Institute of Architecture of Application Systems

Service Selection
for On-demand Provisioned Services

Karolina Vukojevic-Haupt, Florian Haupt, Dimka Karastoyanova, and Frank Leymann
Institute of Architecture of Application Systems,

University of Stuttgart, Germany
{vukojevic, haupt, karastoyanova, leymann}@iaas.uni-stuttgart.de

BIBTRX:
@inproceedings{INPROC-2014-34
author = {Karolina Vukojevic-Haupt and Florian Haupt and
Dimka Karastoyanova and Frank Leymann},
title = {Service Selection for On-demand Provisioned Services},
booktitle = {Proceedings of the 18th IEEE International EDOC Conference
EDOC 2014, 01. - 05. September 2014, Ulm, Germany},
year = {2014},
pages = {120 - 127},
doi = {10.1109/EDOC.2014.25},
publisher = {IEEE}
}

© 2014 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IEEE.

.0
saggn Universitat Stuttgart
s Germany

Service Selection
for On-demand Provisioned Services

Karolina Vukojevic-HauptFlorian Haupt, Dimka Karastoyanova, and Frank Leymann
Institute of Architecture of Application Systems (IAAS)
University of StuttgartStuttgart, Germany
lastname @iaas.uni-stuttgart.de

Abstract—Service selection is an important concept in service
oriented architectures that enables the dynamic binding of
services based on functional and non-functional requirements.
The introduction of the concept of on-demand provisioned
services significantly changes the nature of services and as a
consequence the traditional service selection process does not fit
anymore. Existing approaches for service selection rely on the
always on semantic of services, an assumption that is not valid
for on-demand provisioned services. We tackle this problem by
adapting the traditional service selection process and by defining
an additional step covering the changes introduced by the
concept of on-demand provisioning. Our solution comprises an
extended architecture for on-demand provisioning, a metamodel
for a service registry, and a detailed definition and discussion of
the adapted and extended service selection process. The work
presented in this paper allows keeping the advantages of dynamic
service binding at runtime and combining them with the
advantages of Cloud computing exploited through the concept of
on-demand provisioning.

Keywords— on-demand provisioning and deprovisioning;
service selection; service package selection; eScience; Cloud; SOC;

l. INTRODUCTION

with functional and non-functional requirements. At run time,
for each service call the corresponding requirements are
forwarded to a middleware component, the so-called enterprise
service bus (ESB) [3]. This component carries out the service
selection, based on the passed functional and non-functional
requirements, and finally binds the service call to a suitable
service.

A basic assumption in SOC is that services are always on
and available. In traditional SOA scenarios from the business
domain, services are typically used continuously. From a
service provider point of view, it is therefore absolutely
appropriate to make the service constantly available. However,
there exist domains where services are usedyramed not
regularly, e.g. simulation workflowdn such casg it is not
suitable for a service provider to make his services constantly
available as this means wasting resources. In our work, we
consider the eScience domain, especially scientific experiments
modeled as simulation workflows [5][6]. Simulation
workflows are typically executed irregular and rarely. When a
simulation workflow is executed, the used services however
require significant resources. For the time the simulation
workflow is not running, the services are not needed, but the
corresponding allocated resources are furthermore blocked.

The main building blocks in service oriented architectures\ltogether, this leads to a bad utilization of services and the
(SOA) are services, loosely coupled components providingorresponding resources.

functionality over a unified interface. To realize more complex
functionalities, different services can be reused and combin
This concept is called service composition. Usually, servic
compositions are modeled (modeling time), then deployed on
suitable execution environment (deployment time) and finall
executed by this environment (run time). In service oriente

computing (SOC) [2] the concept piiblish-find-bindaimsto

decouple service providers and service consumers. A servi
provider registers all services it offers in a service registr
(publish). A service consumer, which needs a specific servic
then searches the service registry for a suitable service (fin
Afterwards, he can start sending requests to the selected ser
(bind). The step of choosing the right service is cadlexvice

selection The search for a suitable service and the binding t§
this service can be performed at modeling time, at deploymef
time, or at run time of a service composition. When the servic
selection is done at modeling time or at deployment time, thi
binding strategy is calledtatic binding Nevertheless, if the

service selection is done at run time, this binding strategy i$
called dynamic binding Using the binding strategy dynamic
binding, the needed services are at modeling time describ

e

echnologies. We developed an approach and architecture for
Qe on-demand provisioning ande-provisioning of workflow
xecution middleware and services for simulation workflows
]. In this approach, services including itheunderlying
middleware and infrastructure are provisioned not until they
ale needed, and de-provisioned when they are not needed
nymore. As simulation workflows are typically long running,
e additional provisioning time is not expected to affect the
Xecution time noticeably. In such an on-demand provisioning
é:gnario, the traditional service selection process from SOC
can no longer be applied. There are two main reasons for this.
irst, in our approach we use two fundamentally different
grvice types, traditional services with always on semantic
rovisioned servicgsand services which are provisioned on
g)emand ifot provisioned servicgsSecond, not provisioned
services are provided aervice packaged service package
ontains all artifacts needed to provision a service
automatically. Therefore, the service selection process has to

g In our previous work we addressed this deficit using Cloud

%& extended with an additional service package selection step
e

termining a suitable service package.

To solve the problem of service selection ésrdemand calls the provisioning engine that provisions the workflow
provisioning andde-provisioning of services, in this paper we execution middleware in a Cloud environrhen
contribute (1) an extension of our existing architecture to Th . K : . . K
enable a sophisticated selection of not provisioned services '1C SErvice package repository contains service packages.
with different types of service packages, (2) a metamodel for%sl;wces that are available in the service package repository are
service registry supporting the discussed scenario, and (3) tRY/2YS registered in the service registry. The service registry is
definition of a service and service package selection process fgrcentral data store containing information about all availabl

theon-demand provisioning arde-provisioning of services. Sc'vices and enabling their discoveryhe information
provided includes functional and nonfunctional properties of a

The rest of the paper is organized as follows. In sedtion service and a reference to the corresponding service package in
we present our previous architecture for tbe-demand the service package repository. The information in the service
provisioning and de-provisioning of workflow execution registry is not only about services stored in the service packag
middleware and services for simulation workflows. In sectiorrepository but also about services that are already available
Il we extend this architecture to enable service selection ald@nd provided by a third party).

for not provisioned services. In sectitvi we first introduce We distinguish between two kinds of services. The first

our metamodel for the service registry and then we define 0%5 of service is provided by a service provider. who also
service and service package selection process. Some aspect B‘f’ P)y a provider, w
manages the service. The scientist can use this service, but he

this new selection process are discussed in detail iroBacti h K led b he imol X dth derlvi
An overview about related work is given in sectidnand we 2S N0 Knowledge about the implementation and the underlying
finish the paper with a summary and outlook in section vii, Middleware and infrastructure. We call this kind of service a
provisioned service For the second kind of service all artifacts
needed to provision the service and the underlying middleware
Il BASIC ARCHITECTURE and infrastructure can be accessed by the scientist. This kind of
In our previous work we have developed the architecture ggervice we call aot provisioned serviceéProvisioned services
a system supporting our approach for on-demand provisionirig!low the always on semantic, they are running and ready to
and de-provisioning of workflow execution middleware anduse. Not provisioned services have to be explicitly provisioned
services needed for the execution of (simulation) workflowdefore they can be used. In our previous work we worked out
[1]. We present the architecture in Fig. 1, where we distinguisBn extended classification for service binding strategies [1]
between components run locally on the user’s machine and the ~ Typical strategies for static and dynamic service binding rely
components run on a Cloud. We also show which componen@ provisioned services. To enable tiiedemand provisioning
are used during which life cycle phases of the involved@nd de-provisioning of services including their underlying
applications (i.e. simulation workflows, execution middleware, middleware and infrastructure we defined a new service
services). The life cycle phases we consider here are tinding strategy which we cadlynamic binding with software
modeling of simulation workflows, the middleware stack provisioning This service binding strategy is based on

runtime/execution phase and the service runtime phase. not provisioned services.
i A not provisioned service can furthermore beedlicatedor a
A. Modeling Phase shared serviceA dedicated service can or may only process

The architecture components used during the modelingne service call at the same time. If several service calls are
phase are thamodeling and monitoring too[8] and the sent to the same dedicated service, for every service call we
bootware running locally on the user’s machine, and the = have to provision a new instance of the service including its
service package repositgryhe service registryand theuser underlying middleware and infrastructure. An example for such
registry running in a Cloud environment. These components dedicated service can be a simulation service needing a lot of
are active during all life cycle phases. In the modeling phasepmpute resources without having any elasticity capabilifies
the modeling and monitoring tool is used to model workflowsshared service can in contrast process several service calls at
The service registry and the service package repository providiee same time.
all services that can be used by the workflows. The bootware is

utilized by the modeling and monitoring tool to start the next considering the - characteristics of the service types
life cycle phase, the middleware runtime phase. _mentlongd apove, the service regisiry stores spec!ﬂc
' information for each type of service. Independent of the service

The bootware is the basic piece of software needed type a link to the interface description is available. For
provision the workflow execution middleware (in a Glou provisioned services the endpoint is already known and
environment). Instead of provisioning the whole workflowtherefore stored. For not provisioned services the service
execution middleware in one step, we follow a two-stepgegistry contains a link to the corresponding service package in
bootstrapping process. In the first step (Fig. 1, step 1) thiae service package repository and if the service is dedicated or
bootware provisions the provisioning engine and its underlyinghared. In addition, the number of currently running instances
middleware and infrastructur® a Cloud environment. This is also stored.
reduces the complexity of the bootware component by limiting
its capabilities to the provisioning of one special component B. Middleware RuntimePhase
the provisioning engine. The provisioning engine itself is a = 5 \yorkflow middleware runtime phase is supported by
generic component able to provision any kind of service and

h | ; 91 In th d steo. the boot the components of the simulation workflow execution
a rather complex system [9]. In the second step, the bootwagiyjleware provisioned at the end of the modeling phase. In

Seim ¢ | - - - t . E;e[pr;e o y l

Service . Provisioning . .
Package . | Database Service N Service X1 | -.-| Service X,
Repository Registry | Bus | Engine

upIo_adT register service I T T | 2' \ 3 J
service :
—— | -

Y

U . M Worki provision / provision / deprovision
ser | . essaging orkflow | : VISI service(s
Registry : Auditing <=7 System | *"1 'Engine || deprovision ©
| - workflow
3 Service Provider L e — A — — middleware
o :
O

provision / deprovision

Modeling & - provisioning engine

Monitoring —®] Bootware 1
Tool

function call
% use » message flow

Scientist v deployment

(moDELING TIME) .+ logical group
example SWMS

(MIDDLEWARE RUNTIME)

((sErvIcE RUNTIME) I generic

Fig. 1. Basic Architecture for On-demand Provisioning

our example these are the SimTech SWfMS [7], the ESB and After the workflow engine has finished the execution of all
the provisioning engine. These components interact with theinning workflows, the bootware initializes the de-
components used already in the modeling phase. The ESBovisioning of the workflow execution middleware. In the
receives service calls from the workflow engine to invokefirst step the provisioning engindeprovisions all other
services on behalf of workflow activities. For provisionedmiddleware components. In the next step the bootware de-
services the ESB selects the endpoint of a service from thmovisions the provisioning engine.
service registry and forwards the service call. For not
provisioned services the ESB interacts with the service registry .
and the provisioning engine. First it gets all information needed i) -)
to provision the service, like a reference to the service package SO that a service can be automatically provisioned in our
repository or if the service is dedicated or shared, froen tharchltecture, all arufacts needed for the provisioning have to be
service registry. Then the ESB calls the provisioning engine @vailable as a service package. Such an artifact is for example
provision the service (which starts the runtime phase of th&'€ topology of the service, i.e. a description of which
service life cycle). The provisioning engine gets all neededPpplications, mlddleware and infrastructure are requwed_ to
artifacts like the implementation of the service from the servic@Perate a service and how these are connected. Other artifacts
repository and uses these artifacts to provision the servi@€ the implementations of each component respectively the
including its underlying middleware and infrastructure (Step 3€ferences to ttseimplementations. A service package can be
in Fig. 1). After the service provisioning is done, the ESBavailable in different established formats such as ’Ch_ef
forwards the service call to the newly provisioned service. PUPPet or TOSCA [4] For each of these formats there exist
provisioning engines which can handle the corresponding
C. Service RuntimePhase format. For examp[e, a servic_e_ package in Chef forma}t can be
)))]) .read and automatically provisioned by a Chef Provisioning
During the service runtime phase the services are executiitthgine. However, to provision a service package in TOSCA
the functionality they are implementing. At the beginning offormat, a special provisioning engine for TOSCA is needed. In
this phase all components of our architecture shown in Fig. dyr previous realization of the architecture described in section
are provisioned and running. As soon as a service has finishgd\e use TOSCA for the description of the service packages,
its computation the result is returned to the ESB, which in turgypenTOSCA [10] as provisioning engine and Amazon AWS

EXTENDED ARCHITECTURE

sends it back to the workflow engine. as Cloud environmentWe could have also realized our
S _ _ architecture using a different service package format and a
D. Deprovisioning of Services and Middleware different provisioning engine, for example Puppet and a Puppet

For dedicated services the ESB then calls the provisioningrovisioning engine. Our architecture is designed to be generic,
engine to de-provision the service. For shared services the ESB
first checks if the service is still processing other service.calls
Only if the service is idle it will be de-provisioned.

! http://www.getchef.com/
2 http://puppetlabs.com/puppet/puppet-open-source
3 http://aws.amazon.com/

Y '
Provisioning
~ Engine Service X1 |..-| Service X,
[PE1]
- . Legend
I provision / deprovisic
—_— - [[— ‘ service(s) — function call
Enterprise Provisioning { PEq1 |~ | W 0 |reeeeeee- # message flow
Servi | .
-— ervice »{ Manager
Bus : [PMQ]J l =" Geployment
| Provisipning . logical group
: Engine Service Y1 || Service Yk
| [PE2] example SWfMS
9 | q...] Workfow |- \J :] generic
n Engine .
9 | plugin for
I . provision / deprovision provisioning
? service(s) engine PE;

Fig. 2. Extended Architecture for On-demand Provisioning

there is no dictation about a concrete provisioning format andthe center of Fig. 2, initially described in [14]). This component
concrete provisioning engine. Only upon realization thedecouples the ESB from the provisioning logic. The ESB
decision for a concrete format has to be made receives service calls and is responsible to forward them to
suitable services. The provisioning manageramtrast handles

As discussed, our previous architecture does not SUPPOLy yaqys related to the provisioning of services. When receiving
multiple provisioning formats. However, when for examale a reference to a service package from the ESB, the
scientist models a workflow he may use services provided by, isioning manager retrieves the corresponding service
several other scientists. It is quite possible, that these scienti §ckage and its meta data from the service package repository
use different formats for their service packages. In Fig. 3 w '

e : . 4 epending on the format of the service package, the
explain this issue in more detail. On the left part of the figure 3roF\)/isionir§1]g manager decides which provisioni%g enggine is

workflow including two communication activities C and D IS o0 14 process this service package and finally forwards it to
shown. Activity C calls a service implementing the interface %he selected provision engine

and activity D calls a service implementing the interface y. On
the right part of the figure a service package repository is The architecture of the praibning manager is modular, as
depicted. This repository contains a service package in TOSCilve provisioning manager can be extended by plugins. A plugin
format which contains a service implementing the interface xonnects a provisioning engine to the provisioning manager.
Moreover,it contains a service package in Puppet format a¥he plugin declares to the provisioning manager which service
well as a service package in Chef format, both implementingackage format and which target Cloud environment is
the interface y. Since activity C of the depicted workflow callssupported byhe corresponding provisioning engine.

a service which is only available as a TOSCA service package

and activity D calls a service which is not available as TOSCA IV. SERVICE AND SERVICE PACKAGE SELECTION
service package, to provision these two services two different . " o .
provisioning engines are needed. Using the binding strategy “dynamic binding with software

stack provisioning changes the service selection process. On

() Servi . the one hand the selection process has to consider both,
ervice Package Repository
provisioned services as well as not provisioned services. On the
(¢) —):’ X - =y other hand for not provisioned services an additional service
(B) - - package selection is need@&afore introducing the service and

0 > = service package selection process, we will present the
-y TOSCA Puppet | Chef metamodel for the service registry used in our approach. The

Service Service Service

Package Package || Package ESB interacts with the service registry based on this

(®) metamodel.

Fig. 3. Different Service Package Types . .
g ge b A. Metamodel for Service Registry

As a consequence, we extend our architecture to support the The metamodel of the service registry is depicted in Fig. 4
execution of workflowshat call services that are available in as entity relationship diagram (in Chen notation). In this
different service package formats and therefore have to tsction we will only present the parts of the metamodel that are
provisioned by different provisioning engines. In Fig. 2 werelevant in context of this paper. The service registry provides
show the excerpt of our architecture in which we realized thia set of service configurations A service configuration
extension. In our previous architecture there was a directescribes the combination of service interface i.e. the
information flow between the ESB and the provisioningfunctional properties of a service, and a set of nonfunctional
engine. In our extended architecture we introduce a newroperties, the so-callequality of services (QoS)YQo0S are
component, the so-callegrovisioning managei(depicted in modeled as simple name-value pairs. Although we consider

service selection as an important step for dynamic binding, trean exist multiple service packages. As one service package
details of how requirements and properties are matched is nodn be provisioned multiple times, for a not provisioned service
in the focus of our work and there already exist severahere can exist multiplenot provisioned service instances
sophisticated approaches for this [15][16]. The metamodebhich are also managed in the service registry. In addition for
allows multiple service configurations with the same interfacenot provisioned services we distinguish betwesmared

but different QoS. A service call, which generally consists okervices and dedicated servicemand consequently between
functional and nonfunctional requirements, can be mapped &hared service instancesd dedicated service instanceiSor

at most one service configuration. The part of the metamodshared service instances the service registry stores the number
described so far represents a service on an abstract level.dh currently processed service calls. This information is
addition the service registry also provides information on howecessary to determine if a shared service instance is still
to access specific service instances. needed or if it can be safely de-provisioned. Each instance of a
. not provisioned service is assigned to a user. This user initiated
abstract the provisioning of the service and only this user is allowed to
call this service. Every instance of a not provisioned service is
again available over an endpoint.

B. Serviceand Service Package Selection Process

In the following we will show how the service and service
package selection process is realized in our architecture. In Fig.
J 5 we present the part of our architecture realizing the service
binding. Theworkflow engineis responsible for the execution
of the workflows. Theenterprise service busoordinates the
processing of the service calls. Téervice registryis a global
directory containing information about all services. It offers
information about functional and nonfunctional properties of a

ProvislonedService Is-a NotProvisionedService service. For each not provisioned service ghevice package
g repositorycontains the corresponding service package together
with provisioning metadata. Therovisioning manageris
[Sha,edServiceI [Dedicated&me] capable to provision service packages using a suitable

provisioning engine

Service calls are initiated by the workflow engine (Fig. 5

stepl). A service call contains the actual payload as well as
Sharedservicelnstance | [Dedicatedsenvicelnstance | different metadata (step 2). Tlhenctional requirement$FR)

Tumbero describe the required interface, thenfunctional requirements
Y (NFR) describe requirements concerning the quality of a
B NotProvisionedServiceln stance service, for e_xample cgst or security. Whereas th(_a.functional
| specific) and nonfunctional requirements correspond to traditional SOC
_ _ _ concepts, therovisioning requirement§PR) are specific for
Fig. 4. Metamodel for Service Registry our on-demand provisioning approach. They describe

requirements specific for the provisioning process, for example

For a service configuration there can exist multgBevice yowed cloud providers or the region where resources have to
offers A service offer is offered by exactly omgervice po provisioned

provider. A service configuration therefore can be offered by

multiple service providers and a service provider can offer When receiving a service call, the ESB executssrsice
multiple service configurations. We distinguish two types ofdiscovery(step 3). In this step all service configurations which
service offers. Aprovisioned servicgepresents a traditional are compliant with the functional requirements of the service
service as known from SOC, i.e. it is always on and availablgall are determined by the service registry (step 4). Afterwards
For such a service an endpoint is provided in the servicgservice selectiois carried out (step)5In this step all service
registry.A provisioned service is a functionality provided at anoffers fulfilling also the nonfunctional requirements are
endpoint with certain nonfunctional properties, everything elséetermined (step 6). If the result set contains at least one
is transparent. In contrastnat provisioned servicat first has ~ provisioned service, the service selection component returns

to be explicitly provisioned before it can process service calls. exactly one endpoint (of a provisioned service). In this case the
. . ESB forwards the service call to the selected endpoint (step
Consequently for a not provisioned service instead of aRg) |f the result set contains no provisioned services but at

endpoint aservice package referenee provided which pointS |45t one running shared service, the service selection
to a service package repository. In the service packaggmponent returns exactly one endpoint (of a running shared
repository all data and metadata needed to provision a nghyyice) and the ESB forwards the service call to this endpoint
provisioned service is stored. Our metamodel allows that Btep 7a) If the result set however contaim® provisioned
service configuration can be provided by multiple NOtsenices and no running shared services, the service selection
provisioned services, i.e. for one service configuration thergomponent returns a service package reference for each service

Service Registry Service Package

Service Service Repository
Discovery Selection
Workflow Engine
suitable @
E service offers
@ NFR suitable metadata of the
| service offers I associated
= m e service packages
. o Service Package Query
O (5 s

create service call Provisioning
FEM Enterprise Manager SPT4, Cloud,
N .
parameters Service Bus SPT4, Cloud,,
suitable q
service offers Service Package SPT), Cloudy,

Selection
provision @

service package of S
Legend forward a) provision
FR functional requirements servicecall NO infrastructure
NFR traditional non-functional : Interface H and middleware
requirements @ -------- 1 b) deploy
PR provisioning requirements @ forward :-----é;:/i-c-e-----: service implementation
SPT}, Cloud, service call ! Implementation Sy H
provision engine is able Service Sy @ :::::::::::::_:I
to provision service packages H Middleware 1
of type SPTin the Cloudg | and Infrastructure |

Fig. 5. Architecture for Service Selection and Service RgekSelectic

offer in the result seThe ESB forwards these service package In Fig. 6 we show an example that further illustrates the
references together with the provisioning requirements to theervice selection for not provisioned services. As a starting
provisioning manager (step 7b). Afterwards the provisioningpoint a set of all provided service offers is depicted on the left.
manager dissolves the references by querying the servidéis set contains 12 service offers with different functional and
package repository for the metadata of the referenced servinenfunctional properties. The functional properties are depicted
packages (step 8, 9). Then the provisioning manager carries dt the shape of the service offer icon, the nonfunctional
a service package selection. He selects exactly one servippperties are depicted by the hatching of the service offer
package which on the one hand fulfills the provisioningicon. After a service call arrives, in the first step a service
requirements of the service request and which on the othdiscovery is performed i.e. all service offers providingdain
hand can be processed by one of the available provisioningterface are selected. In our example the wanted interface is
engines (step 10). After that the selected service package sgmbolized by a square. The service offers S1, S2, S4, S5, S6
provisioned by a suitable provisioning engine (step 11)hén t and S8 provide the wanted interface and are therefore
last step the ESB forwards the service request to the servicandidates for the service request. In the second step a service

provisioned before (step 12). selection is performed on this candidate set i.e. all service
offers fulfilling the nonfunctional requirements are selected. In
V. DISCUSSION our example the nonfunctional requirements are symbolized by
a diagonal hatching. The service offers S1, S4, S@Lilfill
A. Service Selection these nonfunctional requirements and are therefore still

. . . candidates for the service request. In the third step the service
In traditional SOC usually the service selection step return ackage discovery is performed, i.e. for each service oféer th
elxgacély Ione Service offr?rﬂ:_.e. e>|<actly I(_)ne ssrwc;eh end[im orresponding service package is determined. The following
[13](3]. In our approach this only applies when the set Oy jce nackage selection consists of two steps. First the
suitable service offers contains at least one provisioned servi ovisioning manager matches the provisioning requirements
However if the set of suitable service of_fers contains only n With the provisioning capabilities of the service packages (step
provisioned services, the service selection Step returns Servige, o\ example the provisioning requirements states that the
package references for all suitable service offers. The ESB th rvice has to be provisioned in the Amazon Cloud
forwards the_?ﬁ service package references to the prIO\t"S'Onglglrastructure (AWS) These requirements are fulfilled by
manager. € provisioning manager encapsuiates L.'rvice offer S4 and S8. Second the provisioning manager

provisioning related functionality and therefore has ally,ioheq the formats of the service packages with capabilities of

information available to decide which service package he i%e available provisioning engine plugins. In our example the

actually able to prov!s!on: In addjtion we also deleg_af[e .th‘gervice package of S4 has the format “Chef” and the service
evaluation of the provisioning requirements to the prowsmnm;B

; Hackageof S8 has the format “TOSCA”. The provisioning
manager. As a result our architecture shows a clear separati nager has two plugins available both supporting Chef but

of tradltlc_)nal Service selection and routing cap_ablht_les (ES r different Cloud infrastructures. As a result the service
and service registry) on the one hand and provisioning relat%

components (provisioning manager and service packa
repository) on the other hand.

ckage of S4 is selected (step 5). In our example this service
er fulfills all requirements- functional, nonfunctional and

Service Service Service

[7 Package Package Package
s1 S5 E S9 @ Service [s1[7] ss E Service Discovery /g1 Selection Selection
s2 E s6 S10® Discovery - Selection /g1 _ (a) sa ’f (b) Ju—
s2 E S6 s8 s4 IIIII‘ ef ¢ s4 ’
$ s4 ” 4 Chef §/ FZTZT Chef
s3 é S7 @ S11 @ s ss 7] ZZZ7) S8 TOSCAY
- o 4 ’ NFR S8 [ToscAl BR PM
S4 S8 S12A v, Z
i’ 74 % Chef, AWS
Chef, Azure
® ® ® > 5

Fig. 6. Service Discovery, Service Selection, Service Packageovery & Service Package Selectio

provisioning requirementsandit can be provisioned by one of than a provisioned service that simply provides an endpoint. A
the available plugins of the provisioning manager. service package contains details about the implementation and

. . . . oot tructure of th rvi n often very important tin
One important aspect in the just described process is t © STucture of he service, an often very important aspec

g ; . . e context of traceability, reproducibility and linked
for not provisioned services the service selection Compone%&periments [12][11]

returns all compliant service offers. Afterwards the
provisioning manager can select a service offer containing a By means of the service selection decision tree depicted in
service package which is suitable for provisioning. If theFig. 7 it is described, which results the service selection
service selection component would return always only oneomponent returns, depending on tier’s configuration. In
service offer, like known from traditional SOC, this can lead tahe left subtree the configuration option “prefer provisioned
situations where a service request cannot be procalsedgh service” is shown. This configuration corresponds to the

a suitable service offer exists. Considering the example of Figefault configuration of our system. When the set of compliant
6 discussed before, if the service selection component woukkrvice offers contains at least one provisioned service, the
for example return only service offer S1 (in step 2), then theervice selection component returns an endpoint of exactly one
service package selection (step 4) will result in an empty s@rovisioned service. Afterwards, the ESB forwards the initial
and the service request cannot be processed. The servamvice call to this endpoint (see also Fig. 5, st¢pHawever,
package of service offer S1 does not fulfill the provisioningif the set of service offers does not contain a provisioned
requirements and the service packages of service offers S4 asmtvice but at least one running shared service, the service
S8 have been already discarded in the previous servigelection component returagendpoint of exactly one running

selection step (step 2). shared service. Then the ESB forwards the service call to this
selected endpoint (Fig. 5, step 7a). If the set of service offers
B. Configuration opportunities for the user does contain neither a provisioned service nor a running shared

When the senvic slecion component determines he se VS, e SeTice secclon companen, s o each
compliant service offers, i.e. all service offers fulfilling the P 9)

functional requirements (i.e. the interface) and the nonfOrWards these service package references and the provisioning
functional requirements (i.e. QoS) of the service call, this resuffauirements to the provisioning manager (Fig. 5, step 7b).

set can consist of provisioned services as well as not In the right subtree of the service selection decision tree
provisioned services. In this case our system per default alwagepicted in Fig. 7 is shown, which results are returned by the
returns the endpoint of a provisioned service. However, thiservice selection component for the configuration option
behavior is configurable. The user can define his preferreehrefer not provisioned service”. If the set of compliant service
service type: he can choose between provisioned service apflers contains at least one running shared service, the service
not provisioned service. An advantage of provisioned servicaselection component returns the endpoint of exactly one
is that they are always available, whereas not provisionedinning shared service. Then the ESB forwards the initial
services have to be initially provisioned before they camervice call to this endpoint (see also Fig. 5, step 7a). However,
process a service call. On the other hand, it is very possible thathe set of compliant service offers contains at least one not
the scientists prefer not provisioned services. They may rathgfovisioned service but no running shared service, the service
trust a not provisioned service available as service packagelection component returns a service package reference for

set of compliant
service offers

configuration type: configuration type:
prefer provisioned service (PS) prefer not provisioned service (NPS)
if set contains i if set contains if set contains l if set contains
at least one PS no PS at least one NPS no NPS
if set contains at least one l if set contains no if set contains at least one l if set contains no
running shared service running shared service running shared service running shared service
result: result: result: result: result: result:
endpoint of exactly endpoint of exactly service package endpoint of exactly service package endpoint of exactly
one provisioned one running shared references of all not one running shared references of all not one provisioned
service service provisioned services service provisioned services service

Fig. 7. Service Selection Decision Tree

each service offer of the type not provisioned servicecase from the domain of simulation workflows. Although we
Afterwards the ESB forwards these service package referencaeady achieved some promising results regarding some single
together with the provisioning requirements to the provisioningispects of our approach [1][2&h evaluation of an overall end
manager (Fig. 5, step 7bj the set of compliant service offers to end scenario is still missing.

does not contain any not provisioned service, the service

selection component returns an endpoint of exactly one ACKNOWLEDGEMENT
provisioned service. The ESB then forwards the initial service .)
call to this endpoint (Fig. 5, step 7a). K. Vukojevic-Haupt and D. Karastoyanova would like to

thank the German Research Foundation (DFG) for financial

support of the project within the Cluster of Excellence in

Simulation Technology (EXC310/1) at the University of
There exist several approaches for the on-deman8tuttgart. This work was partially funded by the BMWi project

provisioning of services [17][18][19]. However, all these Migrate! (01IME11055).

approaches do not tackle possible implications on service

selection imposed by the concepbofdemand provisioning. REFERENCES

VI. RELATED WORK

In [19] it is assumed, that all services available for on{1] Vukojevic-Haupt, K.; Karastoyanova, D.; Leymann; Bn-demand
demand provisioning provide the same interface. In this work, Provisioning of Infrastructure, Middleware and Services foni8ation
the dynamicity is in the composition of the middleware and Workflows In: Proceedings of SOCA 2013.
infrastructure a service is hosted on. These parts of the servigd Papazogiou, M.P.:Service-oriented computing: corscaptaracteristics
topology are dynamically selected at runtime, based on the 2nd directions. In: Proceedings of WISE 2003

non-functional requirements of the corresponding service call.[?l Chappell, D.Enterprise Service Bus: Theory in Practia@04.
[4] Topology and Orchestration Specification for Cloud Agailons

In [18] the proposed system at first tries to satisfy a service Version 1.0. OASIS Committee Specification 01. httjmés.oasis-
call using running services. The paper presents, how the current ©0Pen.0rg/tosca/TOSCANV1.0/cs01/TOSCA-v1.0-cs01.html.
load of available services can be determined so that a requé®t Sonntag, M. et alUsing Services and Service Compositions to Enable
is, if possible, forwarded to a service with low load. If there js (e Distributed Execution of Legacy Simulation Aggims In:

- . Proceedings of ServiceWave 2011.

no service available, the system starts thedemand ﬂ Gorlach, K. et al. Conventional Workflow Technology for Scientific
p;owsmnmg process. Holvveverr,]_m this step thefre is ndo selectid Simulation In: Guide to e-Science, Springer-Verlag, 2011.
oF an approprlate Vlrtu.a machine Image.per.orme ; Insma&] Sonntag, M.; Karastoyanova, :DAd hoc lteration and Re-execution of
the mapping of a service call to a matching image is alrea Activities in Workflows In: International Journal On Advances in
contained in the process model. To summarize, this approach Software. Vol. 5 (1 & 2), Xpert Publishing Servicgs12.

supports service selection but no service package selection. [8] Sonntag, M.; Karastoyanova, :INext Generation Interactive Scientific

| 20 d d L hf id Experimenting Based On The Workflow TechnaldgyS 2010.

.n [20] an. on-deman pro_wsmnlng approac or g“.éQ] Lipton, P: Escaping Vendor Lock-in with TOSCA, an Emerging Cloud
environments Is p_rOPOSGd- S|m|lar|¥ to [19] the focus of thi Standard for Portabilityln: CA Technology Exchange 4, 1, 2013.
work_ is the select|o.n.of an appro_pnate grid node a requeS_t%b] Binz, T.; Breitenbiicher, U.; Haupt, F.; Kopp, Oeyimann, F.; Nowak,
service will be provisioned on. It is assumed, that the service = A.; wagner, S..OpenTOSCA - A Runtime for TOSCA-based Cloud
requestor explicitly asks for the provisioning of a certain Applications In: Proceedings of ICSOC 2013.
service package, i.e. in contrast to other approaches tle] Leymann, Franktinked Compute Units and Linked Experiments: Using

provisioning is not handled transparently. Topology and Orchestration Technology for Flexiblepi@ut of
Scientific Applications In: Software Service and Application

Engineering, 2012.

VIl. SUMMARY AND OUTLOOK [12] Giles, J.The trouble with replicationin: Nature, 442(7101), 2006.
In our previous work we introduced and realized the13] Leymann, F:The (Service) Bus: Services Penetrate Everyday Life
concept ofon-demand provisioning ande-provisioning of Service-Oriented Computing - ICSOC 2005.

workflow execution middleware and services for simulationl14] Schneide,rV._: Dynamic Erovisioning of Web S_ervices for Simulation
workflows. Besides its advantages like optimized resourtifl . yorkl_ﬂc::vsEt)'ploga;les'sj‘g?” I_AA?S’ lﬁn':ers'tygfstuigart' ?t?]lT \

H H H u, L.-H. et al..Q0S-base ervice selection an anking wi rus
allocation a.'nd a user f”endly Way .Of .managmg comp!e and Reputation ManagemeRroceedings of CooplS 2005
systems, this approach has some implications on the traditio !5) .

- lection known from SOC. In this paper we develo] Raghure}m, M. et alAgent-based service selectidn: Journal of Web

service _Se . ' pap i p Semantics, Volume 1, Issue 3, April 2004.
a solution approach for this Challenge. _N_e !ntroduced _agﬂ Chrysoulas, C. et alApplying a Web-Service-Based Model to Dynamic
exte_nded archltecture for on—der_nand provisioning supportin Service-Deploymentn Proceedings of CIMCA 2005.
service selection as well as service package selection. As Pai| pomemann, T. et al.On-Demand Resource Provisioning for BPEL
of this architecture we also provided a metamodel for the ~ workflows Using Amazon's Elastic Compute CldndCCGRID 29.
service registry as foundation for the selection process. Finalfyo] Retter, R. et alCombining Horizontal and Vertical Composition of
we gave a detailed description and discussion of the service Servicesin: Service Oriented Computing and Applicationsl 20
and service package selection process. As a result our extends] Kecskemeti, G. et al.:Automatic Service Deployment Using
architecture is able to transparently handle service selection for Virtualisation In: Proceedings of PDP 2008.

provisioned as well as not provisioned services. [21] strauch, S.; Andrikopoulos, V.; Karastoyanova, D.; djekic-Haupt
.) o K.: Migrating eScience Applications to the Cloud: Methodgl and
Besides the ongoing realization of the whole system we Evaluation In: Cloud Computing with E-science Applications120

plan to extensively evaluate our system using a real world ug! links were last followed on 18.06.2014.

