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Abstract: Service orientation has significantly facilitated the development of complex distributed systems spanning
multiple organizations. However, different application areas approach such systems in domain-specific ways,
focusing only on particular aspects relevant for their application types. As a result, we observe a very fragmented
landscape of service-oriented systems, which does not enable collaboration across organizations. To address
this concern, in this work we introduce the notion of Collaborative, Dynamic and Complex (CDC) systems and
position them with respect to existing technologies. In addition, we present how CDC systems are modeled
and the steps to provision and execute them. Furthermore, we contribute an architecture and prototypical
implementation, which we evaluate by means of a case study in a Cloud-enabled context-aware pervasive
application.

1 Introduction

Complex software systems involving multiple, in-
dependent partners/software components collaborating
in order to achieve one or more goals find predomi-
nant application in the current IT landscape. Cases of
such systems from different domains are for instance
business applications targeting enactment of complex
business transactions and service networks, scientific
workflows providing one approach for scientific ex-
perimenting in eScience, and pervasive systems repre-
senting one flavor of ubiquitous computing. Based on
our research work towards building support systems
for the development and execution of such applica-
tions in these domains, we conclude that while all
the above-mentioned application areas concentrate on
creating complex systems with very specific features
critical for the corresponding domain, there are require-
ments valid across all domains. Our experience also
shows that synergies between these domains can be
exploited and potential benefits realized through reuse
of research results and available software systems.

In this respect, in this work we investigate the re-
quirements towards software systems in the above men-
tioned application areas with the purpose of identifying
overlaps and differences. As we are going to show, the
overlaps are significant and the differences are mainly
due to the special focus on critical aspects in each

domain, and not because the solutions are not rele-
vant in the other domains. Based on these findings we
introduce the innovative notion of Collaborative, Dy-
namic and Complex (CDC) systems aiming to cover all
identified requirements and allowing to apply already
existing technologies and software systems. CDC sys-
tems exhibit the aspects of modeling, provision and
execution.

The contributions of this work target enabling the
modeling, provision and execution of CDC systems
and can be summarized by:

• The synthesis of existing technologies and ap-
proaches from the service-oriented computing
paradigm and beyond, into a new, unified type
of Collaborative, Dynamic and Complex (CDC)
systems.

• The specification of the architecture for a frame-
work that supports the various aspects (modeling,
provision and execution) of CDC systems.

• The realization of this framework into a prototype
called CoDyCo, and its use for the evaluation of
our approach based on a case study.

The remaining paper is structured as follows. Sec-
tion 2 looks into different application areas that deal
with relevant for this work systems in order to high-
light their similarities and establish the minimum set
of requirements for our work. Section 3 presents our



proposal for CDC systems and positions them with re-
spect to existing approaches. Section 4 introduces the
architecture of a CDC-supporting framework required
for implementing CDC systems. Section 5 reports on
the overview and current state of CoDyCo. Section 6
summarizes a case study we performed using CoDyCo
for purposes of evaluation. Finally, Section 7 presents
related works, and Section 8 concludes the paper.

2 Motivation

In the following, we look into the areas of perva-
sive systems, service networks and scientific work-
flows. Our experience in research projects1 shows,
that despite the differences, the available approaches
from these areas have many commonalities.

Pervasive Systems: Pervasive systems strive to-
wards enabling the paradigm of ubiquitous computing
and have been a subject of interdisciplinary research.
Advances in pervasive systems have focused on the
aspect of context-awareness, i.e. taking into account
the context of physical and virtual entities, which is in
fact a view of the physical environment, and the influ-
ence of the context on the applications the entities are
using or participating in (Baldauf et al., 2007). A ma-
jor requirement in these systems is the ability to adapt
their behavior with respect to the context. Another
major challenge is the optimization of the distribution
of applications based on context data and resource
consumption. The distribution of pervasive applica-
tions across multiple software system and hardware
devices require their integration and coordination to-
wards enabling a collaboration among participating
devices and systems. Due to the dynamic characteris-
tics of the environment of pervasive applications, with
participants and devices appearing and disappearing
constantly, supporting context sharing, adaptation, and
scalability are particularly challenging. Since recently,
Cloud Platforms in the scope of the Internet of Things
and Smart Systems initiatives have been investigated
from the point of view of enabling scalability, multi-
tenancy and adaptability (Distefano et al., 2012). Later
in this paper, we present a detailed description of a
pervasive context-aware application for booking a taxi
nearest to the location of a user based on the informa-
tion provided by mobile devices available to the taxi
drivers. We also use the taxi application for purposes
of evaluation as a case study.

1For example SimTech http://www.simtech.
uni-stuttgart.de/, S-Cube http://www.
s-cube-network.eu/, 4CaaSt http://www.4caast.eu/,
ALLOW Ensembles http://www.allow-ensembles.eu/.

Service Networks: Service Networks (SNs)
(Caswell et al., 2008) are considered a specialized
view on business processes, which focus on assisting
business experts to evaluate the value of participating
in a collaborative business activity. SNs are mod-
eled as a network of business services exchanging
offerings; basically, the composite perceived value
of the exchanged offerings with the other services
determines the value of participating in the network to
one participant. Typical examples of SNs are supply
chains; the taxi application described later can also be
viewed as an SN. There is a significant gap between
the meta-models used by business experts when de-
signing the SNs, and the technological realization that
needs to be bridged by means of software engineering
techniques like model-driven development and code
generation, whereas both top-down and bottom-up
approaches are required. In addition, service networks
are inherently collaborative activities and therefore
imply efforts towards integration of applications
across organizations.

A SOA-based realization of service networks, as
well as a meta-model and graphical notation are pre-
sented in (Danylevych et al., 2010) and (Bitsaki et al.,
2008). The interoperability of service implementa-
tions in an SN have been addressed by means of
Web services and the high-level meta-model has been
mapped on choreographies of composite service (i.e.
organization-specific business processes). Addition-
ally, choreographies take over the role of coordinating
the services in a network, which addresses another im-
portant requirement. Changes in the perceived value of
a network to a participant may initiate changes in the
individual partners or in the network as a whole, which
have to be propagated to their technological realization.
We therefore identify the need for adaptation of ser-
vice networks; some preliminary attempts to support
only some types of service networks adaptation (Wag-
ner et al., 2012) are already available. Monitoring the
value of an SN for a participant is not directly mea-
surable, but can only be derived based on monitoring
data provided by the execution environment for chore-
ographies, orchestrations and services. Approaches
based on business activity monitoring, like (Guinea
et al., 2011) and (Wetzstein et al., 2012) are only first
steps towards the necessary technological support.

Scientific Workflows: Scientific workflows enable
the modeling and execution of scientific experiments
and are part of the technology landscape in eScience
(Sonntag and Karastoyanova, 2010). A major require-
ment in this field is first and foremost the user friend-
liness of the approach, so that scientists do not face a
high learning burden when using the experiment mod-



eling tools. The division between the way scientists
model an experiment and the meta-models used in the
supporting IT systems is significant and there are dif-
ferent approaches towards eliminating it (Sonntag and
Karastoyanova, 2010). Both top-down and bottom-up
approaches are required to enable the use of existing
software and the development of experiments from
scratch. The distributed nature of complex scientific
experiments requires integration and composition of
scientific computing software, which presents an ad-
ditional challenge due to the lack of clearly defined
software engineering principles for building scientific
applications, including scientific workflows. Reusabil-
ity is hampered by the heterogeneous landscape of
applications and integration is of high complexity, be-
cause of the large number of available techniques for
composition. Since scientific discovery is based on ex-
ploring physical phenomena, huge amounts of data are
collected via numerous types of mobile devices and
sensors (e.g. simulations of the distribution of CO2 in
the soil, weather forecasts, biological system simula-
tions, simulations of manufacturing systems, etc.), and
need to be processed. Computations in scientific work-
flows are time-consuming and also distributed, and
most often they do not exhibit characteristics of per-
vasive applications. Adaptation during the modeling
and execution of scientific workflows is a must, as evi-
denced by existing work (Sonntag and Karastoyanova,
2010), (Sonntag and Karastoyanova, 2012).

Despite the different focus of the application sys-
tems described above, they all exhibit overlapping
characteristics that can be leveraged in a unified man-
ner across the various areas. The following section
presents our proposal toward this goal.

3 CDC Systems

We define Collaborative, Dynamic and Complex
(CDC) systems as distributed systems enabling col-
laboration among participants across different orga-
nizations. Participants of CDC systems are services,
representing software systems of different granularity,
virtual and physical devices, and individuals. CDC
participants join and leave the system at will in order
to fulfill their individual goals. CDC systems are ca-
pable of adapting with respect to different triggers in
the system and/or in their environment. CDC systems
consist potentially of a large amount of participants
dealing with large amounts of data as part of multi-
ple interactions between them, following one or more
coordination protocols. CDC systems have three fun-
damental aspects: Modeling, Provision and Execution.

With respect to modeling, we use choreographies to

define the high-level, domain-specific models of CDC
systems. Choreographies describe the interaction pro-
tocol of the involved participants and the participant
roles’ definitions. In SOA environments, individual
participant roles are implemented by service orchestra-
tions exposed as services, whereas their service inter-
faces are compliant with the participant role definitions
modeled in the choreography. The services composed
by the orchestrations are either available in the soft-
ware landscape of the participating organizations, or
are discoverable in global service registries. Utilizing
these SOA-based approaches provides a flexible way
of composing applications in complex systems and
facilitates application integration. To enable context-
awareness, choreographies and orchestrations, as well
as involved services, have to incorporate in their mod-
els context information and define its use and reaction
to potential changes. Since context information may
be part of correlation data of orchestrations belong-
ing to an enacted choreography, a mapping between
context and correlation mechanisms has to be in place.

Performance indicators, like KPIs, utility, value,
etc. are an inseparable part of the CDC system models.
On the one hand, they are used to define the indicators
according to which users will measure and evaluate
whether they achieve their goals in a collaboration. On
the other hand, this is the information needed to de-
rive the data to be monitored during the execution of
the CDC system. Therefore choreographies, orches-
trations and services models have to contain elements
defining the necessary monitoring information. In or-
der to enable the dynamic features of CDC systems,
constructs accommodating adaptation mechanisms in
the choreographies and orchestrations have to be in-
corporated. Available approaches from the fields of
workflow adaptation, flexible scientific workflows and
pervasive dynamic flows, e.g. (Wetzstein et al., 2012)
or (Sonntag and Karastoyanova, 2010) can be applied
individually or in combination. Change propagation
across all levels of the CDC systems and thus adap-
tation of choreographies can be identified as a major
research challenge.

As identified in Section 2, two types of approach
in modeling are required: top-down and bottom-up.
Top-down CDC system modeling entails starting the
development of the system with a choreography repre-
senting a realization of a high-level (domain-specific
model), like a SN, scientific workflow, or pervasive
application. Techniques required to map the choreog-
raphy into orchestrations and services, like code gener-
ation and transformations, are available from software
engineering and various existing SOA-enabling sys-
tems. The bottom-up approach involves deriving a
meaningful choreography model based on existing or-



chestrations and/or services. In this case, deriving fault
handling, monitoring and adaptation information is
based on the corresponding capabilities of the involved
services and correctness of the derived choreography.

The provisioning aspect of CDC systems entails the
provision of the choreography, which also requires the
deployment of orchestrations onto execution engines,
their provisioning as services, populating the system
with the corresponding context and correlation data,
and configuring the monitoring infrastructure with the
requirements from the CDC model. Mechanisms in
service composition systems and scientific workflows
for the provisioning of orchestrations and services are
already available. Solutions for mapping monitoring
requirements to monitoring probes are available in per-
vasive systems and service-based applications. The
provision of a choreography results into adaptive and
context-aware orchestrations available as a service.
The choreography can be initiated multiple times for
multiple interactions and can be started by any of the
participating orchestrations or services, if they are al-
lowed to do so by the choreography definition. Any
underlying infrastructure should therefore enable shar-
ing of resources across different CDC systems while
correlating interactions to tenants and their users.

Running a choreography is therefore realized as a
distributed execution of the collaboration among par-
ticipating orchestrations and services. Since context-
awareness is inherent to the CDC system model, the
execution environment has to be able to support this
property. Adaptation mechanisms, predefined in the
system model (like abstract activities, binding strate-
gies for services, reactions to context change, etc.) and
such that are orthogonal to the model (like manual
adaptation, forced termination, substituting a service
endpoint, etc.) need to be realized by the execution en-
vironment. Furthermore, the execution environment of
CDC systems must scale with their number of partici-
pants and their interactions, as well as the volumes of
data exchanged. Monitoring information is necessary
in order to enable such scaling.

4 CDC Framework Architecture

Figure 1 provides an overview of our proposal for a
framework supporting the modeling, provision and ex-
ecution of CDC systems. Starting from the modeling
aspect, a Choreography Editor is required to create,
visualize and manage the choreography models of the
CDC systems. A Transformer component can then
either generate orchestration templates that the CDC
participants are meant to implement (in the top-down
approach in the previous section), or derive possible
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Figure 1: CDC-supporting framework — Architectural view

choreographies from existing orchestrations (in the
bottom-up approach). In either case, an Orchestration
Editor (not necessarily but preferably in the same envi-
ronment as the Choreography Editor) should be avail-
able for orchestration visualization and manipulation.
The transformer components also requires as input the
service descriptions of the used orchestrations in the
bottom-up approach or generates (abstract) service de-
scriptions for derived orchestrations. Moving to the
provisioning aspect, the Deployment Manager allows
the assignment of the necessary for operation compu-
tational resources to the orchestrations involved in the
modeled choreographies. Beyond physically deploy-
ing the necessary artifacts on an Execution Engine, this
additionally entails the creation of all service endpoints
necessary for accessing the orchestration logic by the
system participants. The Deployment Manager also
handles the information needed for late and dynamic
binding to concrete service endpoints and provides it
to the ESB during the execution of orchestrations.

In principle, multiple organizational domains may
be using the same instantiation of this framework for
different CDC systems. It is therefore necessary to
offer multi-tenancy capabilities out of the box for all
components in the provision and execution aspect of
the framework. A Tenant Manager is responsible for
this role, and implements administration and manage-
ment capabilities for existing and new tenants (orga-
nizational domains) and their users (individuals or
sub-systems in the same domain). The Tenant Man-
ager is also meant to implement access control to both
choreography and orchestration models, and to the
computational resources corresponding to them during
the execution of CDC systems, as assigned to them
by the Deployment Manager. Only authorized parties
should be allowed, for example, to participate in a
given choreography. Furthermore, any collected con-
textual information relevant for tenants and users in
terms of a representation of their environment, e.g.



their physical location or the quality of observed data,
is stored and accessed through the Tenant Manager.

While the Deployment and Tenant Managers play
prominent roles in the provision aspect of CDC sys-
tems, they are also heavily involved during CDC sys-
tem execution, since both of them need to interact
with the actual Execution Engine that runs the orches-
trations defined during modeling. Furthermore, the
Execution Engine has to provide fault handling capa-
bilities, both for pre-defined fault and compensation
handlers in the orchestration models, and for failures
during execution like service failures and unavailabil-
ity of other components in the framework (e.g. access
to the Deployment Manager).

The Adaptation Manager is responsible for trig-
gering and managing the adaptivity features of CDC
systems by providing mechanisms for different types
of adaptations across the levels of the systems. It im-
plements and/or coordinates the actions necessary to
enable the adaptation constructs from the CDC system
model and the ones implemented only on the level
of the execution environment. The Adaptation Man-
ager collaborates also with the Deployment Manager
when necessary, e.g. for re-binding service endpoints,
and with the Execution Engine, e.g. for injecting a
new activity and control connectors into an existing
orchestration or deploying a new orchestration in case
a choreography has been changed. The Adaptation
Manager acts on information provided by the Monitor
component which monitors and analyses the behav-
ior and performance of the executed orchestrations,
of the enacted choreographies, and also of the execu-
tion components in the framework. The Monitor must
be configurable based on the monitoring information
required for the CDC system and is responsible for
providing to the users of choreographies and orches-
trations personalized views of the relevant monitoring
information on their devices.

Leveraging the SOA paradigm, all components in
the framework relevant to execution should be pro-
vided as services and communicate through an En-
terprise Service Bus (ESB) solution to facilitate their
integration. Furthermore, each component should be
designed and implemented allowing for both types
of scalability: horizontal (modify number of avail-
able instances as required) and vertical (adjustment
of available computational resources for each compo-
nent) (Vaquero et al., 2011).

5 Implementation

In this section we present CoDyCo, a realization
approach of the CDC-supporting framework presented

in the previous section. As shown in Fig. 2, two sep-
arate environments are distinguished in the CoDyCo
architecture: a Modeling and Monitoring Toolset, and
a Runtime Environment.

Starting from the Modeling and Monitoring
Toolset, CDC choreographies are specified in the
BPEL4Chor language using our BPEL4Chor Designer.
BPEL4Chor was first introduced by (Decker et al.,
2008) as an extension of the WS-BPEL language (OA-
SIS, 2007) and stemming from the business transac-
tions field. However, BPEL4Chor choreographies are
by definition not executable and therefore the trans-
formation of BPEL4Chor definitions to WS-BPEL
process (orchestration) skeletons (Reimann, 2007) is
supported in CoDyCo by a BPEL4Chor Transformer
(Fig. 2). Based on the choreography topology, the
participants’ grounding definitions, i.e. their WSDL
interfaces, and their message links, this transforma-
tion generates the executable BPEL orchestrations for
each participant in the choreography. The skeletons
only model the interactions between partners so that
together they can enact the choreography. Manual
refinements can be performed on the created orchestra-
tions, using our Mayflower BPEL Designer (Sonntag
et al., 2012) developed in the context of the SimTech
project2 as an Eclipse-based BPEL designer. These
refinements allow defining specific process logic for
each participant, for example by reusing predefined
process fragments from a process fragment library, as
demonstrated in (Sonntag et al., 2012) and (Schumm
et al., 2010). Both choreography definition and trans-
formation functionalities are wrapped as an Eclipse
Graphical Editor, and provide a palette with the graph-
ical elements of the choreography language (Weiß
et al., 2013). Only the top-down modeling approach
(see Section 3) is currently supported by the Model-
ing and Monitoring Toolset; supporting the bottom-up
approach is part of our future work. For more informa-
tion on the status of the tools the interested reader is
referred to (Weiß et al., 2013).

The deployment and instantiation of the BPEL
processes generated by the Modeling and Monitor-
ing Toolset is done on our Mayflower BPEL Engine.
This engine is an extended version of the open-source
Apache ODE Engine. It provides an interface for event
publishing and configurable filtering and a BPEL event
model3 (Khalaf et al., 2007), which have been special-
ized for the purposes of monitoring and triggering dy-
namic adaptation of process instances(Sonntag et al.,
2012). Functionalities provided by the Mayflower

2The SimTech project: http://www.simtech.
uni-stuttgart.de

3ODE PGF: http://www.iaas.uni-stuttgart.de/
forschung/projects/ODE-PGF/
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BPEL Engine address the requirements of the CDC
execution environment in terms of orchestration exe-
cution, storing of historical information, failure and
compensation handling, and in combination with the
Adaptation Manager also enable some dynamic adap-
tation patterns. For instance, dynamic adaptation of
process instances triggered by humans are supported
in CoDyCo through the Modeling and Monitoring
Toolset. More specifically, the Mayflower BPEL De-
signer interacts with the Mayflower BPEL Engine and
the Adaptation Manager and so allow the users to view
the status of process instances and trigger their adapta-
tion. Based on this users can adapt the process instance
by changing its graphical representation.

The adaptation operations that can be performed on
a process instance in our current implementation are,
e.g. re-execution or forced iteration of activities (Son-
ntag and Karastoyanova, 2012), insertion and deletion
of process elements, or their substitution. The changes
made on the viewed process instance are then propa-
gated to the Adaptation Manager Component, which is
responsible for performing the actual adaptation on the
concrete process instance in the engine. This is also
made possible by auxiliary functions in the Mayflower
BPEL Designer, mirrored in the Mayflower BPEL En-
gine, like enabling user subscriptions to monitoring
events published by the engine, and hence retrieval
of real-time information about a concrete process in-
stance, and built-in actions per process instance like
stop, suspend, resume, etc. (Sonntag et al., 2012). Au-
tomatic adaptation of running process instances, like
injection of process fragments is currently not sup-
ported by the Adaptation Manager in CoDyCo 4.

Communication between participants collaborat-

4Note that this is possible only manually, as described
above.

ing in the scope of a specific choreography instance,
and between the different components comprising the
runtime environment is established through the multi-
tenant open source ESB solution ESBMT (Strauch et al.,
2012a), (Strauch et al., 2012b). ESBMT enhances
an existing ESB Solution, Apache ServiceMix 5 with
multi-tenant awareness both at the administration and
management, and messaging levels. Management and
administration functionalities implemented by a Ten-
ant Manager enable the dynamic deployment and con-
figuration of service endpoints with tenant- and user-
specific information, while tenant-aware messaging
capabilities isolate tenants’ messages routed to the ser-
vice endpoints (Strauch et al., 2012b). As tenants repre-
sent organizational units, e.g. Taxi Company A, which
has N taxi drivers, and M potential taxi customers,
their communication in the scope of a choreography is
supported in the ESBMT through tenant-aware service
endpoints. At the moment we are working on the inte-
gration of our execution engine with the ESBMT as a
JBI Service Engine, to enable multi-tenancy support
for orchestrations and choreographies, too.

The Management Dashboard is the component in
the Modeling and Monitoring Toolset responsible for
providing analyzed and personalized monitoring infor-
mation to users and tenants about the execution state
of choreographies and orchestrations. Our prototype
visualizes the execution status of orchestrations, the
data they produce and consume, and the adaptations
that have been performed (Sonntag et al., 2012). This
is possible due to the interaction of the Management
Dashboard with the Mayflower BPEL Engine via its
event publishing interface, as described above. Our
approaches for monitoring choreographies (Wagner

5Apache ServiceMix: http://servicemix.apache.
org/
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Figure 3: The BPMN process diagram of the Taxi Application.

et al., 2012) and KPIs (Wetzstein et al., 2012) are not
yet integrated into CoDyCo.

The Context Management System stores the system
context (i.e. a set of context properties of all active ten-
ants) and constantly synchronizes its current configura-
tion with the tenant specific applications by retrieving
context data from each of the tenant users created in
the system, e.g. from a location provider embedded
system in a specific taxi cab. Context information is
used in the execution of choreographies by the corre-
sponding orchestrations through Context Integration
Processes (CIPs) (Wieland et al., 2007) and may trig-
ger their adaptation. Context-aware adaptations will
be handled by a collaboration of the Adaptation Man-
ager, the Mayflower Engine, the Context Management
System (CMS), and the Tenant Manager and is part of
our future work on the implementation. The model-
ing tool is currently also missing features supporting
modeling of context in the choreographies.

6 Case Study

In the scope of project 4CaaSt6, the Taxi Scenario
use case has been defined, where a service provider
offers a taxi management software as a service to dif-
ferent taxi companies, i.e. tenants. Taxi company cus-
tomers, who are the users of the tenant, submit their
taxi transportation requests to the company they are
registered with. The taxi company uses the taxi man-
agement software to contact nearby taxi drivers. Once
one of the contacted taxi drivers has confirmed the
transportation request, the taxi management software
sends a transport notification containing the estimated
arrival time to the customer. As discussed in Section 2,
the Taxi Scenario constitutes a pervasive context-aware
application and therefore, in the scope of this work, an
ideal candidate for the evaluation of our proposal.

6The 4CaaSt project: http://www.4caast.eu

Figure 3 shows the processes the Taxi Scenario
application realizes. The simplified BPMN diagram
has three lanes depicting the three participants of the
application choreography: Customer, Taxi Company,
and Taxi Service Provider. If a Customer wishes to
book a Taxi, he sends an initial request to the Taxi
Company call center (usually through a Web GUI),
which forwards it to the Taxi Service Provider. The
Taxi Service Provider process determines the nearby
available taxis and the contact information of the taxi
drivers using CIPs (Wieland et al., 2007) (not shown
here for brevity). Subsequently, the transport request
is sent to each available taxi driver, and their responses
are collected for a specified duration. The gathered
transport information is sent back to the Customer.
Implementing the Taxi Scenario required the manual
design of all involved processes as orchestrations for
each participant and their interactions, as well as the
implementation of most services involved in them (ex-
cept from those that already existed, e.g. a context
provisioning framework exposed as a service (Knapp-
meyer et al., 2010)).

For the evaluation of our approach we started with
the BPMN diagram in Fig. 3 which we translated into
BPEL4Chor. Figure 4 shows the processes depicted
in Fig. 3 as participants in our BPEL4Chor Designer.
The rectangular shapes in the editor view in Fig. 4
stand for the choreography participants, whereas the
message links and their directions are depicted by la-
beled arrows. The set of taxi drivers are represented
by the Taxi Transmitters participant, standing for the
devices carried by the drivers. Inside each participant,
the control flow regarding its communication behavior
such as receive or send activities is visible. The result-
ing choreography model was then transformed into a
series of BPEL4Chor artifacts by the BPEL4Chor De-
signer: a participant topology specifying the involved
participants in the choreography, the participant types,
and the message links between participants.



Figure 4: Excerpt of the Taxi Application choreography modeled with the Chor Designer.

The BPEL4Chor artifacts are used by the
BPEL4Chor Transformer to generate Abstract BPEL
processes and WSDL files. These WSDL files contain
the technical information about the interfaces between
the participants, i.e. the port types, operations, mes-
sages, and partner links. Each previously modeled
participant was transformed into exactly one Abstract
BPEL process. Basic executable completion of the
Abstract BPEL processes, i.e. their transformation into
executable ones, is supported by the BPEL4Chor De-
signer, as well as the manual refinement of the process
logic in each participant that is not part of the choreog-
raphy. The resulting (executable) processes were then
deployed and executed successfully in our Mayflower
BPEL Engine. Through this process we have also
identified a number of technical issues with the cur-
rent implementation of the BPEL4Chor Designer and
Transformer (Weiß et al., 2013). For example, not
all BPEL activities are currently supported, and the
generated WSDL files need manual definition of the
involved message types. We are already working on
addressing these deficiencies.

7 Related Work

As discussed in (Barker et al., 2009), the interac-
tion between participants in a choreography can be
modeled following the interaction, or interconnection
modeling approaches. The former approach models
atomic interactions between participants through in-
teraction activities, while the latter interconnects the
communication activities of each participant of the

choreography. The WS-CDL7 language standard sup-
ports the interaction approach. Using the WS-CDL lan-
guage as the basis, the Savara8 project aims to provide
tooling support for a top-down choreography model-
ing approach. Interconnection modeling approaches
are supported in the CHOReOS Integrated Develop-
ment and Runtime Environment9, in the Open Knowl-
edge European project10, and in BPEL4Chor (Decker
et al., 2007). The CHOReOS environment supports
the choreography specification using BPMN 2.0 col-
laborations (CHOReOS Consortium, 2011), and en-
compasses choreography adaptation based on service
availability and QoS assurance.

The Open Knowledge framework employs a mul-
tiagent protocol to control the interactions between
participants in the choreography. Therefore, partic-
ipants must be specified and deployed prior to the
choreography enactment, and adaptation based on con-
text modifications is not considered. As discussed in
the previous sections, BPEL4Chor wraps the choreog-
raphy specification in a layer atop of WS-BPEL which
contains the choreography control flow, its participants
description and message links between them, and the
mapping support to their concrete communication de-
scriptions (WSDL). BPEL4Chor does not support the
explicit specification of rules for context-aware adap-
tation purposes, but decouples the choreography speci-
fication from communication specific details, enabling
extensibility for dynamic context-aware choreography
adaptation.

7WS-CDL:http://www.w3.org/TR/ws-cdl-10/
8http://www.jboss.org/savara
9EU Project CHOReOS: http://www.choreos.eu/

10Open Knowledge: http://www.openk.org/



Context-aware systems have been widely studied in
the scope of Ubiquitous Computing. In (Baldauf et al.,
2007) a set of context-aware systems are presented,
and a comparison focusing on the architectural princi-
ples of context-aware middleware and framework to
ease the development of context-aware applications is
provided. The CoWSAMI middleware infrastructure
utilizes Web services for managing location context
in open ambient intelligence environments (Athana-
sopoulos et al., 2008). The utilization of an ESB as the
central piece for communication support in context-
aware systems is discussed in (Chanda et al., 2011),
where a Context-aware ESB (CA-ESB) is proposed to
discover and orchestrate services based on the users’
location and available services in specific regions.

Concerning different context views in pervasive en-
vironments, in (Abdulrazak et al., 2010) micro and
macro context-awareness modeling approaches are
presented. The former describes the users’ surround-
ings and aims to provide access to local context data,
while the latter aggregates local context data to pro-
vide a global perspective of different spaces. Self-
configuration operations in micro context-awareness
models involve coordination of peers in a decentralized
manner, making choreographies suitable for modeling
the coordination between peers. Furthermore, in (Roy
et al., 2008) high system availability is achieved by de-
centralizing the coordination of entities collaborating
in context construction and decision making activities
in open intelligence spaces ensures.

Context-aware workflows as an approach for eas-
ing the development of context-aware applications are
presented in (Wieland et al., 2007). Thus, they pro-
pose Context4BPEL, a WS-BPEL11 extension for ex-
plicitly modeling the influence of context on work-
flows. However, WS-BPEL supports orchestration of
services within a business process, while choreography
modeling approaches demand a further semantic sup-
port for specifying process interactions from a global
view. Further research on workflow flexibility has
been conducted by integrating support of human inter-
actions during the execution of scientific workflows
in (Karastoyanova et al., 2012). This approach trig-
gers human interactions for non-automated activities
via a framework supporting a multi-protocol commu-
nication between a scientific workflow management
system and pluggable communication devices. All
these approaches are focusing on only one particular
aspect of CDC systems.

11WS-BPEL 2.0: http://docs.oasis-open.org/
wsbpel/2.0/

8 Conclusions and Future Work

Our investigation into different application areas
like pervasive systems, service networks and scientific
workflow systems that have been influenced by service-
orientation illustrated a series of overlapping charac-
teristics that have not been leveraged so far. Toward
this purpose, in this work we introduced the notion of
Collaborative, Dynamic and Complex (CDC) Systems
as dynamic distributed systems that allow participants
from different organizations to collaborate to fulfill
their goals. We discussed three fundamental aspects of
CDC systems: modeling, provision and execution, and
presented the architecture of a framework that supports
these aspects. We then showed the current status of the
prototypical implementation of CoDyCo, a system that
realizes this framework. A case study on a context-
aware pervasive application was then presented for
purposes of evaluating our proposal.

Currently, we are working on improving the state
of the CoDyCo prototype by addressing the deficien-
cies identified during the case study. Future work is
aimed at finalizing the different aspects of our proposal.
Concerning modeling and provision CDC systems, the
bottom-up modeling approach has to be realized, as
well as enabling context-awareness in choreographies
and orchestrations for both type of approaches. This
also entails the realization of the context management
system. In addition, multi-tenancy awareness has to
be enabled for choreographies and orchestrations, and
reflected in the Execution Engine. The Management
Dashboard has to be integrated with approaches to
monitoring KPIs and business transactions which is
a step towards enabling the monitoring of choreogra-
phies. In terms of adaptation, available approaches
context-aware adaptation and automatic adaptation of
orchestration has to be integrated in CoDyCo. Finally,
the scalability features of the CoDyCo components
have to be investigated further in the scope of our
Cloud computing research.
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