
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{vukojevic, haupt, karastoyanova, leymann}@iaas.uni-stuttgart.de

Service Selection

for On-demand Provisioned Services

Karolina Vukojevic-Haupt, Florian Haupt, Dimka Karastoyanova, and Frank Leymann

© 2014 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-34

author = {Karolina Vukojevic-Haupt and Florian Haupt and

Dimka Karastoyanova and Frank Leymann},

title = {Service Selection for On-demand Provisioned Services},

booktitle = {Proceedings of the 18th IEEE International EDOC Conference

EDOC 2014, 01. – 05. September 2014, Ulm, Germany},

year = {2014},

pages = {120 - 127},

doi = {10.1109/EDOC.2014.25},

publisher = {IEEE}

}

:

Institute of Architecture of Application Systems

Service Selection
for On-demand Provisioned Services

Karolina Vukojevic-Haupt, Florian Haupt, Dimka Karastoyanova, and Frank Leymann
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract—Service selection is an important concept in service
oriented architectures that enables the dynamic binding of
services based on functional and non-functional requirements.
The introduction of the concept of on-demand provisioned
services significantly changes the nature of services and as a
consequence the traditional service selection process does not fit
anymore. Existing approaches for service selection rely on the
always on semantic of services, an assumption that is not valid
for on-demand provisioned services. We tackle this problem by
adapting the traditional service selection process and by defining
an additional step covering the changes introduced by the
concept of on-demand provisioning. Our solution comprises an
extended architecture for on-demand provisioning, a metamodel
for a service registry, and a detailed definition and discussion of
the adapted and extended service selection process. The work
presented in this paper allows keeping the advantages of dynamic
service binding at runtime and combining them with the
advantages of Cloud computing exploited through the concept of
on-demand provisioning.

Keywords— on-demand provisioning and deprovisioning;
service selection; service package selection; eScience; Cloud; SOC;

I. INTRODUCTION

The main building blocks in service oriented architectures
(SOA) are services, loosely coupled components providing
functionality over a unified interface. To realize more complex
functionalities, different services can be reused and combined.
This concept is called service composition. Usually, service
compositions are modeled (modeling time), then deployed on a
suitable execution environment (deployment time) and finally
executed by this environment (run time). In service oriented
computing (SOC) [2] the concept of publish-find-bind aims to
decouple service providers and service consumers. A service
provider registers all services it offers in a service registry
(publish). A service consumer, which needs a specific service,
then searches the service registry for a suitable service (find).
Afterwards, he can start sending requests to the selected service
(bind). The step of choosing the right service is called service
selection. The search for a suitable service and the binding to
this service can be performed at modeling time, at deployment
time, or at run time of a service composition. When the service
selection is done at modeling time or at deployment time, this
binding strategy is called static binding. Nevertheless, if the
service selection is done at run time, this binding strategy is
called dynamic binding. Using the binding strategy dynamic
binding, the needed services are at modeling time described

with functional and non-functional requirements. At run time,
for each service call the corresponding requirements are
forwarded to a middleware component, the so-called enterprise
service bus (ESB) [3]. This component carries out the service
selection, based on the passed functional and non-functional
requirements, and finally binds the service call to a suitable
service.

A basic assumption in SOC is that services are always on
and available. In traditional SOA scenarios from the business
domain, services are typically used continuously. From a
service provider point of view, it is therefore absolutely
appropriate to make the service constantly available. However,
there exist domains where services are used rarely and not
regularly, e.g. simulation workflows. In such cases, it is not
suitable for a service provider to make his services constantly
available as this means wasting resources. In our work, we
consider the eScience domain, especially scientific experiments
modeled as simulation workflows [5][6]. Simulation
workflows are typically executed irregular and rarely. When a
simulation workflow is executed, the used services however
require significant resources. For the time the simulation
workflow is not running, the services are not needed, but the
corresponding allocated resources are furthermore blocked.
Altogether, this leads to a bad utilization of services and the
corresponding resources.

In our previous work we addressed this deficit using Cloud
technologies. We developed an approach and architecture for
the on-demand provisioning and de-provisioning of workflow
execution middleware and services for simulation workflows
[1]. In this approach, services including their underlying
middleware and infrastructure are provisioned not until they
are needed, and de-provisioned when they are not needed
anymore. As simulation workflows are typically long running,
the additional provisioning time is not expected to affect the
execution time noticeably. In such an on-demand provisioning
scenario, the traditional service selection process from SOC
can no longer be applied. There are two main reasons for this.
First, in our approach we use two fundamentally different
service types, traditional services with always on semantic
(provisioned services) and services which are provisioned on
demand (not provisioned services). Second, not provisioned
services are provided as service packages. A service package
contains all artifacts needed to provision a service
automatically. Therefore, the service selection process has to
be extended with an additional service package selection step
determining a suitable service package.

To solve the problem of service selection for on-demand
provisioning and de-provisioning of services, in this paper we
contribute (1) an extension of our existing architecture to
enable a sophisticated selection of not provisioned services
with different types of service packages, (2) a metamodel for a
service registry supporting the discussed scenario, and (3) the
definition of a service and service package selection process for
the on-demand provisioning and de-provisioning of services.

The rest of the paper is organized as follows. In section II
we present our previous architecture for the on-demand
provisioning and de-provisioning of workflow execution
middleware and services for simulation workflows. In section
III we extend this architecture to enable service selection also
for not provisioned services. In section IV we first introduce
our metamodel for the service registry and then we define our
service and service package selection process. Some aspects of
this new selection process are discussed in detail in section V.
An overview about related work is given in section VI and we
finish the paper with a summary and outlook in section VII.

II. BASIC ARCHITECTURE

In our previous work we have developed the architecture of
a system supporting our approach for on-demand provisioning
and de-provisioning of workflow execution middleware and
services needed for the execution of (simulation) workflows
[1]. We present the architecture in Fig. 1, where we distinguish
between components run locally on the user’s machine and the
components run on a Cloud. We also show which components
are used during which life cycle phases of the involved
applications (i.e. simulation workflows, execution middleware,
services). The life cycle phases we consider here are the
modeling of simulation workflows, the middleware
runtime/execution phase and the service runtime phase.

A. Modeling Phase

The architecture components used during the modeling
phase are the modeling and monitoring tool [8] and the
bootware running locally on the user’s machine, and the
service package repository, the service registry and the user
registry running in a Cloud environment. These components
are active during all life cycle phases. In the modeling phase,
the modeling and monitoring tool is used to model workflows.
The service registry and the service package repository provide
all services that can be used by the workflows. The bootware is
utilized by the modeling and monitoring tool to start the next
life cycle phase, the middleware runtime phase.

The bootware is the basic piece of software needed to
provision the workflow execution middleware (in a Cloud
environment). Instead of provisioning the whole workflow
execution middleware in one step, we follow a two-step
bootstrapping process. In the first step (Fig. 1, step 1) the
bootware provisions the provisioning engine and its underlying
middleware and infrastructure to a Cloud environment. This
reduces the complexity of the bootware component by limiting
its capabilities to the provisioning of one special component -
the provisioning engine. The provisioning engine itself is a
generic component able to provision any kind of service and is
a rather complex system [9]. In the second step, the bootware

calls the provisioning engine that provisions the workflow
execution middleware in a Cloud environment.

The service package repository contains service packages.
Services that are available in the service package repository are
always registered in the service registry. The service registry is
a central data store containing information about all available
services and enabling their discovery. The information
provided includes functional and nonfunctional properties of a
service and a reference to the corresponding service package in
the service package repository. The information in the service
registry is not only about services stored in the service package
repository but also about services that are already available
(and provided by a third party).

We distinguish between two kinds of services. The first
kind of service is provided by a service provider, who also
manages the service. The scientist can use this service, but he
has no knowledge about the implementation and the underlying
middleware and infrastructure. We call this kind of service a
provisioned service. For the second kind of service all artifacts
needed to provision the service and the underlying middleware
and infrastructure can be accessed by the scientist. This kind of
service we call a not provisioned service. Provisioned services
follow the always on semantic, they are running and ready to
use. Not provisioned services have to be explicitly provisioned
before they can be used. In our previous work we worked out
an extended classification for service binding strategies [1].
Typical strategies for static and dynamic service binding rely
on provisioned services. To enable the on-demand provisioning
and de-provisioning of services including their underlying
middleware and infrastructure we defined a new service
binding strategy which we call dynamic binding with software
stack provisioning. This service binding strategy is based on
not provisioned services.

A not provisioned service can furthermore be a dedicated or a
shared service. A dedicated service can or may only process
one service call at the same time. If several service calls are
sent to the same dedicated service, for every service call we
have to provision a new instance of the service including its
underlying middleware and infrastructure. An example for such
a dedicated service can be a simulation service needing a lot of
compute resources without having any elasticity capabilities. A
shared service can in contrast process several service calls at
the same time.

Considering the characteristics of the service types
mentioned above, the service registry stores specific
information for each type of service. Independent of the service
type a link to the interface description is available. For
provisioned services the endpoint is already known and
therefore stored. For not provisioned services the service
registry contains a link to the corresponding service package in
the service package repository and if the service is dedicated or
shared. In addition, the number of currently running instances
is also stored.

B. Middleware RuntimePhase

The workflow middleware runtime phase is supported by
the components of the simulation workflow execution
middleware provisioned at the end of the modeling phase. In

our example these are the SimTech SWfMS [7], the ESB and
the provisioning engine. These components interact with the
components used already in the modeling phase. The ESB
receives service calls from the workflow engine to invoke
services on behalf of workflow activities. For provisioned
services the ESB selects the endpoint of a service from the
service registry and forwards the service call. For not
provisioned services the ESB interacts with the service registry
and the provisioning engine. First it gets all information needed
to provision the service, like a reference to the service package
repository or if the service is dedicated or shared, from the
service registry. Then the ESB calls the provisioning engine to
provision the service (which starts the runtime phase of the
service life cycle). The provisioning engine gets all needed
artifacts like the implementation of the service from the service
repository and uses these artifacts to provision the service
including its underlying middleware and infrastructure (Step 3
in Fig. 1). After the service provisioning is done, the ESB
forwards the service call to the newly provisioned service.

C. Service RuntimePhase

During the service runtime phase the services are executing
the functionality they are implementing. At the beginning of
this phase all components of our architecture shown in Fig. 1
are provisioned and running. As soon as a service has finished
its computation the result is returned to the ESB, which in turn
sends it back to the workflow engine.

D. Deprovisioning of Services and Middleware

For dedicated services the ESB then calls the provisioning
engine to de-provision the service. For shared services the ESB
first checks if the service is still processing other service calls.
Only if the service is idle it will be de-provisioned.

After the workflow engine has finished the execution of all
running workflows, the bootware initializes the de-
provisioning of the workflow execution middleware. In the
first step the provisioning engine de-provisions all other
middleware components. In the next step the bootware de-
provisions the provisioning engine.

III. EXTENDED ARCHITECTURE

So that a service can be automatically provisioned in our
architecture, all artifacts needed for the provisioning have to be
available as a service package. Such an artifact is for example
the topology of the service, i.e. a description of which
applications, middleware and infrastructure are required to
operate a service and how these are connected. Other artifacts
are the implementations of each component respectively the
references to these implementations. A service package can be
available in different established formats such as Chef1,
Puppet2 or TOSCA [4]. For each of these formats there exist
provisioning engines which can handle the corresponding
format. For example, a service package in Chef format can be
read and automatically provisioned by a Chef Provisioning
Engine. However, to provision a service package in TOSCA
format, a special provisioning engine for TOSCA is needed. In
our previous realization of the architecture described in section
II we use TOSCA for the description of the service packages,
OpenTOSCA [10] as provisioning engine and Amazon AWS3
as Cloud environment. We could have also realized our
architecture using a different service package format and a
different provisioning engine, for example Puppet and a Puppet
provisioning engine. Our architecture is designed to be generic,

1 http://www.getchef.com/

2 http://puppetlabs.com/puppet/puppet-open-source
3 http://aws.amazon.com/

Fig. 1. Basic Architecture for On-demand Provisioning

Database

L
o
c
a
l

C
lo

u
d

Service

Package

Repository

Auditing
Messaging

System

Workflow

Engine

Enterprise

Service

Bus

Service

Registry
Service X1 Service Xn…

Modeling &

Monitoring

Tool

MODELING TIME

MIDDLEWARE RUNTIME

SERVICE RUNTIME

provision /

deprovision

workflow

middleware

provision / deprovision

service(s)User

Registry

provision / deprovision

provisioning engine

Provisioning

Engine

1

2 3

Bootware

Service Provider

upload

service
register service

use

Scientist

Legend

message flow

deployment

logical group

function call

example SWfMS

generic

there is no dictation about a concrete provisioning format and a
concrete provisioning engine. Only upon realization the
decision for a concrete format has to be made.

As discussed, our previous architecture does not support
multiple provisioning formats. However, when for example a
scientist models a workflow he may use services provided by
several other scientists. It is quite possible, that these scientists
use different formats for their service packages. In Fig. 3 we
explain this issue in more detail. On the left part of the figure a
workflow including two communication activities C and D is
shown. Activity C calls a service implementing the interface x
and activity D calls a service implementing the interface y. On
the right part of the figure a service package repository is
depicted. This repository contains a service package in TOSCA
format which contains a service implementing the interface x.
Moreover, it contains a service package in Puppet format as
well as a service package in Chef format, both implementing
the interface y. Since activity C of the depicted workflow calls
a service which is only available as a TOSCA service package
and activity D calls a service which is not available as TOSCA
service package, to provision these two services two different
provisioning engines are needed.

A

C

E

B

D

x

y

Service Package Repository

x y

TOSCA

Service

Package

Puppet

Service

Package

Chef

Service

Package

Fig. 3. Different Service Package Types

As a consequence, we extend our architecture to support the
execution of workflows that call services that are available in
different service package formats and therefore have to be
provisioned by different provisioning engines. In Fig. 2 we
show the excerpt of our architecture in which we realized this
extension. In our previous architecture there was a direct
information flow between the ESB and the provisioning
engine. In our extended architecture we introduce a new
component, the so-called provisioning manager (depicted in

the center of Fig. 2, initially described in [14]). This component
decouples the ESB from the provisioning logic. The ESB
receives service calls and is responsible to forward them to
suitable services. The provisioning manager in contrast handles
all tasks related to the provisioning of services. When receiving
a reference to a service package from the ESB, the
provisioning manager retrieves the corresponding service
package and its meta data from the service package repository.
Depending on the format of the service package, the
provisioning manager decides which provisioning engine is
able to process this service package and finally forwards it to
the selected provision engine.

The architecture of the provisioning manager is modular, as
the provisioning manager can be extended by plugins. A plugin
connects a provisioning engine to the provisioning manager.
The plugin declares to the provisioning manager which service
package format and which target Cloud environment is
supported by the corresponding provisioning engine.

IV. SERVICE AND SERVICE PACKAGE SELECTION

Using the binding strategy “dynamic binding with software
stack provisioning” changes the service selection process. On
the one hand the selection process has to consider both,
provisioned services as well as not provisioned services. On the
other hand for not provisioned services an additional service
package selection is needed. Before introducing the service and
service package selection process, we will present the
metamodel for the service registry used in our approach. The
ESB interacts with the service registry based on this
metamodel.

A. Metamodel for Service Registry

The metamodel of the service registry is depicted in Fig. 4
as entity relationship diagram (in Chen notation). In this
section we will only present the parts of the metamodel that are
relevant in context of this paper. The service registry provides
a set of service configurations. A service configuration
describes the combination of a service interface, i.e. the
functional properties of a service, and a set of nonfunctional
properties, the so-called quality of services (QoS). QoS are
modeled as simple name-value pairs. Although we consider

Fig. 2. Extended Architecture for On-demand Provisioning

Messaging

System

Workflow

Engine

Enterprise

Service

Bus

Service X1 Service Xn…

provision / deprovision

service(s)

Provisioning

Engine

[PE1]

Provisioning

Manager

[PM]

 PE1

 PE2

Service Y1 Service Yk
…

Provisioning

Engine

[PE2]

provision / deprovision

service(s)

Legend

message flow

deployment

logical group

function call

example SWfMS

generic

 PEi

plugin for
provisioning
engine PEi

service selection as an important step for dynamic binding, the
details of how requirements and properties are matched is not
in the focus of our work and there already exist several
sophisticated approaches for this [15][16]. The metamodel
allows multiple service configurations with the same interface
but different QoS. A service call, which generally consists of
functional and nonfunctional requirements, can be mapped to
at most one service configuration. The part of the metamodel
described so far represents a service on an abstract level. In
addition the service registry also provides information on how
to access specific service instances.

ServiceInterface

S_Id Name
Funct.

description

ServiceConfiguration

n
1

QualityOfService

Id Property

has

nm

SC_Id

ServiceProvider

SP_Id

provides
n 1

ServiceOffer

SO_Id

1

n

ServicePackage_Id

SharedService DedicatedService

Is-aEP

DedicatedServiceInstance

DSI_Id

are runningare running

1

n

SharedServiceInstanceSSI_id

n

1

ProvisionedService

number of
service calls

RepositoryType

idle

NotProvisionedServiceInstance EPUser owns

1 n

Value

NotProvisionedService

has

abstract

specific

Is-a

Is-a

has

Fig. 4. Metamodel for Service Registry

For a service configuration there can exist multiple service
offers. A service offer is offered by exactly one service
provider. A service configuration therefore can be offered by
multiple service providers and a service provider can offer
multiple service configurations. We distinguish two types of
service offers. A provisioned service represents a traditional
service as known from SOC, i.e. it is always on and available.
For such a service an endpoint is provided in the service
registry. A provisioned service is a functionality provided at an
endpoint with certain nonfunctional properties, everything else
is transparent. In contrast, a not provisioned service at first has
to be explicitly provisioned before it can process service calls.

Consequently for a not provisioned service instead of an
endpoint a service package reference is provided which points
to a service package repository. In the service package
repository all data and metadata needed to provision a not
provisioned service is stored. Our metamodel allows that a
service configuration can be provided by multiple not
provisioned services, i.e. for one service configuration there

can exist multiple service packages. As one service package
can be provisioned multiple times, for a not provisioned service
there can exist multiple not provisioned service instances
which are also managed in the service registry. In addition for
not provisioned services we distinguish between shared
services and dedicated services and consequently between
shared service instances and dedicated service instances. For
shared service instances the service registry stores the number
of currently processed service calls. This information is
necessary to determine if a shared service instance is still
needed or if it can be safely de-provisioned. Each instance of a
not provisioned service is assigned to a user. This user initiated
the provisioning of the service and only this user is allowed to
call this service. Every instance of a not provisioned service is
again available over an endpoint.

B. Service and Service Package Selection Process

In the following we will show how the service and service
package selection process is realized in our architecture. In Fig.
5 we present the part of our architecture realizing the service
binding. The workflow engine is responsible for the execution
of the workflows. The enterprise service bus coordinates the
processing of the service calls. The service registry is a global
directory containing information about all services. It offers
information about functional and nonfunctional properties of a
service. For each not provisioned service the service package
repository contains the corresponding service package together
with provisioning metadata. The provisioning manager is
capable to provision service packages using a suitable
provisioning engine.

Service calls are initiated by the workflow engine (Fig. 5,
step1). A service call contains the actual payload as well as
different metadata (step 2). The functional requirements (FR)
describe the required interface, the nonfunctional requirements
(NFR) describe requirements concerning the quality of a
service, for example cost or security. Whereas the functional
and nonfunctional requirements correspond to traditional SOC
concepts, the provisioning requirements (PR) are specific for
our on-demand provisioning approach. They describe
requirements specific for the provisioning process, for example
allowed cloud providers or the region where resources have to
be provisioned.

When receiving a service call, the ESB executes a service
discovery (step 3). In this step all service configurations which
are compliant with the functional requirements of the service
call are determined by the service registry (step 4). Afterwards
a service selection is carried out (step 5). In this step all service
offers fulfilling also the nonfunctional requirements are
determined (step 6). If the result set contains at least one
provisioned service, the service selection component returns
exactly one endpoint (of a provisioned service). In this case the
ESB forwards the service call to the selected endpoint (step
7a). If the result set contains no provisioned services but at
least one running shared service, the service selection
component returns exactly one endpoint (of a running shared
service) and the ESB forwards the service call to this endpoint
(step 7a). If the result set however contains no provisioned
services and no running shared services, the service selection
component returns a service package reference for each service

offer in the result set. The ESB forwards these service package
references together with the provisioning requirements to the
provisioning manager (step 7b). Afterwards the provisioning
manager dissolves the references by querying the service
package repository for the metadata of the referenced service
packages (step 8, 9). Then the provisioning manager carries out
a service package selection. He selects exactly one service
package which on the one hand fulfills the provisioning
requirements of the service request and which on the other
hand can be processed by one of the available provisioning
engines (step 10). After that the selected service package is
provisioned by a suitable provisioning engine (step 11). In the
last step the ESB forwards the service request to the service
provisioned before (step 12).

V. DISCUSSION

A. Service Selection

In traditional SOC usually the service selection step returns
exactly one service offer i.e. exactly one service endpoint
[13][3]. In our approach this only applies when the set of
suitable service offers contains at least one provisioned service.
However if the set of suitable service offers contains only not
provisioned services, the service selection step returns service
package references for all suitable service offers. The ESB then
forwards these service package references to the provisioning
manager. The provisioning manager encapsulates all
provisioning related functionality and therefore has all
information available to decide which service package he is
actually able to provision. In addition we also delegate the
evaluation of the provisioning requirements to the provisioning
manager. As a result our architecture shows a clear separation
of traditional service selection and routing capabilities (ESB
and service registry) on the one hand and provisioning related
components (provisioning manager and service package
repository) on the other hand.

In Fig. 6 we show an example that further illustrates the
service selection for not provisioned services. As a starting
point a set of all provided service offers is depicted on the left.
This set contains 12 service offers with different functional and
nonfunctional properties. The functional properties are depicted
by the shape of the service offer icon, the nonfunctional
properties are depicted by the hatching of the service offer
icon. After a service call arrives, in the first step a service
discovery is performed i.e. all service offers providing a certain
interface are selected. In our example the wanted interface is
symbolized by a square. The service offers S1, S2, S4, S5, S6,
and S8 provide the wanted interface and are therefore
candidates for the service request. In the second step a service
selection is performed on this candidate set i.e. all service
offers fulfilling the nonfunctional requirements are selected. In
our example the nonfunctional requirements are symbolized by
a diagonal hatching. The service offers S1, S4, and S8 fulfill
these nonfunctional requirements and are therefore still
candidates for the service request. In the third step the service
package discovery is performed, i.e. for each service offer the
corresponding service package is determined. The following
service package selection consists of two steps. First the
provisioning manager matches the provisioning requirements
with the provisioning capabilities of the service packages (step
4). In our example the provisioning requirements states that the
service has to be provisioned in the Amazon Cloud
infrastructure (AWS). These requirements are fulfilled by
service offer S4 and S8. Second the provisioning manager
matches the formats of the service packages with capabilities of
the available provisioning engine plugins. In our example the
service package of S4 has the format “Chef” and the service
package of S8 has the format “TOSCA”. The provisioning
manager has two plugins available both supporting Chef but
for different Cloud infrastructures. As a result the service
package of S4 is selected (step 5). In our example this service
offer fulfills all requirements ̠ functional, nonfunctional and

Fig. 5. Architecture for Service Selection and Service Package Selection

Service Package

Selection

Provisioning

Manager

Workflow Engine

service call

1

2
3

7a

Interface

Service Sx

7b

suitable

service offers

Service Package Query

8 9

metadata of the

associated

service packages

Interface

Middleware

and Infrastructure

Service

Implementation Sy

forward

service call

provision

service package of Sy
a) provision

infrastructure

and middleware

b) deploy

service implementation

11

forward

service call12

suitable

service offers

create

FEM

parameters

FR
NFR

PR

FR

PR

Service Package

Repository

4

5

NFR 6

Service

Discovery

Service

Selection

Service Registry

Enterprise

Service Bus

10

SPT1, Clouda

SPT1, Cloudb

SPT2, Cloudb

suitable

service offers

Legend
FR functional requirements

NFR traditional non-functional

requirements

PR provisioning requirements
ccc

provision engine is able

to provision service packages

of type SPT1 in the Clouda

SPT1, Clouda

provisioning requirements ˗ and it can be provisioned by one of
the available plugins of the provisioning manager.

One important aspect in the just described process is that
for not provisioned services the service selection component
returns all compliant service offers. Afterwards the
provisioning manager can select a service offer containing a
service package which is suitable for provisioning. If the
service selection component would return always only one
service offer, like known from traditional SOC, this can lead to
situations where a service request cannot be processed although
a suitable service offer exists. Considering the example of Fig.
6 discussed before, if the service selection component would
for example return only service offer S1 (in step 2), then the
service package selection (step 4) will result in an empty set
and the service request cannot be processed. The service
package of service offer S1 does not fulfill the provisioning
requirements and the service packages of service offers S4 and
S8 have been already discarded in the previous service
selection step (step 2).

B. Configuration opportunities for the user

When the service selection component determines the set of
compliant service offers, i.e. all service offers fulfilling the
functional requirements (i.e. the interface) and the non-
functional requirements (i.e. QoS) of the service call, this result
set can consist of provisioned services as well as not
provisioned services. In this case our system per default always
returns the endpoint of a provisioned service. However, this
behavior is configurable. The user can define his preferred
service type: he can choose between provisioned service and
not provisioned service. An advantage of provisioned services
is that they are always available, whereas not provisioned
services have to be initially provisioned before they can
process a service call. On the other hand, it is very possible that
the scientists prefer not provisioned services. They may rather
trust a not provisioned service available as service package

than a provisioned service that simply provides an endpoint. A
service package contains details about the implementation and
the structure of the service, an often very important aspect in
the context of traceability, reproducibility and linked
experiments [12][11].

By means of the service selection decision tree depicted in
Fig. 7 it is described, which results the service selection
component returns, depending on the user’s configuration. In
the left subtree the configuration option “prefer provisioned
service” is shown. This configuration corresponds to the
default configuration of our system. When the set of compliant
service offers contains at least one provisioned service, the
service selection component returns an endpoint of exactly one
provisioned service. Afterwards, the ESB forwards the initial
service call to this endpoint (see also Fig. 5, step 7a). However,
if the set of service offers does not contain a provisioned
service but at least one running shared service, the service
selection component returns an endpoint of exactly one running
shared service. Then the ESB forwards the service call to this
selected endpoint (Fig. 5, step 7a). If the set of service offers
does contain neither a provisioned service nor a running shared
service, the service selection component returns for each
service offer a service package reference. Afterwards the ESB
forwards these service package references and the provisioning
requirements to the provisioning manager (Fig. 5, step 7b).

In the right subtree of the service selection decision tree
depicted in Fig. 7 is shown, which results are returned by the
service selection component for the configuration option
“prefer not provisioned service”. If the set of compliant service
offers contains at least one running shared service, the service
selection component returns the endpoint of exactly one
running shared service. Then the ESB forwards the initial
service call to this endpoint (see also Fig. 5, step 7a). However,
if the set of compliant service offers contains at least one not
provisioned service but no running shared service, the service
selection component returns a service package reference for

Fig. 6. Service Discovery, Service Selection, Service Package Discovery & Service Package Selection

Fig. 7. Service Selection Decision Tree

Service

Package

Selection

(b)

Service

Package

Selection

(a)

FR

Service

Discovery

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S1

S2

S4

S5

S6

S8

1

NFR

Service

Selection S1

S4

S8

2
4

PR

AWS

5

PM

Chef, AWS

Chef, Azure

S4

S8

ChefChef

TOSCA

S4 ChefChef

S1

S4

S8

ChefChef

ChefChef

ChefTOSCA

Service

Package

Discovery

3

configuration type:

prefer provisioned service (PS)

configuration type:

prefer not provisioned service (NPS)

set of compliant

service offers

result:

endpoint of exactly

one provisioned

service

if set contains

at least one PS

result:

service package

references of all not

provisioned services

result:

endpoint of exactly

one provisioned

service

if set contains

at least one NPS

if set contains

no PS

if set contains

no NPS

result:

endpoint of exactly

one running shared

service

if set contains at least one

running shared service

if set contains no

running shared service

result:

service package

references of all not

provisioned services

result:

endpoint of exactly

one running shared

service

if set contains at least one

running shared service

if set contains no

running shared service

each service offer of the type not provisioned service.
Afterwards the ESB forwards these service package references
together with the provisioning requirements to the provisioning
manager (Fig. 5, step 7b). If the set of compliant service offers
does not contain any not provisioned service, the service
selection component returns an endpoint of exactly one
provisioned service. The ESB then forwards the initial service
call to this endpoint (Fig. 5, step 7a).

VI. RELATED WORK

There exist several approaches for the on-demand
provisioning of services [17][18][19]. However, all these
approaches do not tackle possible implications on service
selection imposed by the concept of on-demand provisioning.

In [19] it is assumed, that all services available for on-
demand provisioning provide the same interface. In this work,
the dynamicity is in the composition of the middleware and
infrastructure a service is hosted on. These parts of the service
topology are dynamically selected at runtime, based on the
non-functional requirements of the corresponding service call.

In [18] the proposed system at first tries to satisfy a service
call using running services. The paper presents, how the current
load of available services can be determined so that a request
is, if possible, forwarded to a service with low load. If there is
no service available, the system starts the on-demand
provisioning process. However, in this step there is no selection
of an appropriate virtual machine image performed. Instead,
the mapping of a service call to a matching image is already
contained in the process model. To summarize, this approach
supports service selection but no service package selection.

In [20] an on-demand provisioning approach for grid
environments is proposed. Similarly to [19] the focus of this
work is the selection of an appropriate grid node a requested
service will be provisioned on. It is assumed, that the service
requestor explicitly asks for the provisioning of a certain
service package, i.e. in contrast to other approaches the
provisioning is not handled transparently.

VII. SUMMARY AND OUTLOOK

In our previous work we introduced and realized the
concept of on-demand provisioning and de-provisioning of
workflow execution middleware and services for simulation
workflows. Besides its advantages like optimized resource
allocation and a user friendly way of managing complex
systems, this approach has some implications on the traditional
service selection known from SOC. In this paper we developed
a solution approach for this challenge. We introduced an
extended architecture for on-demand provisioning supporting
service selection as well as service package selection. As part
of this architecture we also provided a metamodel for the
service registry as foundation for the selection process. Finally
we gave a detailed description and discussion of the service
and service package selection process. As a result our extended
architecture is able to transparently handle service selection for
provisioned as well as not provisioned services.

Besides the ongoing realization of the whole system we
plan to extensively evaluate our system using a real world use

case from the domain of simulation workflows. Although we
already achieved some promising results regarding some single
aspects of our approach [1][21], an evaluation of an overall end
to end scenario is still missing.

ACKNOWLEDGEMENT

K. Vukojevic-Haupt and D. Karastoyanova would like to
thank the German Research Foundation (DFG) for financial
support of the project within the Cluster of Excellence in
Simulation Technology (EXC310/1) at the University of
Stuttgart. This work was partially funded by the BMWi project
Migrate! (01ME11055).

REFERENCES
[1] Vukojevic-Haupt, K.; Karastoyanova, D.; Leymann, F.: On-demand

Provisioning of Infrastructure, Middleware and Services for Simulation
Workflows. In: Proceedings of SOCA 2013.

[2] Papazoglou, M.P.:Service-oriented computing: concepts, characteristics
and directions. In: Proceedings of WISE 2003

[3] Chappell, D.: Enterprise Service Bus: Theory in Practice. 2004.

[4] Topology and Orchestration Specification for Cloud Applications
Version 1.0. OASIS Committee Specification 01. http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.

[5] Sonntag, M. et al.: Using Services and Service Compositions to Enable
the Distributed Execution of Legacy Simulation Applications. In:
Proceedings of ServiceWave 2011.

[6] Görlach, K. et al.: Conventional Workflow Technology for Scientific
Simulation. In: Guide to e-Science, Springer-Verlag, 2011.

[7] Sonntag, M.; Karastoyanova, D.: Ad hoc Iteration and Re-execution of
Activities in Workflows. In: International Journal On Advances in
Software. Vol. 5 (1 & 2), Xpert Publishing Services, 2012.

[8] Sonntag, M.; Karastoyanova, D.: Next Generation Interactive Scientific
Experimenting Based On The Workflow Technology. In MS 2010.

[9] Lipton, P.: Escaping Vendor Lock-in with TOSCA, an Emerging Cloud
Standard for Portability. In: CA Technology Exchange 4, 1, 2013.

[10] Binz, T.; Breitenbücher, U.; Haupt, F.; Kopp, O.; Leymann, F.; Nowak,
A.; Wagner, S.: OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications. In: Proceedings of ICSOC 2013.

[11] Leymann, Frank: Linked Compute Units and Linked Experiments: Using
Topology and Orchestration Technology for Flexible Support of
Scientific Applications. In: Software Service and Application
Engineering, 2012.

[12] Giles, J.: The trouble with replication. In: Nature, 442(7101), 2006.

[13] Leymann, F: The (Service) Bus: Services Penetrate Everyday Life. In:
Service-Oriented Computing - ICSOC 2005.

[14] Schneider, V.: Dynamic Provisioning of Web Services for Simulation
Workflows. Diploma Thesis 3473, IAAS, University of Stuttgart, 2013.

[15] Vu, L.-H. et al.: QoS-Based Service Selection and Ranking with Trust
and Reputation Management. Proceedings of CoopIS 2005

[16] Raghuram, M. et al.: Agent-based service selection. In: Journal of Web
Semantics, Volume 1, Issue 3, April 2004.

[17] Chrysoulas, C. et al.: Applying a Web-Service-Based Model to Dynamic
Service-Deployment. In Proceedings of CIMCA 2005.

[18] Dornemann, T. et al.: On-Demand Resource Provisioning for BPEL
Workflows Using Amazon's Elastic Compute Cloud. In: CCGRID 2009.

[19] Retter, R. et al: Combining Horizontal and Vertical Composition of
Services. In: Service Oriented Computing and Applications, 2012.

[20] Kecskemeti, G. et al.: Automatic Service Deployment Using
Virtualisation. In: Proceedings of PDP 2008.

[21] Strauch, S.; Andrikopoulos, V.; Karastoyanova, D.; Vukojevic-Haupt,
K.: Migrating eScience Applications to the Cloud: Methodology and
Evaluation. In: Cloud Computing with E-science Applications, 2014.

All links were last followed on 18.06.2014.

