime
operation. Newly developed cloud applications and existing
applications to be migrated should, therefore, display certain
architectural properties. In the following, we will cover the
properties of cloud environments, derive architectural
principles to be followed by cloud applications, and show that
these cloud architectural principles are also predominant in
service-based applications following the Service Oriented
Computing (SOC) approach [5] [6] [9]. Therefore, we show the
similarities between service-based applications and cloud-
based applications by mapping their architectural principles to
motivate that existing service-based applications are ideal

candidates for a migration to a cloud environment. The
remainder of this document is structured as follows. Section II
describes the migration methodology we followed to move
existing application to the cloud. Section III covers the
mapping of architectural principles between SOC and cloud
computing. Section IV covers best practices that we identified
during the migration of existing applications in the form of
patterns. A pattern in this scope is a document (or document
section) following a certain format to capture a good solution
to a reoccurring problem. Section V describes an evaluation
scenario as customer applications landscapes from which the
best practices have been deducted are mostly confidential. This
scenario serves as a live demonstration showcase in the
T-Systems Innovation Center1 and describes the application of
the migration methodology and migration patterns. Section VI
then covers related work and Section VII concludes the paper
by summarizing our findings and future work.

II. MIGRATION METHODOLOGY

T-Systems‘ Cloud Readiness Services2 provide a consulting
service for the identification of cloud usage scenarios in
enterprises, the evaluation of existing application landscapes,
and the strategic restructuring of IT to use cloud computing.
The overall process followed by this consulting service is
displayed in Figure 1. In the initial scoping phase, the strategic
motivation of customers to use cloud computing are evaluated.
Motivation, constraints, and strategic goals are collected in
workshops and discussions. In the following CMO (current
mode of operation) survey, data about existing applications and
their management is collected to identify applications suitable
for a cloud migration. This analysis includes a detailed
evaluation of legal and corporate regulative restrictions as well
as an architectural analysis to estimate necessary changes in the
application. In this paper, we provide architectural properties
in Section III that proved relevant for a successful migration of
applications to a cloud environment. Especially, we found that
service-based applications share key architectural principles
with cloud applications making them ideal migration
candidates. Finally, the cloud readiness services include a

1 http://www.t-systems.com/solutions/dynamic-services-for-infrastructure-
computing-power-at-the-push-of-a-button/998132

2 http://www.t-systems.com/solutions/analyze-your-start-in-the-cloud-t-
systems/760004

The work published in this article was partially funded by the Co.M.B.
project of the Deutsche Forschungsgemeinschaft (DFG) under the
promotional reference SP 448/27-1.

strategic FMO (future mode of operation) design phase to
determine how a company using cloud computing operates IT
in the future. In this paper, we provide best practices that we
followed to transform the current mode of operation to the
future mode of operation using cloud computing. We capture
these best practices in the form of patterns, which are
documents following the well-defined pattern format
introduced in [12] [4] [3].

Figure 1: Phases of the Migration Methodology and
Supporting Content provided by this Paper

III. ARCHITECTURAL PRINCIPLES OF SOC AND CLOUDS

When following the service-oriented computing (SOC)
paradigm, resulting service-oriented architectures (SOA)
display architectural properties that show a significant overlap
to architectural properties required by cloud applications. We
first cover the architectural properties of these two computing
paradigms and then show that the evident overlap makes
service-based applications suitable for the migration to clouds.

A. Architectural Principles of Service-based Applications

According to Krafzig [6], a service-oriented Architecture is
based on four abstractions: 1. Application Frontends:
graphical user interfaces or business processes [11] that control
the service-based applications. These components may use
services, thus, orchestrating provided functionality to support a
business task, such as, handling loan approvals or stock trades.
2. Services: services are functionality of an organizational unit
of a company [9] [21] offered to other companies or
departments. A service may be accessed through multiple
interfaces. In addition to interfaces and an implementation, a
service is also constituted by a service contract describing its
function and behavior. 3. Service Repository: service-
consumers may discover services from the service-repository
based on service-contracts as well as additional information,
such as the physical location of the service, usage fees, and
service levels. 4. Service Bus: connectivity between the
service-consumer and the enacted service is realized by an
(enterprise) service bus. It serves as an intermediary to reduce
the assumptions communication partners have to make about
one another, such as location, availability, or used data format.

B. Properties of Cloud Environments

The NIST cloud definition [20] is a widely accepted
description of cloud environments. It gives four properties that
a cloud commonly displays. These environment properties then
lead to architectural properties of a cloud application.
1. On-demand self-service: customers can access offered
services on their own without the help of a human sales agent
etc. This is often realized through a Web-based user interface
or an application programming interface (API). 2. Broad

network access: the cloud services are connected to the
customer networks with a significantly powerful network
making the performance perceived by customers independent
of the physical location of data centers. 3. Resource pooling:
IT resources used by a cloud provider are shared between
customers to leverage economies of scale. This sharing also
enables a flexible use of the service as resources that are no
longer needed by one customer can be used to serve different
customers. 4. Rapid elasticity: through resource pooling and
self-service interfaces, the flexible use of the shared cloud
environment enables customers to provision and decommission
resources very quickly. 5. Measured service: the use of a
cloud is measured by the provider to enable a transparent
billing for customers often purely based on the actual use.

The NIST also defines three service models –
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Cloud deployment
models are described as private clouds, public clouds,
community clouds, and hybrid clouds. As these characteristics
of a cloud environment have fewer impact on the architectural
principles of cloud-based applications, we do not cover them in
detail. Refer to [20] and [4] for additional information.

C. Architectural Principles of Cloud Applications

In [4], we identified properties in existing cloud
applications that enable them to benefit from clouds.
1. Isolated state: a cloud application should handle session
state – state of the interaction with human users and
application state – data handled by the application in as few
application components as possible. Most cloud providers
suggest handling state in communication offerings, i.e.,
messages or provider-supplied storage making application
components stateless3 [16]. 2. Distribution: clouds are large
distributed systems. Cloud applications should respect this by
distributing functionality among multiple components. This
enables the application to scale components independently and
to rely on multiple distributed resources for resiliency.
3. Elasticity: the cloud application has to support that cloud
resources may be provisioned and decommissioned flexibly.
The isolation of state is closely related to this property as the
addition and removal of resources is significantly simplified if
no state information has to be extracted or synchronized. 4.
Automated Management: manual changes to resource
numbers are commonly not reactive enough to effectively
benefit from usage-based billing supported by clouds. Also,
cloud providers often do not assure availability for individual
resources 4 suggesting automated failure handling. 5. Loose
Coupling: the dependencies among distributed application
components constituting a cloud application should be reduced.
This also eases the elastic scaling of the cloud application and
simplifies coping with failures.

D. Mapping of SOC and Cloud Architectural Principles

While state isolation is not explicitly required in a SOA, we
found that it is often enabled as services expect session state to

3 http://www.windowsazure.com/en-us/develop/net/fundamentals/intro-to-

windows-azure/
4 http://aws.amazon.com/ec2-sla/; http://www.windowsazure.com/en-

us/support/legal/sla/

be provided with each request and encapsulate the application
state of the service-based application. Modularity and the
resulting distribution of application functionality among
multiple components (services) is also inherent to every SOA,
as services form encapsulated entities. The application frontend
of a SOA is an additional special component that orchestrates
other components. This form of application decomposition has
been described as process-based decomposition in [4]. Loose
coupling is an architectural property that is native in both
service-based architectures and cloud application architectures.
It especially shows the strong cohesion of both paradigms and
is the reason why cloud computing is often perceived as having
evolved from SOC [10] [7]. The two remaining cloud
application properties, automated management and elasticity
are not directly visible in every SOA. Automated management
is often part of a service implementation as it operates
independently and has to display an always-on behavior, thus,
creating the need for automatic scaling and failure resiliency.
The service registry is related to the elasticity of cloud
applications as it may serve as a coordinator for multiple
instances of a service that are provisioned and decommissioned
when an application is scaled elastically. To summarize, the
application components (services) and how they handle state
are clearly defined in a service-based application. Loose
coupling is inherent to both architectural paradigms and the
basis for automated management and elasticity of a cloud
application is also realized in a SOA. Due to these similarities,
service-based applications have been targeted for the migration
to clouds in multiple projects of T-Systems. As the discussed
migration methodology can also be applied to other
applications that do not have a service-oriented architecture,
we use the term “component” in the following to denote a part
of the application that shall be migrated. In scope of a SOA,
these application components take the form of services.

IV. MIGRATION PATTERNS

After the current mode of operation survey has found
applications that are suitable for a cloud migration, it is time to
perform this migration. We captured the following patterns
describing best practices to follow during this migration. Each
section is formatted equally: a pattern has a name and an icon
to be used in architectural diagrams (see evaluation in Section
6 for a demonstration). A pattern starts by summarizing its
complete intent. Then, the question answered by the pattern is
given followed by a description of the context in which the
problem is observed. A solution is given describing how the
problem is solved. It is supported by a sketch or an abstract
process in BPMN [23]. More detail and problems possibly
arising after the application of a pattern are given in the result
section. Each pattern is concluded by a list of known uses.

A. Migration Target
Applications are migrated at a layer of the application stack that is
completely controlled by the migrating company. It should be the
highest possible layer supported by the cloud provider and the highest
common denominator when migrating multiple applications.

How can the optimal portion of the application
stack to be migrated be determined?

Context: considering dependencies of an application on its
hosting environment is critical for a successful migration.
Dependencies mostly arise from the hosting infrastructure and
other services that an application interacts with. A hypervisor
[26] [25], for example, hosts an application as a virtual server.
It may then require certain drivers and software to be installed
in the virtual server that are incompatible with the target
environment. Regarding other services that an application
interacts with, one differentiates between operating support
services (OSS) and business support services (BSS). OSS are
necessary for the correct functioning of an application, for
example, by providing operating system patches or anti-virus
software. BSS are used to integrate an application in billing
processes, reporting processes etc., for example, if use of the
application shall be charged to departments or customers.
Solution: the application is migrated at a level of the
application stack that is controlled completely by the migrating
company as seen in Figure 2. The remainder of the stack is
recreated in the target environment.

Physical Hardware

Operating Systems

Middleware

Virtual Hardware

Application Software

Business Processes

Figure 2: Migration Target in an Exemplary Stack

Result: the application stack is analyzed to determine
dependencies on OSS and BSS functionality as well as on
provider-supplied infrastructure and middleware. For each
dependency, it is determined whether it is needed in the target
environment and if so whether it can be migrated or be made
accessible. The application stack is, therefore, likely to change
during the migration. Even though recent industry standards
such as OVF [8] have introduced standardization to the format
of server images, migrations based on server images will, thus,
have to consider the installed software and the application
functionality. If servers hosting applications are inaccessible,
this becomes especially apparent, as applications rely on
provider-supplied functionality and this functionality cannot be
extracted from the origin environment at all.
Known Uses: Savvis [15] suggests the bottom-up
consideration of layers in the OSI model [14] to determine the
impact of the migration. This is used to identify a suitable
migration target. Menzel and Ranjan [19] describe a decision
support system for the selection of cloud providers based on
the dependencies on provider-supplied services. Tran et al. [30]
compute the complexity of migrations using a metric for
connectivity, code adjustments, installation, configuration, and
database adjustments. This metric can be computed to compare
the complexity of different migration targets. Frey and
Hasselbring [27] introduce a model for cloud environment
constraints in order to describe dependencies of applications on
the provider estimating migration complexity.

B. Forklift Migration
Access to an application component is stopped. The component is
then extracted from the origin environment and afterwards deployed
in the target environment. During the transition, the component is,
thus, temporarily unavailable.

How can applications or application components
that may experience some downtime be migrated?

Context: applications and their components are considered to
be hosted on an elastic platform [4] providing a managed
hosting environment or an elastic infrastructure [4] providing
virtual servers managed by customers. These provider-supplied
cloud offerings provide a runtime environment to which
applications may be deployed. Applications may also access
provider-supplied middleware services for communication and
data storage. According to the cloud service models employed
by these environments – Infrastructure as a Service and
Platform as a Service, respectively – the functionality used to
manage the application is provided through a self-service
interface or an API. Such an elastic platform or elastic
infrastructure may pose the origin and target environment in
scope of the migration of applications and their components.
Alternatively, environments that do not display cloud
computing properties may be target or origin of the migrated
application. In this case, the migration process may include
manual tasks. A critical aspect of migrating application
components is that the migration itself can mostly not occur
instantly but will take some time. This migration time
subsumes the time it takes for the required middleware and
runtime environment used by the application to be provisioned
in the target environment as well as the time it takes the
application itself to be deployed. Ensuring availability of the
application during the migration time can be problematic and
complex to ensure, because it means that the application has to
be kept available in the origin environment while it is being
extracted and then provisioned in the target environment.
Therefore, if the application is accessed during the migration
its session state – the state of the interaction with users and
application state – the data handled by the application may
change in the origin environment. This change will then have
to be reflected in the target environment. However, it may be
acceptable to have a certain time of unavailability.
Solution: state changes during the migration time are avoided
by disabling access to the application during the migration,
thus, making it unavailable for that period. The application is
then extracted from the origin environment and provisioned in
the target environment after which access is re-enabled.
Result: the application components are migrated from the
origin to the target environment through interaction with the
management interfaces offered by the elastic infrastructure or
elastic platform as depicted in Figure 3. This migration
includes the following steps. First, access to the application
component is stopped by reconfiguring provider-supplied
functionality, for example, load balancers, name-resolution, or
access rules. Then, a snapshot of the running application
component is created. This snapshot captures the current state
of the application component. In case of a stateless application
component, this step may be unnecessary as component
instances are often provisioned based on snapshots and the

stateless component does not have an internal state that could
change during runtime. After the extraction, the component in
the origin environment is decommissioned. In parallel to these
two steps, the application stack identified as migration target is
recreated in the target environment. Finally, the extracted
component image – the components implementation and
internal state is deployed on this recreated application stack
and access is re-enabled.

Figure 3: Forklift Migration Process

Known Uses: Savvis [15] describes the forklift migration of
physical servers between different data center locations.
Varia [17] covers forklift migration for self-contained web
applications, applications whose components have a high level
of interdependencies, and applications with few dependencies
on other applications in the landscape, such as backup and
archiving. Therefore, forklift migration is suggested for
applications that do not need low latency interconnectivity with
the remaining application landscape.

C. Stateless Component Swapping
Stateless application components are extracted from one environment
and deployed in another. They are active in both environments during
the migration from the origin environment to the target environment,
then, the old component instances are decommissioned.

How can stateless application components that must
not experience downtime be migrated?

Context: in many business cases, the downtime of an
application or one of its components is inacceptable. This may
be the case for customer-facing websites or crucial company-
internal applications. For example, a reduction in response time
by the Amazon website of only 100 ms was found to result in
1% revenue loss [13]. A stateless application component shall,
therefore, be migrated transparently to the accessing entity –
human user or other applications. Again, “stateless” means that

the application component does not handle an internal session
state – state of the interaction with users or application state –
data handled by the application. State is commonly provided
with each requests or kept in provider-supplied storage.
Solution: application component instances are first extracted
from the origin then provisioned in the target environment.
They are active concurrently. Access to the component
instances is then switched immediately using a load balancer.

Decommission
Component

Origin
Environment

Stateless Component Swapping
Process

Target
Environment

Extract
Component

stack config

component
image

Recreate
Application

Stack

Provision
Component

component
image component

image

Configure
Load Balancing

Figure 4: Stateless Component Swapping Process

Result: after extraction and provisioning the stateless
component instances operate in both environments
simultaneously as seen in Figure 4. The application stack is
recreated according to the migration target pattern. Commonly,
this is done by providing the target environment with the
required configuration, for example, to provision a server
image containing the required middleware. Application
component instances in both environments rely on the same
external storage offerings or other stateful application
components to handle the application state. Session state is
commonly sent with requests, thus, enabling component
instances in both environments to handle requests in a unified
fashion. The switch between component instances in the origin
environment and the target environment is performed by
reconfiguring the load balancer handling accesses to the
instances. This could be a DNS-based load balancer, provider-
supplied functionality, or special hardware.
Known Uses: Amazon describes the migration of an existing
batch-processing application for media data to the Amazon
AWS cloud in [1]. In this scenario, the application components
handling media conversion are stateless as they retrieve a
media file from storage, process it, and persist it again. The
location of files to process is sent to these components using
messaging. The stateless component migration is realized in
this scope by provisioning media conversion components in
both environments that rely on the same storage. Then, the
component instances in the origin environment are

decommissioned. Walberg describes a similar staged migration
approach to move an existing Linux application to the Amazon
cloud5. Again, multiple Web servers rely on the same external
storage during and after the migration enabling them to be
migrated transparently to application users.

D. Database Swapping
Stateful databases are active in both origin and target environments
during the migration. Handled data is kept in sync using hot-standby
functionality provided by the database middleware.

How can a database handling application state be
migrated if it may not experience downtime?

Context: as is the case for stateless component swapping,
some application components may not experience a downtime
during the migration for various reasons. However, if these
application components handle state, a uniform behavior must
be displayed by application component instances during the
migration. Database management systems (DBMS) commonly
provide means to replicate data to standby systems for
redundancy and failure resiliency purposes. This functionality
shall be used to enable a transparent migration.
Solution: data handled by the database in the origin
environment is extracted and provisioned in the target
environment. Synchronization between these instances is
enabled using DBMS hot standby functionality. After the
database in the origin environment is no longer accessed it is
decommissioned.

Decommission
Database

Origin
Database

Database Swapping Process
Target

Environment

Extract
Data from

DBMS

stack config

tabe-based
data

Recreate
Application

Stack

Provision
Data

table-
based data

Configure
Database Sync

Origin
Environment

Target
Database

Figure 5: Database Swapping Process

Result: the extraction and recreation of the application stack
depicted in Figure 5 is handled similar to the stateless
component swapping pattern. However, note that the extraction

5 http://www.ibm.com/developerworks/library/l-migrate2cloud-1/

accesses the database in the origin environment and not the
environment itself. This data is then added to the newly
provisioned database instance in the target environment. The
standby functionality of the database management systems is
configured which allows both database instances to be active
simultaneously and display an equal behavior. The migration
does not rely completely on the database sync as the initial data
extraction and insertion is commonly quicker and less error-
prone. Sync functionality is then only required to update the
data that changed during the migration of the initial extraction.
The switchover between the origin database and the target
database is then performed by reconfiguring the application
components accessing the databases. This is either done by
changing the configuration of the accessing components
directly or by provisioning new reconfigured component
instances – possibly also in a different environment. This time
required to reconfigure other application components is
depicted as a timer event in Figure 5 for which the database
migration process is inactive. It may be replaced by a message
event in case the database swapping process shall be triggered
explicitly after the migration of other application components.
Know Uses: many major database management systems, such
as MySQL 6 , ProstgreSQL 7 , IBM DB2 8 , and Oracle 11g 9
support the replication of handled data to hot standby systems,
thus, the database swapping pattern may be realized using
these products.

E. Hypervisor Swapping
Stateful components are active in both origin and target environments
during the migration. Handled data is kept in sync using storage area
network (SAN) synchronization functionality, so that hypervisors can
ensure the immediate switch of a virtual server.

How can application components using virtual
servers be migrated if they may not experience
downtime?

Context: as is the case for the two previous patterns some
application components may not experience a downtime during
the migration for various reasons. If state is not handled in
databases but is stored on local file systems, the
synchronization functionality of database management systems
cannot be used to synchronize state as was the case for
database swapping. Virtualization, however, enabled the
abstraction from physical hard drives to virtual ones using
hypervisor software [26] [25]. These hypervisors may use a
storage area network (SAN) for keeping virtual server images.
Synchronization and failover functionality is part of most SAN
solutions.
Solution: virtual hard drives used by virtual servers are
handled in a SAN in the origin environment. This storage is
synchronized with the target environment using SAN
functionality to enable the hypervisors to migrate a virtual
server immediately as seen in Figure 6. Sometimes, the
hypervisor may subsume SAN for synchronization as well.

6 http://www.mysql.com/
7 http://www.postgresql.org/
8 http://www.ibm.com/software/data/db2/
9 http://www.oracle.com/products/database/

Deprovision
Virtual Server

Origin
Hypervisor

Hypervisor Swapping Process
Target

Hypervisor

Extract
Drive Image

drive image

Provision
Virtual Server

drive
image

Configure
Drive Sync

drive image

Figure 6: Hypervisor Swapping Process

Result: application components hosted in the origin
environment use a virtual server that stores its hard drive in a
SAN. This drive once extracted and moved to the target SAN
is transparently kept in sync between environments. Depending
on the used SAN, the initial drive image extraction may be
optional. Due to the synchronization of the hard drive state, the
hypervisor is enabled to perform the switch between the
environments very quickly. After the synchronization has
stabilized, the hypervisors may switch server instances by first
moving the server in-memory state to the target environment
and second by synchronizing this state just as the SAN
synchronizes the hard drive. Then, the networking connection
also controlled by the hypervisors are reconfigured for a near-
real-time switch over. In difference to the forklift migration
pattern or the stateful component swapping pattern, the
application stack is not re-created in the target environment.
The extracted drive image always contains the complete stack
and provides the basis for the provisioned virtual server.
Complications may, thus, occur due to differences in the
hypervisors used in the origin and target environment as well
as due to operating support services (OSS) and business
support services (BSS), which is described in greater detail by
the migration target pattern and the evaluation in the following
section.
Known Uses: VMware supports hypervisor swapping as
function of the VMware vMotion 10 product. OpenStack 11
supports a similar migration of SAN-based virtual servers.

V. EVALUATION

For confidentiality reasons of T-Systems’ customers and
their migrated application landscapes, we provide the
following evaluation scenario as reference implementation for
the migration methodology and the migration patterns. This

10 http://vmware.com/products/datacenter-virtualization/vsphere/vmotion.html
11 http://www.openstack.org/

scenario is used in the T-Systems Innovation Center12 as live
demonstration showcase. Most of the service-based
applications we encountered at T-Systems’ customers targeted
for cloud migration used Web services as implementation
technologies for a SOA. The evaluation scenario, therefore,
also is a Web service-based application. To demonstrate the
generality of the approach, we decided to use Amazon EC213
as the origin environment for the application and T-Systems
Dynamic Services for Infrastructure (DSI) 14 as target
environment to which the application was migrated. The
approach is, however, also usable for applications hosted in
non-cloud or other cloud environments than the two employed
here. Figure 7 depicts the application stack and the pattern
icons annotated to it indicating where patterns are applied to
realize the migration. The user interface is based on PHP. It
serves as an application frontend in scope of the architectural
principles of service-based applications discussed in Section 2.
It accesses Web services implemented using Jax-WS15. The
Web services access table-centric data. The PHP user interface
and the Web services are both hosted on Apache Tomcat16. The
table data is hosted by a MySQL17 database. The application is
furthermore divided into two tiers by hosting the user interface
on one virtual server while the Web services and database are
hosted on a separate server.

Figure 7: Migration Patterns in the Evaluation Scenario

The application of migration patterns to this application was
done as follows. First, the migration target was identified. Test
extractions of virtual machines hosted at Amazon EC2 were
performed to evaluate the migration on the virtual server level.
We used Linux-native tools – dd for direct access to the virtual
drive and ssh to copy the content:
ssh -i <ec2sshcredentials> <ec2user>@<ec2hostname>
'sudo dd if=/dev/xvda1 bs=1M | gzip' | gunzip | dd
of=image.raw
This image was then converted to a VMware18 disk image
using qemu19 as converter and tested locally on a desktop. The

12 http://www.t-systems.com/innovations/innovations-you-can-touch-t-

systems/1054302
13 http://aws.amazon.com/ec2
14 http://www.t-systems.com/solutions/dynamic-services-for-infrastructure-

computing-power-at-the-push-of-a-button/998132
15 https://jax-ws.java.net/
16 http://tomcat.apache.org/
17 http://www.mysql.de/
18 http://www.vmware.com/products/workstation/
19 http://www.qemu.org

following dependencies on the Amazon environment using the
XEN 20 hypervisor were found hindering the migration:
(i) Virtual drives of guests cannot be booted independently –
the extracted virtual drive image did not contain a boot sector
as it relied on the hypervisor for this purpose. (ii) Kernel and
library sharing – the guest Linux systems, depending on the
concrete image provided by Amazon or third party providers,
often shared the kernel and important system libraries with the
host – a means to reduce the footprint of guest systems. After
extraction, the virtual servers were, therefore, often left without
these core operating system components. (iii) Provider-
supplied BSS and OSS services were unavailable. Images that
could be booted after kernel and boot sector were added to the
extracted images displayed a very long boot time as many
monitoring and billing services were tried to be accessed,
which were unavailable. Due to these obstacles, the
middleware layer of the application stack comprised of Apache
Tomcat and MySQL was chosen as migration target. Most
cloud providers, including the T-Systems DSI, provide ready to
use images for this middleware. Regarding the application
components, stateless component swapping was used for the
user interface and the Web services. As these components do
not hold session state or application state, they were extracted
from the origin environment and deployed on the recreated
middleware application stack in the T-Systems DSI. Access to
these components was load balanced using DNS records.
Entries in the DNS servers were, therefore, changed to the new
component instances and after a certain time for DNS updates
to traverse, the old component instances were decommissioned.
Database swapping was used to migrate the database content.
For this purpose, the new deployment of the MySQL database
in the target environment was configured to serve as a hot
standby for the database in the origin environment. This
ensured that the user interface and Web service instances
provided a uniform behavior while being active in both
environments. After the DNS-based switchover, the MySQL
hot standby became the main database and the MySQL
instance was decommission in the origin environment. We
performed this migration process once manually according to
the abstract processes described by the migration patterns.
However, the application stack is quite common and only
standard interfaces of the Linux operating systems and the
application middleware had been used to extract and migrate
the application components. Therefore, the migration process
itself has been automated as well to be offered as a service. It is
based on the Activiti BPMN21 engine that coordinates the order
in which the separate migration processes handling individual
application components have to be performed. These processes
described by the migration patterns have, thus, been
implemented as sub-processes to the overall migration process
handling applications using the stack depicted in Figure 7. The
human task manager of the Activiti Engine has been used to
inquire necessary information from the user, such as EC2
credentials and folder locations of PHP files on the origin
server etc. For space limitations, screenshots of the Activiti
process have not been included. A demonstration video of the
migration can be accessed online22.

20 http://www.xenproject.org/
21 http://www.activiti.org/
22 http://www.youtube.com/watch?v=b8NBkSAN0Iw

VI. RELATED WORK

According to the pattern format used in this paper and other
publications [12] [4], we mention most related work in the
known uses section of each migration pattern. Furthermore, the
migration patterns may be integrated with other existing
patterns. They may be linked with cloud computing
patterns [4] [2] describing cloud application architecture in
greater detail. During the migration of stateful components
additional data patterns [29] may be considered to adjust data
through obfuscation or anonymization in order to adhere to
laws and establish privacy in the target environment. These
data patterns also describe how the data-handling middleware,
MySQL in our evaluation scenario, can be changed to different
data-handling middleware. Other patterns may be relevant in
case only parts of an application landscape are migrated, which
will commonly be the case as a company will hardly ever
replace its complete IT infrastructure with a cloud provider.
Hohpe [12] describes patterns that can be used for the
necessary integration of different enterprise applications.
Regarding the pre-migration considerations, different online
tools are available that mainly target the evaluation and
prediction of costs. Amazon23 , Azure24 , and Rightscale25 each
provide cost calculators. Similar functionality is also provided
generically by goCipher’s Cloud Cost Calculator26.

VII. SUMMARY AND OUTLOOK

The migration methodology introduced in this paper
describes the different phases used by T-Systems in customer
projects to evaluate and execute the migration of existing
application landscapes to cloud environments. It has been
shown that service-based applications have certain
architectural properties making them ideal candidates to such
migrations. Best practices for the migration that were used
after the evaluation and identification of applications have been
presented in the form of reusable migration patterns. The
methodology and patterns were evaluated for service-based
applications. The migration process for such applications was
automated to reuse it for the migration of similar applications
in the future. We used application model diagrams in Figure 7
to describe an application stack. This diagram and especially
the used links between components made use of implicit
semantic that has not been well defined. New industry
standards target the standardization and well-defined modeling
of application stacks and the management tasks related to them
during their runtime. Amazon CloudFormation 27 , VMware
vFabric Application Director 28 , and the OASIS standard
TOSCA [22] describe models for such application stacks. In
the future, the migration patterns could be integrated in such
modeling tools. We find the TOSCA standard especially
suitable for this purpose as it incorporates BPMN processes
describing management tasks handled for applications. It,
therefore, seems to ideally support the abstract processes of the
migration patterns as well as the automated process used in the
evaluation scenario.

23 http://calculator.s3.amazonaws.com/calc5.html
24 http://www.windowsazure.com/en-us/pricing/calculator/
25 http://www.rightscale.com/cloud-cost-calculator/
26 http://cloudpricecalculator.com/
27 http://aws.amazon.com/cloudformation/
28 http://vmware.com/products/application-platform/vfabric-application-director/

REFERENCES
[1] Amazon Web Services, “Migration scenario: migrating batch processes

to the AWS cloud,” White Paper, 2010.

[2] B. Wilder, Cloud Architecture Patterns, O’Reilly, 2013.

[3] C. Fehling, F. Leymann, R. Retter, D. Schumm, W. Schupeck, “An
architectural pattern language of Cloud-based applications,” Pattern
Languages of Programs (PLoP), 2011.

[4] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter, Cloud
Computing Patterns, Springer, 2013 (in production).

[5] D. Georgakopoulos, M. P. Papazoglou, Service-Oriented Computing,
MIT Press, 2008.

[6] D. Krafzig, K. Banke, D. Slama, Enterprise SOA, Prentice Hall, 2005.

[7] D. S. Linthicum, Cloud Computing and SOA Convergence in Your
Enterprise, Addison-Wesley, 2009.

[8] DMTF, Open Virtualization Format (OVF) 2.0, 2013.

[9] F. Curbera, F. Leymann, T. Storey, D. Ferguson, S. Weerawarana, Web
Services Platform Architecture, Prentice Hall, 2005.

[10] F. Leymann, “Cloud Computing: The Next Revolution in IT,” in
Proceedings of the 52th Photogrammetric Week, 2009.

[11] F. Leymann, D. Roller, Production Workflow: Concepts and
Techniques, Prentice Hall, 2000.

[12] G. Hohpe, B. Woolf, Enterprise Integration Patterns, Addison-Wesley,
2004.

[13] G. Linden, “Make data useful”, Talk at Standford University, 2006.

[14] ISO, Open System Interconnection (OSI), Standard 7498, 1984.

[15] J. Piazza, “Computing migration strategies,” Savvis White Paper, ‘09.

[16] J. Varia, “Architecting for the cloud: best practices,” Amazon White
Paper, 2010.

[17] J. Varia, “Migrating your existing applications to the AWS cloud,”
Amazon White Paper, 2010.

[18] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I.Stoica, M. Zaharia, “Above the
clouds: a Berkeley view of cloud computing,” technical report, 2009.

[19] M. Menzel, R. Ranjan, “CloudGenius: decision support for web server
cloud migration, “ International Conference on World Wide Web, 2012.

[20] National Institute of Standards and Technology, “The NIST definition of
cloud computing,” 2009.

[21] O. Zimmermann, An Architectural Decision Modeling Framework for
Service-oriented Architecture Design, Thesis University of Stuttgart,
2009.

[22] OASIS, Topology and Orchestration Specification for Cloud
Applications, 2013.

[23] OMG, Business Process Model and Notation (BPMN) 2.0, 2011.

[24] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging IT platforms: vision, hype, and reality for
delivering Computing as the 5th Utility,” Future Generation Computer
Systems, 2009.

[25] R. P. Goldberg, “Architecture of virtual machines,” Proceedings of the
Workshop on Virtual Computer Systems, 1973.

[26] R. P. Goldberg, “Virtual machines: semantics and examples,”
Proceedings IEEE International Computer Society Conference, 1971.

[27] S. Frey, W. Hasselbring, “The cloudmig approach: model-based
migration of software systems to cloud-optimized applications,“
International Journal on Advances in Software, 2011.

[28] S. Jha, A. Merzky, G. Fox, “Using clouds to provide grids with higher
levels of abstraction and explicit support for usage modes,” Concurrency
and Computation: Practice and Experience, 2009.

[29] S. Strauch, V. Andrikopoulos, T. Bachmann, F. Leymann, “Migrating
application data to the cloud using cloud data patterns,” International
Conference on Cloud Computing and Service Science (CLOSER), 2013.

[30] V. T. K. Tran, K. Lee, A. Fekete, A. Liu, J. Keung, “ Size estimation of
cloud migration projects with cloud migration point (CMP),” Empirical
Software Engineering and Measurement (ESEM), 2011.

	cover-IEEE
	INPROC-2013-53 - Service Migration Patterns

