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Abstract—The Topology and Orchestration Specification for 

Cloud Applications (TOSCA) enables the description, 

provisioning, and management of complex cloud applications in a 

portable way. TOSCA, therefore, provides a comprehensive yet 

complex set of mechanisms that may hinder users from 

unleashing its power due to misusing or neglecting parts of those 

mechanisms. TOSCA has just been standardized and, although it 

seems to be highly adopted in industry, there is a lack of 

systematic research of its features and capabilities. In this work 

we discuss the design of basic building blocks for cloud 

applications, called node types, and show how they can benefit 

from a deep integration with TOSCA. We developed a generic 

architecture for the realization of TOSCA node types, show an 

implementation of this architecture and validate it based on a 

sample cloud application. Our work gives an insight into the 

capabilities of TOSCA with respect to enable the creation of 

portable cloud services based on a set of composable building 

blocks. 

Keywords—Cloud Application; Cloud Service; Cloud 

Management; Service Management; TOSCA 

I. INTRODUCTION 

Cloud Computing is still one of the hottest topics in 
strategic IT development of organizations [15]. While most 
organizations have identified proper IT operations that are 
suitable candidates for cloud environments, the migration, 
deployment, and management of those components and 
applications in cloud environments is still an open issue. The 
Topology and Orchestration Specification for Cloud 
Applications (TOSCA) [1] is a standard that addresses those 
issues and allows stakeholders to describe applications and 
their management operations in a portable fashion [16]. While 
TOSCA provides a very precise language to describe the high-
level topology components, i.e. the different building blocks of 
an application as well as their relations, and the management 
operations that should be provided by each node, there is a lack 
of description and support on how their implementations 
should look like. A proper implementation of those 
components, however, is crucial to benefit from all capabilities 
of TOSCA. 

To address that drawback this work presents a 
comprehensive design framework to develop composable 
building blocks that are used to describe applications and their 
management in TOSCA. Consequently, the contribution of this 
work is twofold: (i) we present a design framework that 
describes how building blocks, i.e. node types and their related 

implementation artifacts, for applications described in TOSCA 
should be implemented. This framework not only describes the 
implementations of single building blocks, but also 
mechanisms that allow communication between multiple 
building blocks to resolve given dependencies between them. 
(ii) we describe, how the developed building blocks are used in 
TOSCA in an imperative and declarative fashion. 

The remainder of this work is structured as following: 
Section II provides an overview on TOSCA. Next, section III 
describes the design-framework for implementing building 
blocks for TOSCA and section IV describes how to use them 
for deployment and management. Subsequently, section V 
presents the validation of the work based on a sample 
application, section VI summarizes the related work in this 
field and section VII concludes this work and provides an 
overview on future work. 

II. TOSCA 

The OASIS standard Topology and Orchestration Specification 
for Cloud Applications (TOSCA) was developed to create 
portable descriptions for automated management and 
provisioning of cloud applications [5][7]. The centerpiece of a 
TOSCA application description is the application topology 
which basically consists of a set of nodes and edges. Each node 
represents an individual component of a cloud application. This 
can be software components such as operating systems, 
application servers, virtual machines, etc. but also physical 
resources such as servers or network nodes. Edges define 
arbitrary dependencies between nodes, e.g. hostedOn or uses.  

The example topology presented in Fig. 1 describes the 
components and their dependencies required for hosting and 
running a Web application with the name NoteApp_L4T. This 
Web application is hostedOn an Apache Web server with name 
ApacheWS_L4T which is installed on an Ubuntu Linux 
operating system that is running on an Amazon EC2 virtual 
machine. The relations between all nodes, except between the 
nodes NoteApp_L4T and MySQL_L4T, are defined as 
hostedOn, i.e., the source of each hosted on relation serves as 
“runtime container” for the target node of the relation. The 
relationship connectsTo between the nodes NoteApp_L4T and 
MySQL_L4T indicates that the node NoteApp_L4T accesses the 
functionality of the node MySQL_L4T. 

In TOSCA, an application topology is described by a 
Service Template that is created by an Application Architect (a 



person that knows the overall cloud application). Such a 
service template is represented as a XML file where the nodes 
of a topology are represented by Node Templates and their 
relations by Relationship Templates. These templates may 
specify property values and policies that are required for the 
management and provisioning of the components they 
represent. Moreover, to enable the reusability of 
implementations and management operations of a component, 
they refer to a so called Node Type or Relationship Type, 
respectively. In Fig. 1, the name of the node type that a node 
template refers to is shown in brackets. Consequently, a 
node/relationship type is a model for an arbitrary number of 
node/relationship templates. The management operations as 
well as the property schemes that are part of node/relationship 
types are defined by Type Architects that are experts for certain 
components and possible relations between other components 
[2]. A node type for an Apache Web server may, for instance, 
define management operations for starting and stopping the 
server, installing Web applications, etc. A node type may also 
define suitable properties to specify the URL and the port 
where the Web server can be accessed. Using an associated 
node template, concrete values can be assigned to these 
properties. In our example in Fig. 1 the node template 
ApacheWS_L4T assigns the 'http://lt4server.com' URL to the 
property BaseURL and the value '80' to the property Port. 

 

Fig. 1. Topology of the Notebook Web Application 

Moreover, the Type Architect may also define requirements 
and capabilities for a node type. The requirements specify what 
features the node type requires from the node type it is related 
to. The capabilities on the other hand specify the features 
offered by a node type. All node types whose requirements and 
capabilities match can be related to each other in the topology. 
In our example in Fig. 1 the node type NoteApp_L4T may, for 
instance, define the requirement that the database must support 
data encryption. If the node type MySQL_L4T specifies in its 

capabilities that it offers encryption the node templates that are 
based on these node types can be interconnected.  

So far we just discussed how a topology can be described in 
an abstract way by creating service templates. However, to 
operate and manage a cloud application and its components 
executable software artifacts are needed. The TOSCA 
specification, therefore, distinguishes between Deployment 
Artifacts and Implementation Artifacts that have to be provided 
by Artifact Developers. Deployment artifacts (DAs) are the 
executables that represent the single components of a cloud 
application, i.e., for each node type at least one DA has to be 
specified. The DAs can be physical files such as virtual 
operating system images, Web archive (WAR) files, etc. 
However, a DA can be also a running service such as Amazon 
EC2. In this case the node type does only provide a reference 
(usually an URL) to a service. In our example topology the 
Ubuntu node type is implemented by an Ubuntu Linux Amazon 
Machine Image (AMI). 

An Implementation Artifact (IA) is an executable that 
implements the management operations specified by a node- or 
relationship type. An IA makes also use of the properties 
defined by the node type. Like DAs, IAs can be either provided 
as physical files along with the topology or as remote services. 
An IA can be implemented in different ways, e.g., as script or 
as Web service. Each node- or relationship type can also 
provide multiple IAs. For the node type MySQL_L4T there may 
be, for instance, two IAs defined, one is used for managing a 
MySQL database running on Windows and another is used for 
managing a MySQL database running on Linux.  

To provide an easy way to handle and exchange the definition 
files and the artifacts they can be packaged into a Cloud 
Service Archive (CSAR). As the structure of a CSAR file is also 
defined by the TOSCA specification it can be deployed on any 
TOSCA compliant runtime environment (TOSCA container). 
Note, that the same cloud application (i.e., service template) 
may be provisioned multiple times (e.g., on different Amazon 
EC2 machines). This implies that the same node- and 
relationship templates are instantiated multiple times. 
Furthermore in this paper, we refer to an instance of a node 
template as node instance and to an instance of a relationship 
template as relationship instance. 

III. NODE TYPE DESIGN 

One goal of this work is to evaluate the design of the 
TOSCA language regarding node types. We are examining the 
main modeling constructs provided by TOSCA, we show how 
they can be used and what benefits they provide. To achieve 
this, we created a set of node types that are tightly integrated 
into TOSCA. The design of TOSCA node types comprises 
several fundamental design decisions. In this section, we will 
discuss the basic design decisions of the Lego4TOSCA Node 
Types. 

A. Node Type Properties 

A TOSCA node type may contain the definition of a 
properties document using a XML Schema Definition (XSD), 
as shown in Fig. 2 on the left side. A node template may then 
contain an instantiation of this properties document, shown in 



the right part of Fig. 2. This allows an application architect to 
configure the details of a node template as part of the 
application topology. In our work, we identified three different 
types of properties, each representing a different use case for 
the properties document. 

Tomcat MyTomcat

Node Type Node Template

typeFor

<complexType name=„TomcatProperties“>

<sequence>

<element name=„port“ type=„string“/>

</sequence>

</compleyType>

Properties Definition Property Defaults

<properties>

<port>…</port>

</properties>

typeFor

 

Fig. 2. Node Type Properties 

Configuration Properties are set by the application 
architect as part of the definition of a service topology. They 
allow the detailed configuration of a node template. The 
management operations, realized by the implementation 
artifacts, read these properties and then act accordingly. As an 
example, the Lego4TOSCA node type “Apache Tomcat” 
defines a property named “Port” defining which port it shall 
listen to. Another example for a configuration property is the 
machine type for an Amazon EC2 node template defining 
which EC2 instance type will be used. 

Implementation Artifact Management Properties are used 
by the implementation artifact of a node template to 
persistently save data needed to realize its management 
operations. These properties are initially set by the 
implementation artifact of the corresponding node template and 
then read and changed during the lifetime of the corresponding 
Node Instance. As an example, the Lego4TOSCA Node Type 
“AWS EC2” defines a property named “Public DNS”. This 
property is initially set by the AWS EC2 implementation 
artifact when it creates and starts a new EC2 virtual machine. 
After that, the DNS name property is also accessed by other 
implementation artifacts. For example, the Apache Tomcat 
implementation artifact needs to know the DNS name of the 
underlying virtual machine to determine the public available 
URL of web applications hosted on a Tomcat server. 

General Management Properties are used, similar to 
implementation artifact management properties, to persist data 
needed for management tasks. The main difference is that 
general management properties relate to the management of a 
whole service topology whereas implementation artifact 
management properties only relate to the management of a 
single node of a service topology. Global management tasks in 
TOSCA are typically modeled as management plans. 
Therefore, general management properties are typically written 
and read by management plans to realize complex management 
tasks. As an example, an application architect can define a 
management plan that initiates some cleanup operations on 
several nodes of a service topology. This plan may then, after 
each cleanup operation that successfully completed, write the 
current timestamp to the properties document of the respective 
node instance. If the same management plan is then executed 

again sometime later, it will read this property to decide, if 
another cleanup is needed or if the last cleanup still holds. 

B. Interface Design 

A TOSCA node type can offer one or more interfaces, each 
providing one or more operations defining input and output 
parameters. These interfaces describe the management 
operations offered by a node type. Management plans are then 
used to orchestrate these basic management operations into 
higher level management tasks. For example, the provisioning 
of a complex service topology comprises the ordered 
provisioning and configuration of multiple nodes like virtual 
machines, databases or application servers. The basic 
provisioning and configuration operations are offered by the 
corresponding node types. They can be orchestrated by a 
management plan in order to provision and configure a whole 
service topology. 

The interfaces of the Lego4TOSCA node types basically 
comprise two types of parameters, technical parameters and 
functional parameters. Functional parameters are directly 
related to the management operation offered by a node type. In 
addition, the interfaces of the Lego4TOSCA node types 
contain two technical parameters. The callback address 
realizes asynchrony while the node instance ID uniquely 
identifies the target of the management operation. These two 
parameters are motivated and discussed in the following. 

Management operations in general can be long running. For 
example, starting a virtual machine usually takes some minutes 
and backing up a huge database may even take some hours. 
Offering these operations over a synchronous interface would 
block the caller for a long time as well as typically introduce 
technical problems related to timeouts. Therefore, the 
interfaces of the Lego4TOSCA node types are consistently 
defined as asynchronous interfaces based on a generic callback 
mechanism. 

The interaction with the asynchronous interface of the 
Lego4TOSCA node types is demonstrated in Fig. 3. The caller, 
for example a management plan, initially calls the needed 
management operation. In addition to the functional 
parameters, which are not explicitly shown in this case, the 
caller has to specify a callback address. This address will then 
later be used to return the result of the execution of the 
management operation to the caller. When called, the 
implementation artifact at first generates a Universally Unique 
Identifier (UUID) [8] identifying the current execution of the 
called management operation. After that, the implementation 
artifact starts the asynchronous execution of the management 
operation using a specific mechanism provided by Java, the 
executor service. For a better understanding, the interaction 
with the executor service has been simplified in this example. 
Directly after initiating the execution of the management 
operation, the implementation artifact returns the UUID 
generated before to the caller and thereby acknowledges the 
successful start of the execution of the called management 
operation. At this point in time, the management operation is 
still being executed by the executor service. The caller however 
is not blocked anymore and can continue to, for example, call 
additional management operations. At the time the executor 



service finishes the execution of the management operation, it 
returns the result to the callback address initially provided by 
the caller. The result message always contains the UUID 
identifying the specific execution of the called management 
operation. This way, the caller is able to correlate the received 
result message to the initial operation call. 

Caller Implementation Artifact

mgmtOp(URL callback,...)

UUID correlationID

returnResult(UUID correlationID,...)

Execute mgmtOp

Executor Service

mgmtOp(UUID correlationID, URL callback,...)

 

Fig. 3. Callback Mechanism 

Another common approach to realize asynchronous 
communication is the use of a messaging system [9]. In this 
case, the interaction between participants is realized by sending 
messages to and receiving messages from so called channels, 
either queues or pub-sub topics. In contrast to the callback 
mechanism realized by the Lego4TOSCA node types, the 
messaging based approach requires the presence of a 
messaging middleware. By choosing the callback mechanism, 
the Lego4TOSCA node types do not rely on the presence of an 
appropriate messaging middleware and are therefore self-
contained and portable. 

The second technical parameter of each Lego4TOSCA 
interface is induced by the fact, that implementation artifacts 
are defined per node type. As there are in general multiple node 
templates for one node type and likewise multiple instances of 
one node template, one implementation artifact realizes the 
management operations for all instances of the corresponding 
node type. Therefore, when calling a management operation of 
an implementation artifact, the caller has to provide some data 
identifying the target of each management operation call. 

VMNode Type

typeFor

<Interface>

<Operation name=„start“/>
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<Operation name=„restart“/>

</Interface>
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Fig. 4. Implementation Artifact managing multiple Node Instances 

The relation between implementation artifacts and the 
components managed by them is depicted in Fig. 4. The node 
type for a virtual machine (VM), as shown on the left side, 
offers an interface to manage virtual machines. In addition to 
the interface definition, the node type also provides an 
implementation artifact that implements the management 
operations defined by the interface. This node type can then be 
used by an application architect to model a service topology, 
possibly containing multiple node templates of this node type 
(as shown in the upper left side of Fig. 4). This service 
topology can thereafter be used to create several instances of 
the modeled service. In the example shown in Fig. 4 there are 
two instances of the modeled service created. Nevertheless, 
there is only one implementation artifact available to manage 
all instances of the virtual machine node type. 

Listing 1, line I, shows the signature of the restart operation 
of the virtual machine node type. The parameter “soft” is a 
functional parameter used to influence the detailed behavior of 
the restart operation. If defined this way, the call of this 
operation cannot be related to a specific virtual machine. An 
obvious solution would be to extend the interface of the virtual 
machine node type with additional parameters providing all 
data needed to identify and access a specific virtual machine 
(i.e. an instance of the corresponding node template). This is 
shown in line II of Listing 1. The parameter “vmid” identifies a 
specific virtual machine, the parameter “accesstoken” provides 
access credentials needed to access this virtual machine. 
However, defining the operation like this requires the caller to 
know and manage the details of how to identify and access a 
certain virtual machine. As discussed before (section III.A), 
this kind of data can also be stored in the properties document 
of a node instance. Taking advantage of this feature, the 
signature of the restart operation can be defined as shown in 
line III of Listing 1. The parameter “nodeID” identifies the 
node instance the operation call is related to. This ID can then 
be used by the implementation artifact to access the 
corresponding properties document. This document contains all 
data needed to access the targeted virtual machine, for example 
the identifier of the virtual machine and the access credentials. 

I. restart(Boolean soft) 

II. restart(Boolean soft, String vmid, 
        String accesstoken) 

III. restart(Boolean soft, String nodeID) 

Listing 1. Operation Signatures 

The Lego4TOSCA node types follow the approach shown 
in line III of Listing 1. The management operations of all node 
types contain a single parameter identifying the targeted node 
instance and therefore the properties document of the targeted 
node instance. This way, the signature of each operation is 
defined in a consistent way, providing a simple and intuitive 
way of identifying the target node. An application architect 
using this interface, for example when modeling management 
plans, can concentrate on the domain specific functional 
parameters and does not need to care about technical details 
how to identify and access node instances. 



C. Composability 

The Lego4TOSCA node types are a set of common used 
building blocks for cloud applications. On the infrastructure 
level, node types for the Amazon Web Services Elastic 
Compute Cloud (AWS EC2) and for the VMWare ESXi 
Hypervisor are provided. On the operating system level there 
are node types for Ubuntu Linux and Windows Server. The 
middleware level comprises node types for Apache Tomcat (a 
Servlet Container), the Apache Web server (a HTTP Server), 
the MySQL database and the WSO2 Business Process Server 
(an open source BPEL workflow engine). The complete set of 
the Lego4TOSCA node types is shown in Fig. 5. 

VMWare ESXi AWS EC2

VirtualMachine

Ubuntu Windows Server

VirtualMachine

OperatingSystem

OperatingSystem

Apache Tomcat

ServletContainer

Apache HTTP Server

WebServer

MySQL

SQLDatabase

WSO2 BPS

BPELEngine

Middleware Level

Operating System Level

Infrastructure Level
 

Fig. 5. Lego4TOSCA Node Types 

In order to provide a simple and intuitive way to model 
service topologies, the Lego4TOSCA node types are built to be 
easily composable and interchangeable. Although the 
management of, for example, a MySQL database differs 
significantly depending on if it is hosted on a Linux or a 
Windows system, the Lego4TOSCA node type for MySQL can 
be combined with the Ubuntu node type as well as with the 
Windows Server node type. The possible combinations of 
different node types can be expressed in TOSCA by defining 
corresponding requirements and capabilities. As depicted in 
Fig. 5, the node types “VMWare ESXi” and “AWS EC” both 
provide the capability “VirtualMachine”. On the other side, the 
node types “Ubuntu” and “Windows Server” require exactly 
this capability. This way, all possible combinations of the 
Lego4TOSCA node types are already part of their definition. 

Most of the management operation provided by the node 
types operations can only be realized depending on the usage 
context of the node type. For example, how to install and start a 
Tomcat server heavily depends on whether it is hosted on a 
Linux or a Windows system. The Lego4TOSCA node types 
realize this kind of operation by dynamically interacting with 
each other. An example is shown in Fig. 6 as (2) using dotted 
lines. When the implementation artifact of the Tomcat node 
type is called in order to start a Tomcat server, the Tomcat 
implementation artifact interacts with the implementation 
artifact of the underlying operating system. Starting a Tomcat 
server can for instance be realized by a shell script. Therefore, 
the Tomcat implementation artifact calls the corresponding 
operation of the Ubuntu implementation artifact. This 

implementation artifact then connects to the targeted Ubuntu 
system using SSH and runs the given script.  

Tomcat
IA

Tomcat
Server

hostedOn

Ubuntu
IA

Ubuntu
System

deployApp(…)

runScript(…)

SSH(…)

1

start(…)2
HTTP(…)

 

Fig. 6. Implementation Artifact Interaction 

Following this design principle, the Lego4TOSCA node 
types reuse already existing functionality provided by other 
node types and realize the separation of concerns principle. In 
the given example, the implementation of connecting to a 
remote system using SSH and running scripts is encapsulated 
by the Ubuntu implementation artifact. The Tomcat 
implementation artifact simply reuses this functionality offered 
by the Ubuntu node type as a management operation. 

D. Implementation Artifact Architecture 

The common architecture of the implementation artifacts of 
the Lego4TOSCA node types is shown in Fig. 7. This 
architecture realizes the design decisions discussed before. In 
the following, the architecture will be explained using the 
Tomcat implementation artifact as an example. 

In step 1 a management operation of the node type, realized 
by the corresponding implementation artifact, is called. The 
first parameter is the node instance ID identifying the target of 
the operation call. The second parameter is a functional 
parameter indicating that the Tomcat server should be started 
with an opened debug port 8000. The operation call is 
immediately acknowledged by returning the unique ID of the 
current operation execution (“897uhekfkj”). 

In step 2, the provided node instance ID is used by the 
properties retrieval component to fetch the properties 
document of the targeted node instance from the TOSCA 
container. This document contains all data needed to access 
and manage the Tomcat server. 

In step 3, the strategy selection component selects the 
appropriate implementation of the called operation, also called 
a strategy. This approach follows the strategy pattern, a 
generic mechanism to determine appropriate behavior 
depending on a given context [10]. The context for strategy 
selection is the usage context of the corresponding node type. 
In the example shown, starting a Tomcat server differs 
depending on what operating system it is installed. 

In step 4, the selected strategy component may interact with 
the implementation artifacts of other node types to realize the 
called management operation. In the example depicted in Fig. 
7, the underlying operating system is called to execute a shell 
script starting the Tomcat server. This operation call 
immediately returns the unique ID of the initiated operation 
execution (“asdsd45543j”). 



In step 5, the result of the script execution is returned to the 
Tomcat implementation artifact using its callback API. The 
result message contains the unique ID of the operation 
execution, allowing correlating operation calls and resulting 
messages.  

In step 6, the callback handler component processes the 
result message. It may either continue to interact with other 
node types, possibly using the strategy selection component 
again (6a) or it may also return a result message to the initial 
caller of the executed management operation (6b). 

E. Analysis 

In this section, we will discuss, how the presented design 
decision and the corresponding implementation artifact 
architecture influences the non-functional properties of the 
Lego4TOSCA node types. 

The usage of properties documents has multiple effects. 
The use of implementation artifact management properties to 
persist management related data enables to build stateless 
implementation artifacts. All data needed to execute a called 
management operation can be read from the corresponding 
properties document. Implementation artifacts do not need to 
store any data. Stateless components in general enable scaling 
by instantiating them multiple times and also allow creating 
more robust systems, as failed component instances can simply 
be replaced by other ones. The usage of configuration 
properties allows to ease the use of management operations 
and to build simpler management plans. When using 
configuration properties, the configuration of nodes, and 
therefore also the configuration of single management 
operations, is already contained in the service topology. The 
caller of a management operation does not need to provide any, 
or at least most of, functional parameters. This allows domain 
experts using the management operations to concentrate on 
what to do and not on how to do it in detail. 

The requirements and capabilities defined by the node 
types, in combination with the strategy pattern as the 

underlying implementation of this feature, enable simple 
composability. They hide the complexity related to technical 
dependencies between different node types from the 
application architect. Besides a more intuitive modeling 
experience, it is also possible to exchange nodes of a topology, 
as long they are compatible regarding their requirements and 
capabilities. 

IV. NODE TYPE USAGE 

In this section we discuss how the operations of node types can 
be used via their interfaces to perform management tasks and 
how the execution of these operations can be orchestrated by 
plans to manage the whole cloud application. 

The node types we designed provide a set of common 
management functions for the respective components they are 
representing. The implementation artifacts of the 
Lego4TOSCA node types expose these abstract operations as 
Web service operations. The signatures of the operations 
consist of two different types of parameters: (i) functional 
parameters and (ii) technical parameters. To ease the use of the 
management operations, each operation accepts two signatures 
– with and without functional parameters. If the operation is 
called without functional parameters the implementation of the 
operation retrieves the values of the functional parameters from 
the properties document of the respective node. The technical 
parameters are mandatory for each management operation and 
have already been introduced and discussed in section III.B. 

Recall that all operations may be invoked without a 
functional parameter if the expected value can alternatively be 
read from the node’s properties. This frees the management 
plans from carrying too much redundant information but gives 
the flexibility to specify certain properties during instantiation 
or runtime of a plan. 

The available management capabilities (represented by the 
available management operations) of a cloud application can be 
processed in two different ways: (i) declaratively, by using the 
TOSCA runtime environment or (ii) imperatively, by using 

Fig. 7. Lego4TOSCA Implementation Artifact Architecture 
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pre-defined management plans. Due to its strong dependencies 
to TOSCA runtime environments we will only briefly explain 
the declarative approach in this work. 

In the declarative approach there are no management plans 
provided. The TOSCA runtime environment determines the 
operations and their execution order to provision or manage a 
cloud application solely from the available information within 
the service template, i.e. from the node templates and the 
relationship templates [2]. This requires the TOSCA runtime to 
“know” about the functionalities of all node types and 
relationship types within a service template and how to use 
them to accomplish management tasks. The management 
knowledge is, at least partly, encoded in the runtime 
environment. In the declarative approach the data required to 
manage a cloud application (e.g. Ports, URLs, etc.) are solely 
read from the node’s properties. As the declarative approach 
also utilizes the operations of node types, the LegoTOSCA 
node types presented in this work can also be used with this 
approach. From an application architect perspective the 
declarative approach has the advantage that he just needs to 
create and maintain the topology of the cloud application, but 
he does not need to care about the orchestration of the 
management operations. Our experiments revealed that a 
declarative approach is usually just suited for simple 
management tasks that can be inferred from the topology. For 
more complex management tasks on the cloud application we 
suggest using management plans. 

Imperative processing using management plans is more 
flexible for the provisioning and management of a cloud 
application. It is called imperative processing because a plan 
defines precisely “how” a cloud application has to be managed 
[2]. Hence, a plan specifies what operations of the different 
node types have to be called, in which order and what data are 
required to setup and manage the cloud application. Thereby, 
for different management tasks different plans can be defined. 
For instance, the plan for provisioning the Notebook 
Application shown in Fig. 1 would first setup an EC2 instance 
with Ubuntu Linux as operating system by using the 
management operations of the Amazon EC2 node type. Then 
the management operations of the Apache Web server and 
MySQL node types would be used to install them on the 
Ubuntu system. The management operations of these node 
types would afterwards be used to deploy and setup the 
Notebook Application. Since the implementation artifacts are 
implementing the actual logic of the management operations 
the plans are kept simple. They are just defining the execution 
order of the management operations as well as the required 
information. The application of the strategy pattern that is part 
of our approach leverages this simplicity even more: Plans can 
focus on a single node type but are freed from required logic 
that distinguishes between different node type stacks. For 
instance, a plan does not need to implement different 
management logic for an Apache Web server depending on if it 
is deployed on Windows or on Linux. We used BPEL [11] as 
workflow language for implementing the management plans 
because it offers many language constructs for implementing 
asynchronous service interaction which enables an easy 
integration of our asynchronous operations in the plans. 

V. VALIDATION 

For validation purposes, we used the Lego4TOSCA node 
types to model and provision a sample cloud service as shown 
in Fig. 1. The depicted Notebook Application is a simple PHP 
application allowing creating, editing and deleting text notes. 
These notes are persistently stored in a MySQL database. 

EC2.startVM(…)

Ubuntu.runScript(…)

WebServer.install(…) MySQL.install(…)

WebServer.deployApp(…) MySQL.createDB(…)

 

Fig. 8. Notebook Application Build Plan 

In a first step, we modeled the service topology using the 
Winery application, an open source modeling tool for TOSCA 
cloud services [12]. Winery is an open source project hosted at 
the Apache Foundation

1
 and is in addition available online

2
 for 

testing purposes. After that, we created several BPEL plans 
realizing the provisioning, management and de-provisioning of 
the sample service topology. The topology model, the plans 
and the implementation artifacts are packed in one CSAR file. 

As runtime environment for the created CSAR file we used 
the OpenTOSCA container [4], an open source TOSCA 
container

3
. The OpenTOSCA container deployed the 

Lego4TOSCA implementation artifacts on a Tomcat server and 
the contained BPEL plans on a WSO2 Business Process 
Server. After that, we were able to automatically create 
instances of the Notebook application by running the build plan 
depicted in Fig. 8. 

For further validation and to extensively test the 
Lego4TOSCA node types we created some variants of the 
service topology described so far. To test the composability 
feature and the underlying strategy pattern, we exchanged the 
EC2 node with a VMWare ESXi node and also the Ubuntu 
node with a Windows Server node (in all possible 
combinations). The resulting CSAR files also worked as 
expected and the exchange of nodes in the service topology had 
only minor effect on the build plans. 

VI. RELATED WORK 

Due to the fact that TOSCA has been published quite 
recently, there is only little work already conducted related to 
it. In [6] an approach is developed to integrate existing cloud 
management solutions based on Chef

4
 with TOSCA. Similar to 

                                                           
1 https://projects.eclipse.org/projects/soa.winery 
2 http://winery.opentosca.org/ 
3 http://www.opentosca.org/ 
4 http://www.opscode.com/chef/ 



our work, it is shown how build node types for TOSCA. In 
contrast, the focus of this paper is how to reuse and adapt an 
existing management approach including already existing 
artifacts. The deep integration with TOSCA and the possible 
benefits provided by it are not covered in this work. 

In [13] the architecture of a cloud management system is 
introduced. The operations to manage cloud resources are 
provided over a RESTful API and an additional graphical user 
interface based on this API. The caller of a management 
operation interacts with a manager component which in turn 
interacts with the managed elements, for example a virtual 
machine or a web server. Similar to the Lego4TOSCA node 
types, the interaction between the manager component and the 
managed elements is based on a callback mechanism. In 
contrast, it is required that each manageable component hosts a 
special agent component. 

In [14], a method enabling the modeling and automated 
provisioning of application topologies is presented. Similarly to 
TOSCA, complex applications are modeled using a graph 
based approach. In addition, this work focuses on the definition 
and resolution of so called variability points describing needed 
configuration activities during the setup of an application. 
Another focus is the realization of an automated application 
topology deployment, therefore following a declarative 
approach. 

VII. CONCLUSION AND FUTURE WORK 

As a core result, this paper presents a comprehensive design 
guide for composable building blocks for cloud applications 
based on TOSCA. We started with an extensive discussion of 
several TOSCA features like properties documents and 
requirements and capabilities. We showed how they are used 
by the Lego4TOSCA node types and what benefits a deep 
integration with TOSCA can provide. As a result of our design 
decisions, the Lego4TOSCA node types are an easy 
composable and easy to use set of modeling artifacts to create 
complex cloud service topologies. In addition, the 
corresponding implementation artifacts are realized as stateless 
components and therefore provide a scalable and robust 
implementation of the provided management operations. We 
were able to validate our work using existing open source tools 
from the TOSCA domain like Winery and OpenTOSCA. We 
created a sample application and conducted extensive tests. 

One aspect currently not supported by our node types is 
policies. In TOSCA, policies provide a means to express non-
functional requirements to the nodes of a service topology. To 
realize these non-functional requirements at runtime, we aim at 
extending the Lego4TOSCA node types to be policy aware. 
Basic concepts regarding policies in TOSCA in general and 
also in combination with Lego4TOSCA have already been 
published [3]. 

As a more technical aspect we are also interested in 
benchmarking the Lego4TOSCA node types. A first approach 
would be to determine, how many management operations can 

be handled in parallel by a single implementation artifact. As 
the implementation artifacts are hosted by a TOSCA container, 
for example OpenTOSCA, and the properties documents are 
also managed by this container, we believe that a meaningful 
benchmark also has to include the performance of the TOSCA 
container. 
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