
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{haupt, karastoyanova, leymann}@iaas.uni-stuttgart.de

A model-driven approach for
REST compliant services

Florian Haupt, Dimka Karastoyanova, Frank Leymann, Benjamin Schroth

© 2014 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-23,
author = {Florian Haupt and Dimka Karastoyanova and Frank Leymann and

Benjamin Schroth},
title = {A Model-Driven Approach for REST Compliant Services},
booktitle = {Proceedings of the IEEE International Conference on Web

Services (ICWS 2014)},
year = {2014},
pages = {129 - 136},
doi = {10.1109/ICWS.2014.30},
publisher = {IEEE}

}

:

Institute of Architecture of Application Systems

A model-driven approach for

REST compliant services

Florian Haupt, Dimka Karastoyanova, Frank Leymann, Benjamin Schroth

Institute of Architecture of Application Systems

University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—The design of applications that comply to the REST

architectural style requires observing a given set of architectural

constraints. Following these constraints and therefore designing

REST compliant applications is a non-trivial task often not

fulfilled properly. There exist several approaches for the

modeling and formal description of REST applications, but most

of them do not pay any attention to how these approaches can

support or even force REST compliance. In this paper we

propose a model-driven approach for modeling REST services.

We introduce a multi layered model which enables (partially)

enforcing REST compliance by separating different concerns

through separate models. We contribute a multi layered meta-

model for REST applications, discuss the connection to REST

compliance and show an implementation of our approach based

on the proposed meta-model and method. As a result our

approach provides a holistic method for the design and

realization of REST applications exhibiting the desired level of

compliance to the constraints of the REST architectural style.

Keywords—REST; architectural style compliance; model-

driven software development; architectural constraints;

representational state transfer

I. INTRODUCTION

Representational State Transfer (REST) is an architectural
style for distributed hypermedia systems formally defined as a
set of constraints. These constraints have to be followed by
REST compliant architectures [1]. The rationale behind this
definition is that compliance with the constraints defined by
REST implies a set of desirable nonfunctional properties, like
for example scalability or network efficiency. Existing
implementations of REST compliant architectures form a
loosely coupled, scalable and fast system that can evolve
further without losing these properties. Such architectures, in
turn, have positive effects on the operating IT department and
finally on the business supported by these systems.

The World Wide Web (WWW) is considered the one big
REST system of today. It exists for a long time already; it grew
from around 600 web servers in 1996

1
 to over 400 billion web

servers in 2012
2
 and still performs. Originally it has been built

for humans accessing documents but is gaining more and more
adoption as platform for applications interacting with each

1 http://www.w3.org/2005/01/timelines/timeline-2500x998.png
2 http://news.netcraft.com/archives/category/web-server-survey/

other. For humans interacting with hypermedia documents, the
REST constraints have been very well met, mainly due to the
use of HTML. Considering in contrast applications hosted in
the WWW, in most cases the REST constraints are not fulfilled
to their full extent [2][3][4]. This leads to the fact that these
applications are often not exploiting the full potential of the
architecture of the WWW and the REST architectural style. As
REST has been designed with long term goals like scalability
and evolvability in mind [1], partly disregarding the REST
constraints may have no impact in the short term, but in the
long time it is expected to have a negative impact on the non-
functional properties of a system.

Model-driven techniques have been proposed to improve
the development of complex applications [5]. In model-driven
software development (MDSD), software is not implemented
manually based on informal descriptions but mainly
automatically generated based on formal models. Models are
first class citizens in the process of application design and
realization. This approach in general leads to better code
quality, fewer errors, increased reuse of best practices, better
maintainability through “standardized” code, and increased
portability through the separation of platform independent
models (PIM) and platform specific models (PSM).

In this paper we introduce a model-driven approach for the
design and realization of REST applications. Besides the
described advantages of the model-driven approach in general
we focus on how to achieve the goal that the created
application complies as much as possible with the REST
constraints. In this respect, the main contributions of this paper
are (a) a set of meta-models for the design and realization of
REST applications, (b) a discussion of how these models can
help to create REST compliant applications, (c) an associated
role model and (d) a prototypical realization of the proposed
approach.

The paper is organized as follows. In section II we will
discuss how the REST constraints have been realized by the
architecture of the WWW and derive from this the motivation
for our work. In section III we will introduce a multi layered
model for REST applications, the base for our model-driven
approach for the development of REST applications, and also
the associated role model. In section IV we will discuss the
relation between the proposed set of meta-models and the
design and realization of REST compliant applications. In

section V we will introduce our graphical tool supporting the
proposed approach. In section VI we will provide an overview
of related work in relevant areas and in section VII we will
summarize our work and point out possible future work.

II. THE REST CONSTRAINTS AND THEIR IMPLEMENTATION

IN THE ARCHITECTURE OF THE WWW

The World Wide Web (WWW) is the biggest and best
known architecture following the REST architectural style [1].
More precisely, the REST architectural style has originally
been defined to document the rationale behind the architecture
of the WWW. In the following we will discuss, how each
constraint defined by the REST architectural style is realized in
the architecture of the WWW. We will show that some of the
constraints are already fulfilled by the Hypertext Transfer
Protocol (HTTP) [6] while others have to be explicitly
followed by application developers. The following
investigation will contribute to the conclusion that there is the
requirement for supporting and improving the design and
realization of REST services.

The Layered Client Server constraint demands the
separation between client and server components and
prescribes a layered system structure. This constraint is an
inherent part of the architecture of the WWW. It is reflected by
the HTTP specification defining corresponding roles, for
example client, server or proxy. The general concept of layered
systems is very well known and established in different
domains. This constraint can therefore be seen as fulfilled by
default. Building an application for the web, i.e. an application
that is used over the web, inherently implies building a layered
system.

The Cache constraint requires that response data can be
labeled as cacheable or not cacheable. Cache components can
then be placed anywhere between client and server components
to intercept, save and afterwards deliver cacheable data. In the
WWW this constraint is realized by the HTTP protocol. HTTP
defines several header fields that allow controlling the caching
of response messages. In addition, the HEAD method defined
by HTTP is used for the validation of stale resources.

The Stateless Server constraint in general has to be fulfilled
by applications hosted on a server. The application developer is
responsible to design an application to be stateless.
Nevertheless, the concept of stateful and stateless applications
has not been introduced by the REST architectural style, it is
also known from other domains. In Java EE development,
Stateless Session Beans represent stateless behavior while
Stateful Session Beans represent stateful behavior [7]. When
scaling a system based on parallelism, also known as scaling
out, statelessness is also an important aspect [8].

The Uniform Interface constraint prescribes that all
interactions have to be based on a fixed set of predefined and
well known methods, the so called uniform interface. This
constrained is directly fulfilled by the HTTP specification.
HTTP defines a fixed set of methods with their corresponding
semantics, for example GET, PUT POST and DELETE [6].
This set of methods forms the uniform interface of the WWW.
Despite this, it is nonetheless possible to use the HTTP
methods in a wrong way ignoring their predefined semantics.

Therefore, fulfilling the Uniform Interface constraint also
requires application developers to understand and properly use
the basic HTTP methods.

Besides the Uniform Interface constraint, the REST
architectural style defines four additional interface constraints.
The Identification constraint states that resources are
identifiable. This constraint is implemented by HTTP, where
resources are identified using URI [9].

The Manipulation through Representations constraint
introduces the distinction between a resource and its
representation. In the WWW, this concept is again realized by
HTTP. The payload of every HTTP message is typed; the type
of the message body is defined by a corresponding header field
using MIME media types [10]. Additional header fields for
content negotiation allow one resource to provide multiple
representations.

The Self Descriptive Messages constraint requires that a
message contains all information necessary to understand the
contained resource representation. This constraint is
implemented in HTTP by the separation of data in the message
body and metadata in the message header. HTTP uses MIME
media types to indicate the type of the resource representation
contained in the message body.

The Hypertext as the Engine of Application State
(HATEOAS) constraint defines that the state of a client
application is directly controlled by the resources it accesses.
The representation of a resource has to contain all the metadata
that is needed to know how a client application can interact
with the resource and if and how it is related to other resources.
The Hypertext Markup Language (HTML) fulfills this
constraint using hyperlinks and forms. Hyperlinks can be used
to navigate from one resource to related resources. Forms
define the possible interactions with a resource; they define
which data a client application may send to which resource.
Nevertheless, HTML is only one possible representation
format. It has been designed to present structured text and
media to humans. In the context of machine to machine
communication scenarios often different, mostly domain
specific, representations are used. Therefore, it is the
responsibility of the application developer to design
representations in a suitable way. Today, the HATEOAS
constraint is often not fulfilled. In contrast to all the other
constraints defined by the REST architectural style, the
concepts addressed by the HATEOAS constraint are new to
application developers.

The WWW is the reference architecture for the REST
architectural style. When developing a service for this
platform, we demonstrated that a subset of the REST
constraints is already fulfilled by standards the WWW is based
on, mainly the HTTP protocol together with URI and MIME.
Nevertheless, other constraints have to be fulfilled by the
service itself, hence by an appropriate service design and
implementation. The constraints mainly relevant in this context
are the uniform interface, i.e. the proper use of the HTTP verbs,
and the HATEOAS constraint. Empiricism shows, that the
fulfillment of these constraints is a non-trivial task as most
services on the WWW that claim to be RESTful, i.e. REST
compliant, are in fact not [2] [3] [4].

To increase the proper adoption of the REST principles and
to help service designers and developers to create REST
compliant services we see the need for formal concepts,
methods and suitable tool support for this task. In the
following, we will present our model-driven approach for this
challenge. We will show how model-driven software design
techniques can help to observe REST constraints and to design
and realize REST compliant services.

III. A LAYERED META-MODEL FOR REST APPLICATIONS

In this section we will introduce the set of meta-models
which is the basis for our approach for the model-driven
development of REST services. After giving a short overview,
we will discuss each meta-model in detail. We will describe its
main components, why and how it is separated from the other
meta-models and how it is positioned in the context of the
whole approach. We will also define an associated role model.
The main meta-models as well as their interrelations are shown
in Fig. 1.

Domain Model

Composite

Resource Model

Atomic

Resource Model

URL Model

Java

Code

Java

Code

Java

Code

JAX-RS

Application Model

JAX-RS

Application Model

JAX-RS

Application Model

WADL

Service Description

WADL

Service Description

WADL

Service Description

Fig. 1. Layered meta-model for REST applications

The Domain Model provides the possibility to model an
application independent of REST, based on a meta-model best
fitted to a certain application domain. The domain model is
then mapped to a composite or atomic resource model. The
Composite Resource Model allows grouping several atomic
resources into one composite resource to reduce the complexity
of a resource model. The Atomic Resource Model is the core
model allowing modeling an application in terms of resources,
their interrelations and the interfaces offered by them. This
resource model can be transformed into an REST Service
Description serving as an interface description for clients.

The URI Model defines the URI structure for the resource
model, i.e. by what URI(s) each resource is identified. One
important aspect of our approach is the separation of the
resource model from the URI model. This is directly influenced

by the HATEOAS constraint which, inter alia, demands to use
links (or any other metadata embedded in the representation of
a resource) to connect resources. As a consequence, a service
client should not make any assumptions about a URI structure
but rather rely on links and other metadata offered as part of
the resource representation. This is one key aspect of REST to
enable loose coupling between a service and its clients [11]. In
our approach and as shown in Fig. 1 this leads to the REST
service description being directly derived from the resource
model and independent of the URI model.

Based on a given resource and URI model a platform
independent Application Model can be derived. As there are
many target frameworks and platforms available, our approach
allows defining several application models. In the last step, the
application model will be transformed into application code
which can then be deployed on an appropriate target platform.

A. Domain Model

One of the main challenges in the design of REST
applications is the introduction of the paradigm of resource
orientation. In addition, the interaction with resources has to be
solely expressed using the uniform interface, which in case of
the WWW is defined by HTTP. Building a REST application
requires to model both, the structural as well as the behavioral
aspects of an application, in terms of resources and HTTP
verbs. In contrast to this resource-oriented approach, service-
oriented application design is mainly shaped by method- or
object-oriented application interfaces. Especially in the field of
web services the dominant interface description, the web
service description language (WSDL) [12], follows a
traditional paradigm by describing interfaces in terms of a set
of operation comprising input- and output data.

The top meta-model shown in Fig. 1, the Domain Model,
enables to model an application using a modeling paradigm
best fitted to the application domain as well as to the roles
involved in defining it. A domain expert responsible for
defining an application interface may be only familiar with, for
example, the concepts of object-orientation or entity-
relationship diagrams. The domain model is used to define an
application interface independent of REST. This allows taking
advantage of existing expert knowledge without the need to
introduce new modeling concepts.

After defining the domain model it will be transformed into
a resource model, either a composite or an atomic resource
model. This step typically involves overcoming a certain
impedance mismatch. The term impedance mismatch has been
originally shaped in the context of the mapping of object-
oriented structures to relational structures [13]. It describes the
fact that this mapping is non-trivial and not complete, i.e. the
meta-models of object-orientation and of relational data
structures are not mutually compatible. A common approach to
tackle this challenge is to automate the object-relational
mapping. This typically reduces the complexity of the mapping
task for the user and allows avoiding errors by implementing
well proven best practices and executing them in an automated
manner. Nevertheless, the mismatch between object-orientation
and relational data structures still exists; each mapping
typically includes tradeoffs and impurity.

Library

name

address

registerUser(…)

Book

title

author

reserve(…)

1..n

offers

Fig. 2. Domain model example

The same concept of an impedance mismatch can be
observed when mapping non resource oriented meta-models to
a resource oriented meta-model. In our approach, the domain
model is not prescribed; it is defined depending on the needs of
the application domain. In this paper and in our realization we
will assume the domain model to be based on a simplified
version of the object oriented model defined as follows. The
main components of the model are entities and relations.
Entities contain attributes and methods and can be connected to
other entities using relations. An example of a model based on
this meta-model is shown in Fig. 2. A Library has a name and
an address and offers a set of books. In addition, a library
provides a method to register new users. A Book has a title and
an author and offers the functionality to reserve a book for later
borrowing. For reasons of comprehensibility, we omitted
details like data types in this example.

Book

GET – Book

DELETE

POST - UpdateMsg

Book

title

loanPeriod

setLoanPeriod(…)

Book

GET – Book

DELETE

PUT - Book

POST /books/1

<setLoanPeriod>

3 days

</setLoanPeriod>

GET/books/1

200 OK

<Book id =„1“>

…

<LoanPeriod>

7 days

</LoanPeriod>

…

</Book>

PUT/books/1

<Book id =„1“>

…

<LoanPeriod>

3 days

</LoanPeriod>

…

</Book>

local update

Fig. 3. Updating strategies

In the following we will demonstrate the concept of
impedance mismatch based on the example shown in Fig. 3.
The operation setLoanPeriod() updates the loan period of a
book. The object Book will be mapped to a corresponding
Book resource. The operation setLoanPeriod() can be mapped
in two different ways. The first approach is using the HTTP
PUT method and shown in the right part of Fig. 3. In contrast

to the setLoanPeriod() operation, which requires only the new
loan period, the PUT method demands to provide the complete
resource representation. Therefore, updating the loan period
requires fetching the resource representation of a book using
GET, updating it locally, and writing it back using PUT. The
second approach is based on the HTTP POST method and
shown in the left part of Fig. 3. To update the loan period, a
corresponding update request is send to the book resource
using POST. There are several tradeoffs between these two
approaches. The first approach based on GET and PUT uses
only idempotent HTTP methods, i.e. in case of a network
failure they can safely be replayed. On the other hand, it
requires multiple interactions and may introduce concurrency
issues. The resource may be modified by a different client
between the GET and the PUT, also known as lost update
problem. The second mapping, based on the POST method,
requires only one interaction and avoids concurrency issues. As
a drawback, the POST method is not idempotent, i.e. it cannot
be replayed safely and also allows no caching.

By using a non-resource oriented domain model and an
automated mapping to the resource model, the domain expert
can simply define an abstract strategy like “prefer safe
operations” without the need to define each mapping in detail,
a tedious and potentially error prone task. In our approach,
these mapping strategies are defined in a separate model, used
as an external marker when executing the transformation from
domain to resource model.

B. Composite and Atomic Resource Model

For the resource model, we distinguish between a
composite resource model and an atomic resource model. The
composite resource model is an additional abstraction layer that
aims at supporting a modeler in the definition of complex
resource structures. The composite resource model is an
extension of the atomic resource model providing additional
composite resources. One composite resource represents a set
of interconnected atomic resources. Using composite resources
as modeling constructs can reduce the complexity of a resource
model and therefore helps to maintain and understand complex
resource structures. As shown in Fig. 1 a domain model can be
mapped to a composite resource model as well as to an atomic
resource model. Similarly, when not using a domain model one
can directly model a resource structure as a composite resource
model as well as an atomic resource model.

An example for a composite resource and its mapping to
atomic resources is shown in Fig. 4. In the upper part a
composite resource representing a long running computation
(LRC) is shown. Modeling resource structures for long running
computations is a common task in the design of REST
applications and there exist several best practices for this [14]
[15]. The atomic resource model for the composite resource
MyCalculation is shown in the lower part of Fig. 4. It consists
of three resources each supporting a subset of the uniform
HTTP interface. The Manager resource is used to retrieve a list
of all existing tasks or to start new computation tasks. For each
computation task, a Task resource is created. This resource
represents one long running computation, it can be used to
retrieve the current state of the computation or to modify or
cancel it. For each intermediate or end result produced by a

computation, a Result resource is created. Results can be
retrieved or, if no more needed anymore, deleted. This simple
example clearly demonstrates that the use of composite
resources can support the effective modeling and interpretation
of resource models. The number of resources is reduced, well
known structures are hidden and the automated transformation
from composite resources to atomic resources promotes the use
of well-known best practices in resource modeling and helps to
reduce modeling errors.

[LRC]

MyCalculation

atomic resource model

MyCalculation

Manager

GET - TaskList

POST - TaskDef

MyCalculation

Result

GET – Result

DELETE

MyCalculation

Task

GET – Task

POST – TaskAct

DELETE

composite

resource model

Fig. 4. Composite and atomic resource model example

C. Service Description

The Service Description is derived from the atomic
resource model. It is basically a view on the resource model
serving as an interface description for service clients. There
have already been made several proposals for the formal
descriptions of REST APIs; examples are WADL [16],
Swagger [17], or RestDesc [18]. Our approach generally
supports to generate any appropriate kind of service
description, for example depending on the target audience and
specific use cases. Nevertheless, most of today’s service
description languages cannot be generated solely from the
resource model. They often mix both, a description of the
resource structure as well as information about the URI
structure of a REST API.

As already mentioned before, one key aspect of our
approach is the separation of the resource model and the URI
model. This separation helps to realize the HATEOAS
constraint, demanding that any interaction is driven by the
resource representations themselves without any additional
information like the structure of URIs. The description of a
resource oriented service interface is exclusively derived from
the resource model and may also include information from the
domain model. In contrast, any service description derived by
this approach does not contain any information about the URI
structure or any platform or implementation specific details.
This increases the decoupling between client and server, one of
the key aspects of REST.

D. URI Model

The REST architectural style demands to uniquely identify
any resource by an URI. In our approach the resource model
describes a set of resources and their interconnections. The
URI model references this resource model and assigns an

appropriate URI structure to it. From a client perspective the
URI structure of an REST application should be irrelevant.
REST compliant clients are hypertext driven, they access well
known root resources and afterwards use links or any other
metadata like forms retrieved from resource representations to
interact with an application. Nevertheless, for the REST
application provider, the URI structure does matter. On the one
hand, it has to be assured that each resource is uniquely
identified by at least one URI. On the other hand, a well-
structured URI structure significantly helps in maintaining an
application.

The URI model is separated from the application model as
it is independent of the realization of the REST application
described by the resource model and the URI model. The use
of standards, like for example URI and HTTP, is one important
driver for the increasing adoption of REST for application
interfaces. The combination of the uniform interface, a
standardized resource identification mechanism and the
concept of resource representations achieves to keep any
implementation details away from the clients of a REST
application.

E. Application Models and Code

All meta-models described so far are, from the perspective
of model-driven software development, platform independent
models (PIM). The application models in contrast are platform
specific models (PSM); they depend on the selected target
platform and describe how the REST application modeled so
far can be realized for a specific platform. As there is a huge
amount of target platforms available, different programming
languages and for each of them possibly many frameworks, our
approach in general supports multiple application models. The
definition and selection of the appropriate application model
can, for example, depend on concrete use cases or non-
functional requirements.

The application model is finally used to generate the
application code, which can then be deployed and run on an
appropriate target platform. Although model-driven techniques
aim for a fully automated generation of application code, in
general there are parts of the application where developers have
to manually add specific application logic. The transformation
from application model to code mainly influences how a
manual adaptation of the generated code has to be performed,
if it is possible to regenerate the application code without
losing the manual adaptations and the general maintainability
of the application. As we focus on the general approach, the set
of meta-models and their relations, we will not further discuss
this transformation.

F. Associated Role Model

The set of meta-models introduced and discussed before
implies a role model we will introduce in the following. We
propose three roles, the Domain Expert, the REST Expert and
the Application Expert. Each of these roles is responsible for
modeling certain parts of a REST application. Assigning each
meta-model to a certain role supports to observe the principle
of separation of concerns.

The Domain Expert is responsible for the definition of the
domain model. As we do not prescribe any specific meta-
model for that, the domain expert has to be a specific expert for
the domain meta-model selected for a given use case. The role
of the domain expert is independent of REST and is, as the
domain model is an optional model, also an optional role
involved in the design and realization of a REST application.

The REST Expert is responsible for the definition of the,
atomic or composite, resource model as well as for the URI
model. This role has to be familiar with the concept of resource
orientation; it has to deeply understand the uniform interface,
e.g. the semantics of the HTTP methods and their proper use.
There are two different modeling scenarios a REST expert may
be facing. In the first scenario we assume a given domain
model which has been transformed into a resource model.
Although we aim at automatically generating the resource
model, there might be the need for manual adaptation,
extension or refinement of the generated resource model. This
can be caused by an incomplete transformation or by a domain
model not covering every aspect of an application. In this
scenario the task of the REST expert demands that he has at
least a basic understanding of the domain model. In the second
scenario we assume that there is no domain model available.
Nevertheless, there has to be any kind of application
description or a set of requirements provided to the REST
expert. This scenario implies that the REST expert has to be
able to understand the provided description or requirements as
he is responsible to transfer it to an appropriate resource model.
Besides the definition of the resource model the REST expert is
also responsible for the definition of the URI model. This
model is deeply coupled to the resource model so these two
models are assigned to the same role.

Finally, the Application Expert is responsible for the
definition of the application model and for the code generation.
This role has to be familiar with the selected target platform; it
has to know how to realize a prescribed REST application best
suited for a platform and has in addition to consider any given
non-functional requirements. Similar to the REST expert who
has to understand at least the basics of the domain model, the
application expert needs a basic understanding of the concept
of resource oriented applications.

IV. DISCUSSION

In section II we have discussed the REST constraints and
how they are fulfilled by the architecture of the WWW. We
identified the main responsibilities and challenges when
designing and realizing a service compliant with the REST
constraints. In section III we introduced our approach for the
model-driven development of REST services. In the following
we will discuss how this approach, comprising a set of meta-
models and transformations between them, helps to design and
realize services that comply with the REST constraints.

The main responsibilities of a REST service developer are,
as discussed in section II, the proper use of the uniform
interface defined by HTTP, the realization of stateless
applications and the observance of the HATEOAS constraint.
Our approach focuses on two of these three aspects, namely the

proper use of the uniform interface and the observance of the
HATEOAS constraint.

The proper use of the uniform interface, the verbs and their
associated semantics as defined by HTTP, is supported by two
different aspects of our approach. At first, the use of a REST
independent domain model together with an automated
transformation to the resource model automatically generates a
resource model that uses the uniform interface correctly. We
reduce potential errors in using the uniform interface by
allowing domain experts to work with a domain specific model
they are familiar with. As they are not responsible to define an
appropriate resource model (this is generated by the automated
transformation), they cannot create an erroneous resource
model. A second aspect also supporting the proper use of the
uniform interface is the composite resource model. Modeling a
resource structure using composite resources avoids the manual
repetition of often needed modeling tasks which may introduce
errors to the resource model. The composite resource model
provides an additional abstraction layer simplifying the
modeling of complex resource structures. The automated
mapping from composite resources to atomic resources assures
that at least for this part of the resource model, the uniform
interface constraint is always fulfilled.

In our approach, the HATEOAS constraint is directly
supported by the resource model. The resource model
inherently requires to explicitly modeling the relations between
the resources. In addition, the resource model is independent of
any URI structure; this is defined in a separate model and does
not influence the interface of the service. The URI model is
only used for the implementation of the application; it has no
dependency to the service description provided to clients. The
automated transformation from the resource model to the
application model assures that resource dependencies are
mapped to links.

Besides these REST specific aspects, the use of model-
driven techniques provides additional benefits like fewer
repetitive implementation tasks, fewer errors associated with
this, better maintainability of application code, portability
through model reuse and comprehensive and consistent
application documentation. On the other side, adopting a
model-driven approach for the design and realization of REST
services requires to thoroughly design the models and
transformations and to continuously adapt them based on
deficiencies that may be identified while using them [5].
Additional challenges related to model-driven software
development in general are, for example, the customization and
tailoring of the generated code, model evolution and
versioning, as well as the complexity of managing and
maintaining models as well as transformations.

V. REALIZATION

We implemented our approach as a graphical tool based on
the Eclipse IDE

3
 allowing modeling the models defined in

section III and also implementing the model to model
transformations as well as the code generation. An overview of
the tool is given in Fig. 5. The domain model (1) as well as the

3 http://eclipse.org/

resource model (2) can be defined using a graphical editor.
Other models, like the URI model (3), can be defined using a
simple tree editor. The transformations between the models, as
shown in Fig. 1, can be parameterized. When, for example,
transforming the domain model into a resource model, the user
can select different strategies for this transformation. In our
tool we realized this with Wizards guiding the user through the
parameterization process. The decisions taken by the user are
then stored in intermediate models. As shown in the upper right
part of Fig. 5 (4), this leads to a set of six models involved in
the process of defining a REST service and generating a
service description as well as an implementation (namely the
domain model, the resource model, the URL model, the
domain-resource transformation model, the resource-
documentation transformation model, and the resource-code
transformation model).

Our tool supports a domain model comprising entities and
relations as described in section III. For the service description,
the generation of a HTML based documentation is supported.
As application model we decided to generate a service
implementation based on the JAX-RS reference
implementation Jersey

4
. To increase usability, we integrated

the generation of the service description and of the application
code into the Eclipse IDE. As shown in Fig. 5 (4), service
description and service implementation are generated as Static
Web Project respectively as Dynamic Web Project. This allows
for as seamless user experience in the whole process of
designing and realizing a REST service.

The implementation of the models and the corresponding
transformations is based on the Eclipse Epsilon project

5
. The

models are defined in Emfatic, a language for defining EMF
models. The model to model transformations are defined using
the Epsilon Transformation Language (ETL) and the graphical
model editors are generated using the Eclipse Graphical
Modeling Framework (GMF). This allows us to conveniently

4 https ersey a a net

5 https://www.eclipse.org/epsilon/

model the meta-models and then automatically generate the
code for the graphical editors. The model to code
transformation is based on Java Emitter Templates (JET)

6
,

used to define templates for the generated java classes.

VI. RELATED WORK

The approach presented in this paper is mainly based on a
set of meta-models. There already exist several meta-models
related to the resources model. On the one hand, there are
common used REST service description languages, like for
example WADL or Swagger. In contrast to our approach, these
languages typically do not separate the resource model from
the URI model and therefore allow violating the HATEOAS
constraint. Nevertheless, it is possible to use the models
defined in our work to generate service descriptions in
languages like WADL or Swagger.

From a research perspective, there has also been some
interesting work regarding resource models. In [19] there has
been proposed a detailed meta-model for REST services. This
meta-model comprises structural aspects, resources and their
relations, as well as behavioral aspects, i.e. possible
interactions with resources. The resource meta-model used in
our work is currently a subset the one proposed in [19]. In this
paper we focus on the general approach, the whole set of meta-
models, their relations and the relation to REST compliance. In
future work we might extend our resource model considering
existing meta-models to obtain a more comprehensive resource
meta-model.

The idea of using model-driven techniques in the domain of
REST services is not new. In [20] a design process based on
models, intermediate models and transformations is presented.
This approach comprises a slightly different set of meta-
models. The domain model is represented by a functional
specification, mapped to a canonical information model, which

6 http://www.eclipse.org/modeling/m2t/?project=jet

Fig. 5. Graphical tool

4

3

21

is then transformed to a resource model. The resource model
presented in [20] does describe the resource structure. The
interaction capabilities of resources as well as the provided and
consumed representations and the URI structure are defined in
a separate service specification. However, there is no
separation between an abstract resource model providing a
description of a service and a realization focused model
comprising additional details like URI structures.

Besides the set of meta-models our approach also describes
transformations between these models. In [21] it is argued that
the development of correct and comprehensive model
transformation is at least complicated and sometimes even
impossible. Therefore, an iterative approach for the definition
of model transformations is proposed. Transformations are
assumed to be incomplete and imprecise; they are iteratively
completed and improved. This process is demonstrated and
validated using the design of a REST service as example. We
agree that the definition of appropriate transformations is a
non-trivial task. The transformations our approach is based on
are neither complete nor flawless. They are, however,
appropriate to show the feasibility of our approach and may be
improved and extended in future work.

VII. CONCLUSION AND FUTURE WORK

The design and realization of REST compliant services is
still a challenging task. Concerning the WWW as target
platform, the main challenges for REST service designers and
developers seem to be the adaptation of the paradigm of
resource orientation, the proper use of the uniform interface
and the consideration of the HATEOAS constraint.

To improve this situation, we propose to use model-driven
techniques and to specifically adapt them to the needs of
REST. For that, we introduced a set of meta-models, discussed
why we choose exactly this set and also proposed a
corresponding role model. Concerning the aspect of REST
compliance, the separation between the resource model and the
URI model helps to fulfill the HATEOAS constraint. We keep
URI information away from the resource model, i.e. the
interface description that is offered to clients, and solely use it
for implementation specific purposes. The usage of a domain
model as well as a composite resource model allows generating
the whole or at least parts of a resource model and therefore
supports the observance of the uniform interface constraint.
Finally we presented a graphical modeling tool that allows
modeling based on the introduced set of meta-models and that
also implements the transformations between these models.
Our tool allows to graphically design a REST service and to
automatically generate a HTML based service description as
well as a service implementation based on Java and JAX-RS.

For future work, we plan to extend the single meta-models.
For example, the resource model currently focuses on the static
resource structure. However, the dynamic interaction with one
resource as well as the dynamic relationships between
resources is as well an important part of a holistic REST
service model. Another aspect we are very interested in is a
systematic evaluation of our approach and realization. To
evaluate our work and to syndicate it with the objective
declared in the beginning, we will have compare present

development approaches for REST services and our approach
with respect to REST compliance. This demands, inter alia, an
appropriate method to capture the degree of REST compliance
of a service design and realization in a comparable manner.

ACKNOWLEDGMENT

This work was partially funded by the BMWi project
Migrate! (01ME11055).

REFERENCES

[1] R.T. Fielding and R.N. Taylor, “Principled design of the modern Web
architecture”, ACM Trans. Internet Technol. 2, May 2002.

[2] D. Renzel, P. Schlebusch, and R. Klamma, “Today’s top ‘RESTful’
services and why they are not RESTful”, Web Information Systems
Engineering - WISE 2012. Springer Berlin Heidelberg, 2012.

[3] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web apis
on the world wide web”, IEEE 8th European Conference on Web
Services (ECOWS), 2010.

[4] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, "REST and
Web services: In theory and in practice", REST: from Research to
Practice, Springer New York, 2011.

[5] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, "Model-driven
software development: technology, engineering, management", John
Wiley & Sons, 2013.

[6] R.T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, "Hypertext transfer protocol–HTTP/1.1.", RFC
2616, 1999, http://www.ietf.org/rfc/rfc2616.txt.

[7] R. Burke and R. Monson-Haefel, “Enterprise JavaBeans 3.0. Vol. 5.”,
O'Reilly, 2006.

[8] G. Hohpe and B. Woolf, “Enterprise integration patterns: Designing,
building, and deploying messaging solutions”, Addison-Wesley
Professional, 2004.

[9] L. Masinter, T. Berners-Lee, and R.T. Fielding, “Uniform resource
identifier (URI): Generic syntax”, RFC 3986,
http://www.ietf.org/rfc/rfc3986.txt.

[10] N. Freed and N. Borenstein, “Multipurpose internet mail extensions
(MIME) part two: Media types”, RFC 2046,
http://www.ietf.org/rfc/rfc2046.txt.

[11] R.T. Fielding, “REST APIs must be hypertext-driven”,
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven.

[12] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, "Web services platform architecture: SOAP, WSDL, WS-
policy, WS-addressing, WS-BPEL, WS-reliable messaging and more",
Prentice Hall PTR, 2005.

[13] C. Ireland, D. Bowers, M.Newton, and K. Waugh, "A classification of
object-relational impedance mismatch", Advances in Databases,
Knowledge, and Data Applications, 2009, DBKDA'09, IEEE.

[14] L. Richardson and S. Ruby, “RESTful web services”, O'Reilly, 2008.

[15] S. Tilkov, “REST und HTTP, Einsatz der Architektur des Web für
Integrationsszenarien”, dpunkt.verlag, 2009.

[16] M. J. Hadley, “Web application description language (WADL)”, 2006.

[17] “Swagger”, https://developers.helloreverb.com/swagger.

[18] R. Verborgh, T. Steiner, D. Van Deursen, J. De Roo, R. Van de Walle,
and J. G. Vallés, "Capturing the functionality of Web services with
functional descriptions", Multimedia tools and applications, 64(2), 2013.

[19] S. Schreier, “Modeling RESTful applications”, Proceedings of the
Second International Workshop on RESTful Design, 2011.

[20] M. Laitkorpi, P. Selonen, and T. Systa, “Towards a model-driven
process for designing restful web services”, IEEE International
Conference on Web Services, 2009 (ICWS 2009).

[21] M. Siikarla, M. Laitkorpi, P. Selonen, and T. Systä, "Transformations
have to be developed ReST assured", Theory and Practice of Model
Transformations , Springer Berlin Heidelberg, 2008.

All links were last followed on 14.04.2014.

	cover-IEEE
	ICWS 2014

