
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

From Pattern Languages
to Solution Implementations

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher,
Christoph Fehling, Frank Leymann

The full version of this publication has been presented at
PATTERNS 2014.

http://www.iaria.org/conferences2014/PATTERNS14.html

© 2014 Xpert Publishing Services

@inproceedings{Falkenthal2014,
author = {Falkenthal, Michael and Barzen, Johanna and Breitenb\{"u}cher,

Uwe and Fehling, Christoph and Leymann, Frank},
title = {From Pattern Languages to Solution Implementations},
booktitle = {Proceedings of the 6th International

Conference on Pervasive Patterns and Applications},
year = {2014},
pages = {12--21},
publisher = {Xpert Publishing Services (XPS)}

}

:

Institute of Architecture of Application Systems

From Pattern Languages to Solution Implementations

Michael Falkenthal, Johanna Barzen, Uwe Breitenbücher, Christoph Fehling, Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart
Stuttgart, Germany

{falkenthal, barzen, breitenbuecher, fehling, leymann}@iaas.uni-stuttgart.de

Abstract—Patterns are a well-known and often used concept in
the domain of computer science. They document proven
solutions to recurring problems in a specific context and in a
generic way. So patterns are applicable in a multiplicity of
specific use cases. However, since the concept of patterns aims
at generalization and abstraction of solution knowledge, it is
difficult to apply solutions provided by patterns to specific use
cases, as the required knowledge about refinement and the
manual effort that has to be spent is immense. Therefore, we
introduce the concept of Solution Implementations, which are
directly associated to patterns to efficiently support
elaboration of concrete pattern implementations. We show how
Solution Implementations can be aggregated to solve problems
that require the application of multiple patterns at once. We
validate the presented approach in the domain of cloud
application architecture and cloud application management
and show the feasibility of our approach with a prototype.

Keywords-pattern; pattern languages; pattern-based solution;
pattern application; cloud computing patterns

I. INTRODUCTION
Pattern and pattern languages are a well-established

concept in different application areas in computer science
and information technology (IT). Originally introduced to
the domain of architecture [2], the concept of patterns
recently got more and more popular in different domains
such as education [18], design engineering [16], cloud
application architecture [23] or costumes [17]. Patterns are
used to document proven solutions to recurring problems in
a specific context. However, since the concept of patterns
aims at generalization and abstraction, it is often difficult to
apply the captured abstracted knowledge to a concrete
problem. This can require immense manual effort and
domain-specific knowledge to refine the abstract,
conceptual, and high-level solution description of a pattern
to an individual use case. These following examples show
that this problem occurs in several domains due to the
abstraction of solution knowledge into patterns. For
example, if a PHP: Hypertext Preprocessor (PHP) developer
uses the Gang of Four patterns of Gamma et al. [19], he is
faced with the problem that he has to translate the general
solution concepts of the patterns to his concrete context, i.e.,
he has to implement solutions based on a given
programming paradigm predefined by PHP. An enterprise
architect who has to integrate complex legacy systems may
use the enterprise application architecture patterns of
Fowler [20] or the enterprise integration patterns of Hohpe

and Wolf [12] to gain insight to proven solutions of his
problems; but, these are still generic solutions and he has to
find proper implementations for the systems to integrate.
This can lead to huge efforts since besides paradigms of
used programming languages he has also to consider many
constraints given by the running systems and technologies.
A teacher who uses the learning patterns of Iba and
Miyake [18] has to adapt them to match his prevailing
school system with all the teaching methods. To give a final
example, a costume designer could use the patterns of
Schumm et al. [17] to find clothing conventions for a
cowboy in a western film but he still has to come up with a
specific solution for his current film.

While patterns in general describe proven generic
solutions at a conceptual level, the examples above show
that it is still time consuming to work out concrete solutions
of those generic solutions.

To overcome this problem, we suggest that patterns
should be linked to the (i) original concrete solutions from
which they have been deduced (if available) and (ii) to
individual new concrete implementations of the abstractly
described solution. This enables users that want to apply a
certain pattern to take already existing implementations for
their use cases, which eases applying patterns and reduces
the required manual effort significantly.

The remainder of this paper is structured as follows: we
clarify the difference between the common concept of
pattern solutions and concrete solutions in Section II. In
Section III, we discuss related work and the lack of directly
usable concrete solutions in state of the art pattern research.
We show how to keep patterns linked to concrete solution
knowledge and how to select them to establish concrete
solution building blocks, which can be aggregated in
Section IV. In Section V, we give an example of how to
apply the introduced concepts in the domains of cloud
application architecture and cloud application management
and verify the feasibility of the presented approach by
means of an implemented prototype in Section VI. We
conclude this paper with an outline of future work in
Section VII.

II. MOTIVATION
Patterns document proven solution knowledge mainly in

natural text to support human readers of a pattern. Patterns
are often organized into pattern languages, i.e., they may be
connected to each other. Pattern languages provide a
common template for documenting all contained patterns.

This template typically defines different items to be
documented such as “Problem”, “Context”, “Solution”, and
“Known Uses”. The problem and context section describe
the problem to be solved in an abstract manner where the
solution describes the general characteristics of the solution
– all only conceptually, in an abstract way. Thus, the general
solution is refined for individual problem manifestations
and use cases resulting in different concrete solutions every
time the pattern is applied. The known uses section is the
only place where concrete solutions from which the pattern
has been abstracted are described. But these are commonly
not extended as the pattern is applied nor do they guide
pattern readers during the creation of their own solutions.

Therefore, due to the abstract nature of patterns and
generalized issues, most pattern languages only contain
some concrete solutions a pattern was derived from in the
known uses section. This leads to the problem that the user
of the pattern has to design and implement a specific
solution based on his individual and concrete use case, i.e., a
solution has to be implemented based on the user’s
circumstances considering the given pattern. However,
many patterns are applied several times to similar use cases.
Thus, the effort has to be spent every time for tasks that
were already executed multiple times. For example, the
Model-View-Controller (MVC) Design Pattern is an often
used pattern in the domain of software design. This pattern
was, therefore, implemented for many applications in many
programming languages from scratch, as patterns typically
provide no directly usable concrete solutions for use cases in
a concrete context. Patterns are not linked with a growing
list of solutions that can be used as basis to apply them to
individual use cases rapidly: each time a pattern should be
applied, it has to be refined manually to the current use case.
The provided sections such as “Known Uses” and
“Examples”, which are part of the pattern structure in most
pattern languages, therefore, support the reader in creating
new solutions only partially [10][12][13]: they provide only
partial solution refinements or solution templates as written
text but not directly applicable implementations that can be
used without additional effort. The major reasons for this
problem are, that neither the concrete solution is
documented in a way that enables reusing it efficiently nor it
is obvious how to aggregate existing solutions if multiple
patterns are applied together. Thus, the reader of a pattern is
faced with the problem of creation and design to elaborate a
proper solution based on a given pattern each time when it
has to be applied – which results in time-consuming efforts
that decrease the efficiency of using patterns.

As of today, patterns are typically created by small
groups of experts. By abstracting the problems and solutions
into patterns relying on their expertise, these experts
determine the content of the patterns. This traditional way of
pattern identification created the two issues already seen:
first, the patterns are not verifiable because the concrete
solutions they have been abstracted from are not traceable
(“pattern provenance”) and second the patterns document

abstracted knowledge, therefore manual effort and specific
knowledge is needed to apply them to concrete problems.

Another problem occurs if multiple patterns have to be
combined to create a concrete solution. Pattern languages
tackle the problem of aggregating patterns to solve overall
problems. As shown by Zdun [9], this can be supported by
defining relationships between patterns within a pattern
language, which assure that connected patterns match
together semantically, i.e., that they are composable
regarding their solutions. This means that patterns can be
used as composable building blocks to create overall
solutions. Once patterns are composed to create overall
solutions the problem arises that concrete solutions have to
be feasible in the context of concrete problem situations.
Referring to the former mentioned example of a PHP
developer, the overall concrete solution, consisting of the
concrete solutions of the composed patterns, has to be
elaborated that it complies with the constraints defined by
the programming language PHP. So, the complexity of
creating concrete solutions from composed patterns
increases with the number of aggregated solutions, since
integration efforts add to the efforts of elaborating each
individual solution. Thus, to summarize the discussion
above, we need a means to improve the required refinement
from a pattern’s abstract solution description to directly
applicable concrete solutions and their composition.

III. RELATED WORK
Patterns are human readable artifacts, which combine

problem knowledge with generic solution knowledge. The
template documenting a pattern contains solution sections
presenting solution knowledge as ordinary text [2][19][13].
This kind of solution representation contains the general
principle and core of a solution in an abstract way. Common
solution sections of patterns do not reflect concrete solution
instances of the pattern. They just act like manuals to support
a reader at implementing a solution proper for his issues.

Iterative pattern formulation approaches as shown by
Reiners et al. [6] and Falkenthal et al. [5] can enable that
concrete solution knowledge is used to formulate patterns.
Patterns are not just final artifacts but are formulated based
on initial ideas in an iterative process to finally reach the
status of a pattern. Nevertheless, in these approaches
concrete solution knowledge only supports the formulation
process of patterns but is not stored explicitly to get reused
when a pattern is applied.

Porter et al. [15] have shown that selecting patterns from
a pattern language is a question of temporal ordering of the
selected patterns. They show that combinations and
aggregations of patterns rely on the order in which the
patterns have to be applied. This leads to so called pattern
sequences which are partially ordered sets of patterns
reflecting the temporal order of pattern application. This
approach focuses on combinability of patterns, but not on the
combinability of concrete solutions.

Many pattern collections and pattern languages are stored
in digital pattern repositories such as presented by

Fehling [4], van Heesch [7] and Reiners [3]. Although these
repositories support readers in navigating through the
patterns they do not link concrete solutions to the patterns.
Therefore, readers have to manually recreate concrete
solutions each time when they want to apply a pattern.

Zdun [9] shows that pattern languages can be represented
as graphs with weighted edges. Patterns are the nodes of the
graph and edges are relationships between the patterns. The
weights of the edges represent the semantics of the
relationships as well as the effects of a pattern on the
resulting context of a pattern. These effects are called goals
and reflect the influence of a pattern on the quality attributes
of software architectures. While this approach helps to select
proper pattern sequences from a pattern language it does not
enable to find concrete solutions and connect them together.

Demirköprü [8] shows that Hoare logic can be applied to
patterns and pattern languages such that patterns are getting
enriched by preconditions and postconditions. By
considering this conditions, pattern sequences can be
connected into aggregates respectively compositions of
patterns where preconditions of the first pattern of the
sequence are the preconditions of the aggregate and
postconditions of the last pattern in the sequence are
accordingly the postconditions of the aggregate. This
approach also only tackles aggregation of patterns without
considering concrete solutions.

Fehling et al. [31][33] show that their structure of cloud
computing patterns can be extended to annotate patterns with
additional implementation artifacts. Those artifacts can
represent instantiations of a pattern on a concrete cloud
platform. Considering those annotations, developers can be
guided through configurations of runtime environments.
Although patterns can be annotated with concrete
implementation artifacts, this approach is only described in
the domain of cloud computing and does not introduce a
means to ease pattern usage and refinement in general.

IV. SOLUTION IMPLEMENTATIONS: BUILDING BLOCKS
FOR APPLYING AND AGGREGATING CONCRETE SOLUTIONS

FROM PATTERNS
In the section above, we summarized the state of the art and
identify that (i) concrete solutions are not connected to
patterns and that (ii) there are no approaches dealing with
the aggregation of concrete solutions if multiple patterns
have to be applied together. Even though there are
approaches to derive patterns from concrete solution
knowledge iteratively [5][6], concrete solutions are not
stored altogether with the actual patterns nor are they linked
to them. Concrete solutions, thus, cannot be retrieved from
patterns without the need to work them out manually over
and over again for the same kind of use cases. Therefore, we
propose an approach that (i) defines concrete, implemented
solution knowledge as reusable building blocks, (ii) that
links these concrete solutions to patterns, and (iii) enables
the composition of concrete solutions.

A. Solution Implementations
We argue that concrete solutions are lost during the

pattern writing process since patterns capture general core
solution principles in a technology and implementation
agnostic way. In addition, applications of patterns to form
new concrete solutions are not documented in a way that
enables reusing the knowledge of refinement. As a result,
the details of the concrete solutions are abstracted away and
must be worked out again when a pattern has to be applied
to similar use cases. Thus, the benefits of patterns in the
form of abstractions lead to effort when using them due to
the missing information of concrete realizations. We suggest
keeping concrete solutions linked to patterns in order to ease
pattern application and enable implementing new concrete
solutions for similar use cases based on existing, already
refined, knowledge. These linked solutions can be, for
example, (i) the concrete solutions which were considered
initially to abstract the knowledge into a pattern, (ii) later
applications of the pattern to build new concrete solutions,
or (iii) concrete solutions that were explicitly developed to
ease applying the pattern.

Concrete solutions, which we call Solution
Implementations (SI), are building blocks of concrete
solution knowledge. Therefore, Solution Implementations
describe concrete solution knowledge that can be reused
directly. For example, in the domain of software
development, Solution Implementations provide code,
which can be used directly in the development of an own
application. For example, a PHP developer faced with the
problem to implement the Gang of Four Pattern MVC [19]
in an application can reuse a Solution Implementation of the
MVC pattern written in PHP code. Especially, patterns may
provide multiple different Solution Implementations – each
optimized for a special context and requirements. So, there
could be a specific MVC Solution Implementation for PHP4
and another for PHP5, each one considering the
programming concepts of the specific PHP version. Another
Solution Implementation could provide a concrete solution
of the MVC pattern implemented in Java. So, in this case
also a Java developer could reuse a concrete MVC solution
to save implementation efforts.

By connecting Solution Implementations to patterns,
users do not have to redesign and recreate each solution
every time a pattern is applied. The introduced Solution
Implementations provide a powerful means to capture
existing fine-grained knowledge linked to the abstract
knowledge provided by patterns. So, users can look at the
connected Solution Implementations once a pattern is
selected and reuse them directly. To distinguish between
pattern’s abstract solutions and Solution Implementations,
we point out that the solution section of patterns describes
the core solution principles in text format and the Solution
Implementations represent the real solution objects – which
may be in different formats (often depending on the problem
domain), e.g., executable code in software development or
real clothes in the domain of costumes. Thus, while patterns

are documented commonly in natural text, their Solution
Implementations depend mainly on the domain of the
pattern language and can occur in various forms. Since
many specific Solution Implementations can be linked to a
pattern, we need a means to select proper Solution
Implementations of the pattern to be applied.

B. Selection of Solution Implementations from Patterns
Once a user selects a pattern, he is faced with the

problem to decide which Solution Implementation solves
his problem in his context properly. To enable selecting
proper Solution Implementations of a pattern we introduce
Selection Criteria (sc), which determine when to use a
certain Solution Implementation. The concept of keeping
Solution Implementations linked to the corresponding
pattern and supporting the selection of a proper Solution
Implementation is shown in Figure 1. Selection Criteria are
added to relations between Solution Implementations and
patterns. Selection Criteria may be human readable or
software interpretable descriptions of when to select a
Solution Implementation. They provide a means to guide
the selection using additional meta-information not present
in the Solution Implementation itself.

To exemplify the concept, we give an example of
Solution Implementations from the domain of architecture.
In this domain addressed by Christopher Alexander [1][2], a
Solution Implementation would be, e.g., a real entrance of a
building or a specific room layout of a real floor, which are
described in detail and linked to the corresponding
pattern [1][2]. To find the most appropriate Solution
Implementation for a particular use case, Selection Criteria
such as the cost of the architectural Solution Implementation
or the choice of used material can be considered. For
example, two Solution Implementations for the pattern
mentioned above that deals with room layouts might differ
in the historical style they are built or by the functional
purpose like living, industrial or office, etc. Thus, based on
such criteria, the refinement of a pattern’s abstract solution
can be configured by specifying desired requirements and
constraints.

To summarize the concept of Solution Implementations
it has to be pointed out that solutions in the domain of
patterns are abstract descriptions that are agnostic to

concrete implementations and written in ordinary text to
support readers. In contrast to this abstract description, we
grasp Solution Implementations as fine-grained artifacts,
which provide concrete implementation information for
particular use cases of a pattern. Solution Implementations
are linked to patterns where Selection Criteria are added to
the relation between the pattern and the Solution
Implementation to guide pattern users during the selection
of Solution Implementations.

C. Aggregation of Solution Implementations
The concepts of Solution Implementations and Selection

Criteria enable to reuse concrete solutions, which are linked
to patterns. But most often problems have to be solved by
combining multiple patterns. Therefore, we also need a
means to combine Solution Implementations of patterns to
solve an overall problem altogether. For this purpose,
Solution Implementations connected to patterns can have
additional interrelations with other Solution
Implementations of other patterns affecting their
composability. For example, Solution Implementations in
the domain of software development are possibly
implemented in different programming languages.
Therefore, there may exist various Solution
Implementations for one pattern in different programming
languages, remembering the above example of the PHP and
Java Solution Implementations of the MVC pattern. To be
combined, both Solution Implementations often have to be
implemented in the same programming language.

This leads to the research question “How to compose
Solution Implementations selected from multiple patterns
into a composed Solution Implementation?”

Patterns are often stored and organized in digital pattern
repositories. These repositories, such as presented by
Fehling [4], van Heesch [7] and Reiners [3], support users in
searching for relevant patterns and navigating through the
whole collection of patterns, respectively a pattern language
formed by the relations between patterns. To support
navigation through pattern languages, these relations can be
formulated at the level of patterns indicating that some
patterns can be “combined” into working composite
solutions, some patterns are “alternatives”, some patterns
can only be “applied in the context of” other patterns etc.
Zdun [9] has shown that pattern languages can be
formalized to enable automated navigation through pattern
languages based upon semantic and quality goal constraints
reflecting a pattern’s effect once it is applied. This also
enables combining multiple patterns based on the defined
semantics. The approach supports the reader of a pattern
language to select proper pattern sequences for solving
complex problems that require the application of multiple
patterns at once. But, once there are Solution
Implementations linked to patterns this leads to the
requirement to not only compose patterns but also their
concrete Solution Implementations into overall solutions.

Figure 1. Solution Implementations (SI) connected to a pattern (P)
are selectable under consideration of defined Selection Criteria (sc).

We extend the approach of Zdun to solve the problem of
selecting appropriate patterns to also select and aggregate
appropriate Solution Implementations along the selected
sequence of patterns.
To assure that Solution Implementations are building blocks
composable with each other, we introduce the concept of an
Aggregation Operator, as depicted in Figure 2. The
Aggregation Operator is the connector between several
Solution Implementations. Solution Implementations can
just be aggregated if a proper Aggregation Operator
implements the necessary adaptations to get two Solution
Implementations to work together. Adaptions may be
necessary to assure that Solution Implementations match
together based on their preconditions and postconditions.
Preconditions and postconditions are functional and
technical dependencies, which have to be fulfilled for
Solution Implementations. In Figure 2., the three patterns
P!, ! !!and P!!! show a sequence of patterns, which can be
selected through the approach of Zdun considering
semantics (s) of the relations, goals (g) of the patterns and
further weights. Solution Implementations are linked with
the patterns and can be selected according to the Selection
Criteria introduced in the section above. Furthermore, there
are two Solution Implementations associated with pattern P!
but only Solution Implementation SI!"! can be aggregated
with Solution Implementation SI!""! of the succeeding
pattern P!! due to the Aggregation Operator between those
two Solution Implementations. There is no Aggregation
Operator implemented for SI!" ! , so that it cannot be
aggregated with SI!""! , but, nevertheless, it is a working
concrete solution of P! . So, in the scenario depicted in
Figure 2 an Aggregation Operator has to be available to
aggregate SI!"! and SI!""!.

In general, Aggregation Operators have to be available
to compose Solution Implementations for complex problems
requiring the application of multiple patterns. Solution
Implementations aggregated with such an operator are
concrete implementations of the aggregation of the selected
patterns. Aggregated Solution Implementations are,
therefore, concrete building blocks solving problems
addressed by a pattern language.

Aggregation Operators depend on the connected
Solution Implementations, i.e., they are context-dependent

due to the context of the Solution Implementations. In
contrast to the context section of a pattern, which is used
together with the problem section to describe the
circumstances when a pattern can be applied, the Solution
Implementations’ context is more specific in terms of the
concrete solution. For example, if an Aggregation Operator
shall connect two Solution Implementations consisting of
concrete PHP code, the operator itself could also be
concrete PHP code wrapping functionality from both
Solution Implementations. If the Solution Implementations
to aggregate are Java class files, e.g., an Aggregation
Operator could resolve their dependencies on other class
files or libraries and load all dependencies. Afterwards it
could configure the components to properly work together
and execute them in a Java runtime. Thus, an Aggregation
Operator composes and adapts multiple Solution
Implementations considering their contexts. Another
example on how the Aggregation Operators can be used in
very different domains is an example of the domain of
costumes in films. When dressing the characters of a
western movie usually the sheriff costume pattern and the
outlaw costume pattern need to be applied. But there are
numerous Solution Implementations of these patterns in
terms of concrete sheriff and outlaw costumes, e.g., for
different historical time periods. To make sure the costumes
of the sheriff and outlaw match together, an Aggregation
Operator, for example, can ensure that certain Solution
Implementations originate from the same time period or the
same country and can be used together in one movie.
Further the Aggregation Operator adapts Solution
Implementations to suit to the settings of a scene in a film,
i.e., by adapting the color of the costumes. Thus, the
costumes’ Solution Implementations are aggregated to solve
a problem in combination. Those examples show that
Solution Implementations of patterns from different
domains have to be aggregated using specific Aggregation
Operators. Since different pattern languages deal with
different contexts, they can contain different Aggregation
Operators to compose Solution Implementations.

V. VALIDATION
To validate the proposed concept of Solution
Implementations, this section explains the application of

Figure 2. Aggregating Solution Implementations (SI) along the sequence of selected patterns (P).

Solution Implementations in the domains of cloud
application architecture and cloud management.

A. Deriving Solution Implementations in the Domain of
Cloud Application Architecture
To explain the concept of Solution Implementations in

the domain of cloud computing patterns, the example
depicted in Figure 3 shows the three patterns stateless
component, stateful component, and elastic load balancer
from the pattern language and pattern catalogue of Fehling
et al. [10][31]. The stateless component and stateful
component patterns describe how an application component
can handle state information. They both differentiate
between session state – the state with the user interaction
within the application and application state – the data
handled by the application, for example, customer addresses
etc. While the stateful component pattern describes how this
state can be handled by the component itself and possibly be
replicated among multiple component instances, the
stateless component pattern describes how state information
is kept externally of the component implementation to be
provided with each user request or to be handled in other
data storage offerings. The elastic load balancer pattern
describes how application components can be scaled out:
their performance is increased or decreased through addition
or removal of component instances, respectively. Decisions
on how many component instances are required are made by
monitoring the amount of synchronous requests to the
managed application components. The elastic load balancer
pattern is related to both of the other depicted patterns as it
conceptually describes how to scale out stateful components
and stateless components: while stateless components can
be added and removed rather easily, internal state may have
to be extracted from stateful components upon removal or
synchronized with new instances upon addition.

As depicted in Figure 3, the stateless component and
stateful component pattern both provide Solution
Implementations, which implement these patterns for Java
web applications packaged in the web archive (WAR)
format that are hosted on Amazon Elastic Beanstalk [21]
which is part of Amazon Web Services (AWS) [30]. The
elastic load balancer has three Solution Implementations
implementing the described management functionality for
stateful components and stateless components for WAR-
based applications on Amazon Elastic Beanstalk and
Microsoft Azure [22]. The Selection Criteria “WAR is
deployed on Microsoft Azure” respectively “WAR is
deployed on Elastic Beanstalk” support the user to choose
the proper Solution Implementation. For example, if SI2 is
selected the user knows that this results in a concrete load
balancer in the form of a deployed WAR file on Elastic
Beanstalk. Since a load balancer scales components, it needs
concrete instances of either stateless component or stateful
component to work with. Thus, the user can select a proper
Solution Implementation for the components based on his
concrete requirements considering the Selection Criteria of
the relations between the patterns stateless component and
stateful component and their Solution Implementations. To
assure that Solution Implementations are composable, i.e.,
that they properly work together, they refine and enrich the
pattern relationships to formulate preconditions respectively
postconditions on the Solution Implementation layer. The
preconditions and postconditions of the elastic load balancer
Solution Implementations, therefore, capture which related
pattern – stateless component or stateful component – they
expect to be implemented by managed components.
Furthermore, they capture the supported deployment
package – WAR in this example – and runtime environment
for which they have been developed: SI3.1 of stateless
component has the postcondition “WAR on Elastic

Figure 3. Solution Implementations in the domain of cloud application architecture linked to patterns and aggregated by Aggregation Operators.

"MyLB" : {
 "Type" : "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties" : {
 "Listeners" : [{
 "LoadBalancerPort" : "80",
 "InstancePort" : "80",
 "Protocol" : "HTTP"
 }],
 }
},
"MyCfg" : {
 "Type" : "AWS::AutoScaling::LaunchConfiguration",
 "Properties" : {
 "ImageId" : { "ami-statelessComponent" },
 "InstanceType" : { "m1.large" },
 }
},
"MyAutoscalingGroup" : {
 "Type" : "AWS::AutoScaling::AutoScalingGroup",
 "Properties" : {
 …
 "LaunchConfigurationName" : { "Ref" : "MyCfg"},
 "LoadBalancerNames" : [{ "Ref" : "MyLB" }]
 …
 }
}

Beanstalk” while SI1.2 of elastic load balancer is enriched
with the precondition “WAR on Elastic Beanstalk” and SI1.1
with “WAR on Azure”. The previously introduced
Aggregation Operator interprets these dependencies and, for
example, composes SI3.1 and SI1.2. During this task, the
configuration parameters of the solutions are adjusted by the
operator, i.e., the elastic load balancer is configured with the
address of the stateless component to be managed. As some
of this information may only become known after the
deployment of a component, the configuration may also be
handled during the deployment.

Following, this example is concretely demonstrated by
an AWS Cloud Formation template [28] generated by the
Aggregation Operator in Listing 1. An AWS Cloud
Formation template is a configuration file, readable and
processable by the AWS Cloud to automatically provision
and configure cloud resources. For the sake of simplicity the
depicted template in Listing 1 shows only the relevant parts
of the template, which are adapted by the Aggregation
Operator. To run the example scenario on AWS, three parts
are needed within the AWS Cloud Formation template to
reflect the aggregation of SI3.1 and SI1.2: (i) an elastic load
balancer (MyLB), which is able to scale components, (ii) a
launch configuration (MyCfg), which provides
configuration parameters about an Amazon Machine Image

(AMI) containing the implementation of stateless
component as well as a runtime to execute the component in
the form of an AWS Elastic Compute Cloud (EC2) [32]
instance and, (iii) an autoscaling group
(MyAutoscalingGroup) to define scaling parameters used by
the elastic load balancer and the wiring of the elastic load
balancer and the launch configuration.

MyLB defines an AWS elastic load balancer for scaling
Hypertext Transfer Protocol (HTTP) requests on port 80.
Further, MyCfg defines the AMI ami-statelessComponent in
the property ImageId, which is used for provisioning new
instances by an elastic load balancer. The autoscaling group
MyAutoscalingGroup wires the elastic load balancer and the
stateless component instances by means of referencing the
properties LoadBalancerNames and
LaunchConfigurationName to MyLB and MyCfg,
respectively. Since all the mentioned properties are in
charge of enabling an elastic load balancer instance to
automatically scale and load balance instances of
components contained in an AMI, an Aggregation Operator
can dynamically adapt those properties based on the
selected Solution Implementations to be aggregated. So,
presuming that ami-statelessComponent contains an
implementation of SI3.1, an Aggregation Operator can
aggregate SI3.1 and SI1.2 by adapting the mentioned
properties and, therefore, provides an executable
configuration template for AWS Cloud Formation. The
same principles can be applied to aggregate SI1.3 and SI2.1
because of their matching preconditions and postconditions.
By adapting the ImageId of the LaunchConfiguration to an
AMI, which runs an AWS EC2 instance with a deployed
stateful component, the Aggregation Operator can aggregate
SI1.3 and SI2.1.

Further, SI1.1 has precondition “WAR on Azure” and is,
therefore, incompatible with SI2.1 and SI3.1, i.e., SI1.1 cannot
be combined with these Solution Implementations due to
their preconditions and postconditions. The selection of a
Solution Implementation, therefore, may restrict the number
of matching Solution Implementations of the succeeding
pattern since postconditions of the first Solution
Implementation have to match with preconditions of the
second. This way, the space of concrete solutions is reduced
based on the resulting constraints of a selected Solution
Implementation. To elaborate a solution to a overall
problem described by a sequence of patterns exactly one
Solution Implementation has to be selected for each pattern
in the sequence considering its selection criteria to match
non-functional requirements, as well as postconditions of
the former Solution Implementation.

B. Deriving Solution Implementations in the Domain of
Cloud Application Management
In this section, we show how the presented approach can

be applied in the domain of cloud application management.
Therefore, we describe how applying management patterns
introduced in [10][29] to cloud applications can be supported

Listing 1. Extract from AWS Cloud Formation template produced by an
Aggregation Operator to aggregate configuration snippets to aggregate

elastic load balancer and stateless component.

by reusing and aggregating predefined Solution
Implementations in the form of executable management
workflows.

In the domain of cloud application management,
applying the concept of patterns is quite difficult as the
refinement of a pattern’s abstract solution to an executable
management workflow for a certain use case is a complex
challenge: (i) mapping abstract conceptual solutions to
concrete technologies, (ii) handling the technical complexity
of integrating different heterogeneous management APIs of
different providers and technologies, (iii) ensuring non-
functional cloud properties, (iv) and the mainly remote
execution of management tasks lead to immense technical
complexity and effort when refining a pattern in this domain.
The presented approach of Solution Implementations enables
to provide completely refined solutions in the form of
executable management workflows that already consider all
these aspects. Thus, if they are linked with the corresponding
pattern, they can be selected and executed directly without
further adaptations. This reduces the (i) required
management knowledge and (ii) manual effort to apply a
management pattern significantly. To apply the concept of
Solution Implementations to this domain, two issues must be
considered: (i) selection and (ii) aggregation of Solution
Implementations in the form of management workflows.

To tackle these issues, we employ the concept of
management planlets, which was introduced in our former
research on cloud application management automation [24].
Management planlets are generic management building
blocks in the form of workflows that implement management
tasks such as installing a web server, updating an operating

system, or creating a database backup. Each planlet exposes
its functionality through a formal specification of its effects
on components, i.e., its postconditions, and defines optional
preconditions that must be fulfilled to execute the planlet.
Therefore, each specific precondition of a planlet must be
fulfilled by postconditions of other planlets. Thus, planlets
can be combined to implement a more sophisticated
management task, such as scaling an application. If two or
more planlets are combined, the result is a composite
management planlet (CMP), which can be recursively
combined with other planlets again: the CMP inherits all
postconditions of the orchestrated planlets and exposes all
their preconditions, which are not fulfilled already by the
other employed planlets. Thus, management planlets provide
a recursive aggregation model to implement management
workflows. Based on these characteristics, management
planlets are ideally suited to implement management patterns
in the form of concrete Solution Implementations. We create
Solution Implementations, which implement a pattern’s
refinement for a certain use case by orchestrating several
management planlets to an overall composite management
planlet that implements the required functionality in a
modular fashion as depicted in Figure 4.

As stated above, selection and aggregation of Solution
Implementations must be considered, the latter if multiple
patterns are applied together. For example, Figure 4 shows
two management patterns: (i) forklift migration [29] –
application functionality is migrated with allowing some
downtime and (ii) elasticity management process [10] –
application functionality is scaled based on experienced
workload. Both patterns are linked to two Solution

Figure 4. Management Planlets are Solution Implementations in the domain of cloud management linked to patterns and aggregated
by an Aggregation Operator.

Implementations each in the form of composite management
planlets. The forklift migration pattern provides two Solution
Implementations: one migrates a Java-based web application
(packaged as WAR file) to Microsoft Azure [22], another to
Amazon Elastic Beanstalk [21]. Thus, if the user selects this
pattern and chooses the Selection Criteria defining that a
WAR application shall be migrated to Elastic Beanstalk, SI1.2
is selected. Whether this Solution Implementation is
applicable at all depends on the context: if the application to
be migrated is a WAR application, then the Solution
Implementation is appropriate. Equally to this pattern, the
elasticity management process pattern shown in Figure 4
provides two Solution Implementations: one provides
executable workflow logic for scaling a WAR application on
Elastic Beanstalk (SI2.1). Thus, if these two patterns are
applied together, the selection of SI1.2 restricts the possible
Solution Implementations of the second pattern, as only SI2.1
is applicable (its preconditions match the postconditions of
SI1.2). As a result, the selection of appropriate Solution
Implementations can be reduced to the problem of (i)
matching Selection Criteria to postconditions of Solution
Implementations and (ii) matching preconditions and
postconditions of different Solution Implementations to be
combined.

After Solution Implementations of different patterns have
been selected, the second issue of aggregation has to be
tackled to combine multiple Solution Implementations in the
form of workflows into an overall management workflow
that incorporates all functionalities. Therefore, we implement
a single Aggregation Operator for this pattern language as
described in the following: to combine multiple Solution
Implementations, the operator integrates the corresponding
workflows as subworkflows [27]. The control flow, which
defines the order of the Solution Implementations, i.e., the
subworkflows, is determined based on the patterns’ solution
path depicted in Figure 2. So in general, if a pattern is
applied before another pattern, also their corresponding
Solution Implementations are applied in this order.

VI. SOLUTION IMPLEMENTATIONS PROTOTYPE
To prove the approach’s technical feasibility, we

implemented a prototype. That consists of two integrated
components: (i) a pattern repository and (ii) a workflow
generator. The pattern repository aims to capture patterns
and their cross-references in a domain-independent way to
support working with patterns. Based on semantic wiki-
technology [11] it enables capturing, management and search
of patterns. To adapt to different pattern domains, the pattern
format is freely configurable. The pattern repository already
contains various patterns from different domains like cloud
computing patterns, data patterns and costume patterns to
demonstrate the genericity of our approach. The cross-
references between the patterns enable an easy navigation
through the pattern languages. Links like “apply after” or
“combined with” supports to connect the patterns to result in
a pattern language. The pattern repository does not only
contain the patterns and their cross-references but can be
connected to a second repository containing the solution
implementations of these patterns. Also, based on semantic

wiki-technology we implemented a Solution Implementation
repository for the domain of costume patterns [14]. Here, for
example, the concrete costumes of a sheriff occurring in a
film can be understood as the Solution Implementation of a
sheriff costume pattern. By connecting the pattern to a
Solution Implementation as a concrete solution of the
abstracted solution of the pattern the application of the
pattern in a certain context is facilitated.

The combination of several concrete Solution
Implementations has been prototyped for the domain of
cloud management patterns. A workflow generator has been
built that is used to combine different management planlets
to an overall workflow implementing a solution to a problem
that requires the use of multiple patterns. The input for this
generator is a partial order of (composite) management
planlets, i.e., Solution Implementations that have to be
orchestrated into an executable workflow. This partial order
is determined by the relations of combined patterns: if one
pattern is applied after another pattern, also their Solution
Implementations, i.e., management planlets, have to be
executed in this order. The workflow generator creates
BPEL-workflows while management planlets are also
implemented using BPEL. As BPEL is a standardized
workflow language, the resulting management plans are
portable across different engines and cloud environments
supporting BPEL as workflow language, which is in line
with TOSCA [25][26].

VII. CONCLUSION AND FUTURE WORK
In this paper, we introduced the concept of Solution

Implementations as concrete instances of a pattern’s solution.
We showed how patterns and pattern languages can be
enriched by Solution Implementations and how this approach
can be integrated into a pattern repository. To derive
concrete solutions for problems that require the application
of several patterns we proposed a mechanism to compose
these solutions from concrete solutions of the required
patterns by means of operators. We concretized the general
concept of Solution Implementations in the domain of cloud
management by introducing management planlets as
examples for Solution Implementations. We verified the
approach by means of a prototype of an integrated pattern
repository and workflow generator.

Currently, we extend the implemented repository for
solution knowledge in the domain of costume design to
capture Solution Implementations more efficiently. This
repository integrates patterns and linked Solution
Implementations in this domain and we are going to enlarge
the amount of costume Solution Implementations. We are
also going to tackle the limitation of the presented approach
to not only work on solution implementation sequences but
also on aggregations of concrete solution instances not
ordered temporally due to pattern sequences. Since Solution
Implementations are composed by Aggregation Operators
we are going to enhance our pattern repositories to also store
and manage the Aggregation Operators. Finally, we will
investigate Aggregation Operators in domains, besides the
above mentioned to formulate a general theory of Solution
Implementations and Aggregation Operators.

REFERENCES
[1] C. Alexander, “The timeless way of building,” Oxford

University Press, 1979.
[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.

Fiksdahl-King, and S. Angel, “A pattern language: towns,
buildings, constructions,” Oxford University Press, 1977.

[3] R. Reiners, Bridge Pattern Library, http://bridge-pattern-
library.fit.fraunhofer.de/pattern-library/, last accessed on
2014.01.30.

[4] C. Fehling, F. Leymann, R. Mietzner, and W. Schupeck, “A
collection of patterns for cloud types, cloud service models,
and cloud-based application architectures,”
http://www.cloudcomputingpatterns.org, last accessed on
2014.01.30, University of Stuttgart, Report 2011/05, Mai
2011.

[5] M. Falkenthal, D. Jugel, A. Zimmermann, R. Reiners, W.
Reimann, and M. Pretz, “Maturity assessments of service-
oriented enterprise architectures with iterative pattern
refinement,” Lecture Notes in Informatics - Informatik 2012,
September 2012, pp. 1095–1101.

[6] R. Reiners, “A pattern evolution process – from ideas to
patterns,” Lecture Notes in Informatics – Informatiktage
2012, March 2012, pp. 115–118.

[7] U. van Heesch, Open Pattern Repository,
http://www.patternrepository.com, last accessed on
2014.01.30.

[8] M. Demirköprü, “A new cloud data pattern language to
support the migration of the data layer to the cloud,” in
German “Eine neue Cloud-Data-Pattern-Sprache zur
Unterstützung der Migration der Datenschicht in die Cloud,”
University of Stuttgart, diploma thesis no. 3474, 2013.

[9] U. Zdun, “Systematic pattern selection using pattern language
grammars and design space analysis,” Software: Practice and
Experience, vol. 37, 2007, pp. 983–1016.

[10] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P.
Arbitter, “Cloud computing patterns,” Springer, 2014.

[11] N. Fürst, “Semantic wiki for capturing design patterns,” in
German “Semantisches Wiki zur Erfassung von Design-
Patterns,” University of Stuttgart, diploma thesis no. 3527,
2013.

[12] G. Hohpe and B. Wolf, “Enterprise integration patterns:
designing, building, and deploying,” Addison-Wesley, 2004.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-oriented software architecture volume 1: a
system of patterns,” Wiley, 1996.

[14] D. Kaupp, “Application of semantic wikis for solution
documentation and pattern identification,” in German
“Verwendung von semantischen Wikis zur
Lösungsdokumentation und Musteridentifikation,” University
of Stuttgart, diploma thesis no. 3406, 2013.

[15] R. Porter, J. O. Coplien, and T. Winn, “Sequences as a basis
for pattern language composition,” in Science of Computer
Programming, Special issue on new software composition
concepts, vol. 56, April 2005, pp. 231–249.

[16] F. Salustri, “Using pattern languages in design engineering,”
Proceedings of the International Conference on Engineering
Design, August 2005, pp. 248–362.

[17] D. Schumm, J. Barzen, F. Leymann, and L. Ellrich, “A
pattern language for costumes in films,” Proceedings of the

17th European Conference on Pattern Languages of Programs
(EuroPLoP), July 2012, pp. C4-1–C4-30.

[18] T. Iba, T. Miyake, “Learning patterns: a pattern language for
creative learners II,” Proceedings of the 1st Asian Conference
on Pattern Languages of Programs (AsianPLoP 2010), March
2010, pp. I-41 – I-58.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
patterns: elements of reusable object-oriented software,”
Addison-Wesley, 1995.

[20] M. Fowler, “Patterns of enterprise application architecture,”
Addison-Wesley, 2003.

[21] Amazon, Elastic Beanstalk,
http://www.amazon.com/elasticbeanstalk, last accessed on
2014.01.30.

[22] Microsoft, Microsoft Azure, http://www.windowsazure.com,
last accessed on 2014.01.30.

[23] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W.
Schupeck, “An architectural pattern language of cloud-based
applications”, Proceedings of the 18th Conference on Pattern
Languages of Programs (PLoP), October 2011, pp. A-20–A-
30.

[24] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Pattern-based runtime management of composite cloud
applications”, Proceedings of the 3rd International
Conference on Cloud Computing and Service Science
(CLOSER), May 2013, pp. 475–482.

[25] OASIS, Topology and Orchestration Specification for Cloud
Applications Version 1.0, http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last
accessed on 2014.01.30.

[26] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann,
“TOSCA: portable automated deployment and management
of cloud applications,” in Advanced Webservices, A.
Bouguettaya, Q. Z. Sheng, F. Daniel, Eds., Springer, 2014,
pp. 527–549.

[27] O. Kopp, H. Eberle, and F. Leymann, “The subprocess
spectrum”, Proceedings of the 3rd Business Process and
Services Computing Conference (BPSC), September 2010,
pp. 267–279.

[28] Amazon, AWS Cloud Formation,
http://aws.amazon.com/cloudformation/, last accessed on
2014.01.30.

[29] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S.
Verclas “Service migration patterns – decision support and
best practices for the migration of existing service-based
applications to cloud environments,” Proceedings of the IEEE
International Conference on Service Oriented Computing and
Applications (SOCA), December 2013, in press.

[30] Amazon, Amazon Web Services, http://aws.amazon.com, last
accessed on 2014.01.30.

[31] C. Fehling, F. Leymann, J. Rütschlin, D. Schumm, “Pattern-
based development and management of cloud applications,”
Future Internet, vol. 4, 2012, pp. 110–141.

[32] Amazon, AWS EC2, http://aws.amazon.com/de/ec2/, last
accessed on 2014.04.10.

[33] C. Fehling, F. Leymann, R. Retter, D. Schumm, W.
Schupeck, “An architectural pattern language of cloud-based
applications,” Proceesings of the 18th Conference on Pattern
Languages of Programs (PLoP), Oct. 2011, pp. A-20 – A-21

