M Institute of Architecture of Application Systems

A Life Cycle for Coupled Multi-Scale, Multi-Field
Experiments Realized through Choreographies

Andreas WeiB3, Dimka Karastoyanova

Institute of Architecture of Application Systems,
University of Stuttgart, Germany
{andreas.weiss, dimka.karastoyanova}@iaas.uni-stuttgart.de

BIBTRX:
@inproceedings {INPROC-2014-39,
author = {Andreas Wei{\ss} and Dimka Karastoyanova},
title = {{A Life Cycle for Coupled Multi-Scale, Multi-Field
Experiments Realized through Choreographies}},
booktitle = {Proceedings of the 18th IEEE International EDOC
Conference (EDOC 2014)},
publisher = {IEEE Computer Society},
pages = {1--8},
month = {September},
year = {2014}
}

© 2014 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

: Universitat Stuttgart

Germany

A Life Cycle for Coupled Multi-Scale, Multi-Field Experiments Realized through
Choreographies

Andreas Weifl and Dimka Karastoyanova
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Stuttgart, Germany
E-mail: {andreas.weiss, dimka.karastoyanova} @iaas.uni-stuttgart.de

Abstract—Current systems for enacting scientific experi-
ments, and in particular simulation workflows, do not support
multi-scale and multi-field problems if they are not coupled on
the level of the mathematical model. We present a life cycle
that utilizes the notion of choreographies to enable the trial-
and-error modeling and execution of multi-scale and/or multi-
field simulations. The life cycle exhibits two views reflecting the
characteristics of modeling and execution in a top-down and
bottom-up manner. It defines techniques for composing data-
intensive, scientific workflows in more complex simulations in a
generic, domain-independent way, and thus provides scientists
with means for collaborative and integrated data management
based on the workflow paradigm.

I. INTRODUCTION

eScience is a very active research field and its main
objective is to provide generic approaches and tools to
support its whole life cycle [1] and different fields of
natural and social sciences for the purpose of faster scientific
exploration and discovery. One approach for data processing
and analysis, which is the third phase of eScience, is the
workflow technology, also known as scientific workflows. It
is used for enabling scientific simulations. Note that scientific
workflows have different characteristics than the workflow
technology applied in business applications for Business
Process Management (BPM). Existing scientific Workflow
Management systems (sSWfMS) can be grouped in two major
categories: domain-specific and generic systems. The domain-
specific systems are typically developed in cooperation with
scientists and meet their requirements in one (or just a few)
scientific domains. In most cases, scientific workflows support
modeling of a workflow of data management or computing
tasks and focus on how data is processed, in what sequence,
and which data sources are to be used. Generally, these
systems hide the complexity of distribution and parallelization
of computational tasks from scientists, however, sometimes
force them to use one specific technology. Usually such
systems derive an optimized workflow model which can
be executed multiple times. However, fault and exception
handling are often not supported in an automated manner
by means of modeling constructs and techniques and in
addition the trial-and-error nature of scientific discovery is
not considered. Workflows are executed without interruptions

and often do not allow human users to interact with it.

The second category of workflow systems is a more recent
development and makes use of the conventional workflow
technology known from BPM. The advantages of business
workflows such as fault handling, forward and backward
recovery and since recently workflow flexibility approaches
for trial-and-error experimenting are drawn upon. The issues
that are currently being dealt with in research are related
to improving the support for data processing in a generic
manner considering the huge amount of data available or
produced, composition and integration of existing software
into interoperable systems. Moreover, the huge complexity
of eScience due to its interdisciplinary nature, software
engineering aspects, and knowledge management supporting
such systems has to be considered.

Both types of systems support the modeling and execution
of simulation workflows that can realize simulations on
a single scale, i.e., metric or time scale, and/or physical
model, i.e., a single field model describing the scientific
phenomenon. The more complex multi-scale and/or multi-
field! simulations can also be supported by these technologies
and systems if the mathematical models implemented through
the simulation software are already coupling the different
scales/fields on the level of the mathematical formalization.
Typically, descriptions of one or more scales/fields to another
scale/field are used. Multi-scale simulations cover different
scales within the same computer experiment, where the scales
can either refer to time scales, e.g., nanoseconds to days,
or to length scales, e.g., nanometers to meters. Multi-field
simulations use different scientific fields (or sub-fields) in
the same experiment, e.g., physics, biology, or chemistry.
An example for a multi-scale simulation is the remodeling
of bones using the Theory of Porous Media [2]. Here, the
cell and tissue model in the human body can be coupled
with a bone model. Another example is the simulation of
thermal aging of iron-copper alloys and emerging effects
of existing precipitates on the mechanical behavior in the
material science domain [3]. With this approach, multiple
time scales of thermal aging as well as length scales in

In the following we will use the term multi-* to abbreviate multi-scale
and/or multi-field and explicitly state it when we refer to one particular
characteristic.

terms of sample volumes become accessible by coupling two
simulation methods, the kinetic Monte Carlo (KMC) and the
Phase-field Method (PFM), each describing the phenomena
of precipitation from a different point of view.

Based on our experience with scientists and experts from
industry, where simulation is also a key enabler, simulations
that are not based on models inherently coupling the different
scales and fields of the natural phenomena also need to be
supported. Especially important is the case where collabo-
ration among scientific groups or industry organizations,
each of them having distinct expertise, is desired. This
implies coupling of existing simulation software into complex
simulations and the correlation of the interactions among
them. Towards this goal, in this paper we present an approach
that utilizes the notion of choreographies to enable the trial-
and-error modeling and execution of multi-* simulations. We
contribute a definition of the life cycle of such simulations
and present in detail concepts and techniques that support all
life cycle phases. The main objective has been to reuse as
much of existing standards, techniques and mechanisms as
possible, while providing a user-friendly system to scientists,
who are both the developers of the simulations and their
users. The approach defines techniques for composing data-
intensive, scientific workflows in more complex simulations
in a generic, domain-independent way and thus provides
means for collaborative and integrated data management
using the workflow/process-based paradigm.

We structure the paper in the following way: Sec. II gives
more details on our motivation for the presented approach and
discusses the available system for scientific workflows, which
serves as a basis for our choreographed, multi-* scientific
simulations. We introduce our approach and supporting life
cycle in Sec. III. We compare our approach with related ones
in Sec. IV and conclude the article with an outline of future
research topics in Sec. V.

II. BACKGROUND AND MOTIVATION

In this section we present the requirements of eScience
as introduced in our previous research work and will derive
additional requirements for the approach and life cycle for
multi-* simulations. The approach presentation is based on
our existing research publications. In our research in the
scope of the Cluster of Excellence Simulation Technology
(SimTech?) our goal is to enable IT support for scientists
in their work on developing scientific simulations. Major
starting requirements in this work have been to support the
complete scientific simulations life cycle characterized by
its trial-and-error nature and to maintain user-friendliness
of the solution. After comparison with existing work in
the field of scientific experiments and simulations, and
the research in the BPM field mostly related to workflow

2SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/

management [4], [5], [6], [7], [1], we have designed a service-
oriented, workflow-based approach for modeling, execution
and monitoring of scientific simulations and a corresponding
interactive, flexible, SOA-based scientific workflow system
enabling this approach by means of concepts, architecture
and implementation. The major components involved are:
a modeling tool, a workflow engine, a service bus, and
a monitoring component. In our work we make use of
Web Services [8] to enable interoperability and the easier
integration of simulation software.

For the modeling of scientific experiments we extended
the existing workflow technology known from business
applications [9] with features needed by scientists. Basically,
using a workflow to model a simulation, or any other
kind of experiment, involves specifying a number of steps
(called activities) that have to be carried out as well as
their precise conditional ordering, i.e., control flow and data
flow. The steps in such a workflow, which we also call
simulation workflow, are typically data processing steps such
as copying data from one location to another, solving a
set of mathematical models (differential equations solvers,
sequencing algorithms etc.), visualization steps, preprocessing
of data, and many others. A workflow modeling tool is
the infrastructure component supporting the modeling step,
typically with a graphical notation. In addition to constructs
for modeling the control flow of interactions of simulation
modules and the data exchanged among them and with the
user, we explicitly support data management activities and
domain-specific activities, which are also part of the construct
catalog in our modeling tool [10]. The data management
activities are abstract and can be used to model storing,
retrieving, and manipulating scientific data from different
data source types. Depending on the context in which such an
activity is used, we define mappings of such an activity to a
predefined template realizing complex operations on data, the
necessary interactions with data sources and performing the
required format transformations [11]. The domain-specific
activities stand for complex sequences of domain-specific
tasks orchestrating several simulation modules/services that
we provide to the users hidden behind individual activities.
Using a domain-specific activity leads to a subsequent
code generation that adds the actual workflow code into
the model. For the purpose of reusability we also defined
and utilized the concept of workflow fragments capturing
predefined workflow logic. Fragments are stored in the
fragment library Fragmento [12]. They can also be used
to capture both templates for data management and workflow
logic realizing a domain-specific activity. Scientists can
start simulations from our modeling tool just by a simple
click of a button, without performing any additional steps.
This contributes to the user-friendliness of the tool. The
realization of the tool incorporates, on the level of both
architecture and implementation, support for deployment of
the workflow model on a workflow engine, the provision of

the workflow as a service, and the subsequent instantiation
of a workflow instance — all of these steps are hidden
from the user. The workflow engine navigates through the
workflow model and delegates the invocation of the individual
activities to the service bus. Since the individual activities
are implemented by services hiding simulation software,
the execution of the simulation software is done by the
concrete execution environment. The resulting data or data
reference is brought back to the engine by the service bus. The
monitoring component is typically responsible for collecting
execution data about process instances and providing them
to a monitoring tool for visualization. For scientist this is
in contradiction to the trial-and-error nature of their work.
For this purpose, we enabled the simultaneous modeling
and execution of workflows. The scientists can define only
a part of the workflow they would like to carry out, start
its execution (on the engine) and add additional steps in
the workflow while it is being executed. We denoted this
concept Model-as-you-go approach [13], [10]. Workflow
logic can be re-executed, i.e., already executed steps can
be compensated and executed again with a different set
of parameters as well as re-iterated for convergence of
results. The approach allows for the interactive modeling and
execution of scientific workflows and contributes also to the
field of flexible workflows and service compositions. The
corresponding infrastructure uses the monitoring component
to transfer monitoring/status information to the modeling
tool and back, so that both execution engine and modeling
tool have all the information about the state of the executed
workflow instance and the newly modeled activities. We
allow for visualization of the workflow execution state
directly in the modeling tool and incorporated a stop/resume
functionality to enable the interactive completion of the
workflow. These functionalities have the corresponding
counterpart components at the workflow engine.

With our original approach we can support user friendly
modeling, execution and monitoring of scientific workflows
for cases in which existing simulation and data processing
software has to be orchestrated automatically in a specific
order. Such simulation workflows can realize simulations
on a single scale and/or scientific model or multi-scale/field
simulations if the mathematical models implemented through
the simulation software are already coupling the different
scales/fields. The latter case typically uses approximation of
one or more scales/fields to another scale/field. Based on
requirements provided by scientists and industry experts we
identify two basic scenarios that need to be supported: (i)
there is existing software implementing different mathemati-
cal models and/or scales that need to be orchestrated, very
often across organizations, i.e., a bottom-up approach, or (ii)
one or more organizations need to support a particular multi-
scale/field simulation and starts its modeling and realization
from scratch, i.e., a top-down approach. In both scenarios
the major open issue with respect to the modeling is how

the interactions among the participating simulations and the
data exchange can be represented.

III. L1IFE CYCLE FOR MULTI-SCALE AND MULTI-FIELD
EXPERIMENTS

As shown in Sec. II, previous work has enabled scientist
to model and execute scientific workflows that orchestrate
scientific services coping with either one single field and one
single scale or with services combining separate scientific
fields and different scales into one coherent scientific model.
As a logical continuation, it is our goal to enable scientist
to model and execute scientific multi-* experiments in an
easy and user-friendly manner for the cases not supported
by existing work. Again, our approach focuses on using
proven methods and standard-based technologies of the
business domain [14]. In this work, we use the concept
of choreographies to couple scientific experiments from
distinct scientific fields into combined multi-* experiments.
Choreographies are a concept known from the business
domain that enables independent organizations to collaborate
and reach a common business goal. Choreographies provide
a global view on the interconnection of independent organiza-
tions communicating without a central coordinator [15], [16].
Therefore, choreographies are coordinated peer-to-peer-like
interactions between services or orchestrations of services
(i.e., workflows). While choreographies show the public inter-
faces of the collaboration, these interfaces are implemented
by orchestrations, i.e., the so-called enacting workflows,
realizing the private business logic of a single organization.
The distinct organizations (and their workflows) are called
choreography participants. In the context of our approach,
every scientific model based on a separate scientific field or
using a different scale is implemented as an orchestration of
scientific services and the overall experiment is represented
by a choreography without centralized control. This enables
the modeling and execution in a distributed manner utilizing
the expertise of different scientist form different domains.
Note that for integration purposes we assume that experiments
are available as services, as discussed for example in [17].

In the following, we introduce a life cycle for multi-* ex-
periments that are realized by choreographies and address the
identified need for both top-down and bottom-up modeling
and execution. Both modeling approaches must enable the
typical trial-and-error modeling style of scientists [18], [14].
Since scientists want to be able react to intermediate
results during execution without modeling the experiment
completely beforehand, the enactment of choreographies, i.e.,
the execution of the collaborating workflows, may be started
even before the choreography model is completely specified.
An adaptation follows afterwards, for example to add new
experiment methods on a different scale. We introduce the
notion of Model-as-you-go for choreographies to reflect this
fact. The proposed life cycle is an extension of the scientific
workflow life cycle introduced in [14], which itself has been

implemented by an extended BPM life cycle. While in the
traditional BPM life cycle there are several distinct roles,
such as a business analyst modeling the workflow and an
IT specialist responsible for deployment and monitoring,
in the domain of scientific experiments this is typically
done by one role, the scientist. However, the role can be
taken by several individuals at the same time when scientists
work together. The technical complexities and the difference
between workflow models and instances must be hidden, so
that the actual phases for modeling on choreography and
workflow level, the deployment, execution, and monitoring
are perceived as one experimentation process by scientists.
Both the top-down and the bottom-up approaches enable
modeling of multi-* experiments in a round-trip fashion.

A. Top-down life cycle

Fig. 1 shows the extended life cycle for the top-down
modeling and execution approach as it is experienced by
the scientist. The dashed arrows point to the artifacts visible
to the scientist as input or output of a particular life cycle
phase. Scientists start from a scientific multi-scale and/or
multi-field problem (1) and model the experiments in the
distinct scientific fields as participants of a choreography
in the Choreography Modeling phase. The modeled chore-
ography (2) provides a global view on the communication
between distinct single-scale and single-field experiments.
The modeling is done manually using a choreography editor.
The editor should provide a graphical notation and abstract
from choreography languages. In each participant, only the
activities, control and data flow constructs necessary for
the communication with other choreography participants
are modeled (i.e., its public communication interface). The
orchestration logic of each single-field and single-scale
experiment is not explicitly modeled in this phase. Typically,
choreography modeling languages are not executable [15].
Therefore, the scientific choreography is transformed into an
abstract representation of an executable workflow language.
For this, separate abstract workflow models are generated
for each participant containing only the communication
constructs such as send and receive activities (3). If the
scientist has already built a (incomplete) choreography model
previously, the transformation action has to be aware of
this and existing communication constructs must be updated
accordingly. Furthermore, in this case refined workflow logic
and already running experiment state must not be lost. The
transformation is kept transparent for scientists and is hidden
behind the by Transform/Update action. Scientists can then
use an orchestration editor to conduct a manual refinement of
the generated workflow definitions. In the Workflow Modeling
phase, the internal orchestration logic for every distinct
single-scale and single-field experiment participating in the
overall choreography is added. Scientists add activities and
activity implementations to the workflow thus making it
executable (4). It must be possible for the scientists to

model a particular workflow only partially or with abstract
placeholders, i.e, the only partially modeled workflows must
still be executable. However, this may lead to situations
where the overall choreography can not yet be executed
since the activities producing the results of one workflow that
are necessary for another workflow, are not yet completely
modeled. Changes made on the choreography must be
checked for consistency and correctness, since they may
influence the communication activities among choreography
participants. It is possible that different scientists refine
different workflows according to their scientific expertise
in a collaborative manner. For example, a physicist may
refine a workflow simulating forces on a bone model,
whereas a biologist covers a workflow operating on the
biological cell level. Scientists may switch back to the
Choreography Modeling phase using the Return action if
necessary. The Run/Resume action hides all technical details
of deployment and instantiation of the updated workflows.
The next phase is the Execution and Monitoring phase where
the scientist monitors the running choreographed workflow
instances. It is possible to suspend a running workflow
instance and return to the Workflow Modeling phase in order
to introduce/remove orchestration logic or conduct Model-
as-you-go operations such as iteration and re-execution.
Additionally all choreographed workflow instances can be
suspended in order to return to the Choreography Modeling
phase and change the choreography model. The Suspend
action also updates the choreography model if changes to
the interconnected workflows affect the choreography model.
Finally, after the execution of the workflows the scientist can
analyze the final results in the Analysis phase and start the
whole experiment life cycle again.

Fig. 2 shows the details of the top-down life cycle from
the perspective of the realization by means of the BPM
approach, i.e., showing all phases supported by a software
system based on workflows that implements the life cycle
perceived by scientist. For brevity we discuss only the phases
that are not visible to scientists. To enable the interleaving of
modeling and execution on the levels of both choreography
and orchestration, we introduce four different adaptation
cycles. The adaptation cycle at the bottom denotes adaptations
along the functions and the logic dimension. Functions
dimensions adaptation comprise the replacement of service
implementations whereas the logic dimension can be adapted
by refining abstract placeholders in the enacting workflows
during run time. The right hand side adaptation cycles
indicate adaptations on the logic dimension, i.e. changes,
to the orchestration and choreography logic. Additionally,
Fig. 2 depicts the Transformation and Deployment phases.
The Transformation phase realizes the Transform/Update
action introduced in Fig. 1. It comprises the automatic
steps necessary to transform a choreography model into the
enacting workflows or update existing workflows, respectively.
This also includes the generation of interface descriptions.

o Scientific

@ Modeled choreography]

multi-scale

and/or
multi-field
problem

@ Abstract workflows]

Suspend

Scientist y

Choreograph

Refined & executable]
workflows

Legend

User,, — = Message flow

© Communication activity O Choreography participant

- O Simulation step activity — > Input/Output
— Control flow

Figure 1: Top-down life cycle as perceived by the scientist

The Deployment phase realizes the Run/Resume action in
Fig. 1. In this phase the refined scientific workflows are
deployed onto execution engines and exposed as services
that typically require the involvement of a service middleware,
too. Similarly, the services that realize the experiment steps
are also deployed on their execution environments. Therefore,
appropriate deployment descriptors have to be generated and
configured. In order to automate the deployment steps and
the management during run time, the service and workflow
topology has to be captured and deployable packages
containing services and workflows must be created [19].
The necessary monitoring infrastructure is configured using
the requirements defined in the modeled choreography.
Context and correlation data identifying workflow instances
participating in a particular choreography may have to be
initialized. Since the scientific choreographies may be used
by several scientists in parallel, the underlying infrastructure
must be capable of mapping interactions with the system to
distinct tenants and users.

As a result of this phase, the workflows that enact the
choreography collaboratively are available for execution.
The execution takes place in the Execution and Monitoring
phase. Multi-* experiments are conducted by executing the

Choreography
Modeling
i Logic
Workflow Modeling . .
Dimension

Adaptation
Deployment
Monitoring

Logic & Functions

Scientist

Legend

User.

Dimension

Adaptation

Figure 2: Top-down life cycle from the sWfMS perspective

refined enacting workflows and scientific services, which
are participating in the choreography and are potentially
distributed on several execution engines and service execution
environments. The overall execution environment for the

Workflow Modeling

Run

Resume

— |

Scientist
Update

Update
Choreography
Modeling

Legend

© Communication activity D

O Simulation step activity — = Input/Output

— Control flow
User, —— Message flow

Monitorin

Choreography participant

@Executable workflows]
~\
_ . .)

@ Derived choreographa

~
~
~
~

Suspend

' Workflow

Transform/
Update

~
~
~
~
~

e Scientific
multi-scale
and/or
multi-field
problem

Figure 3: Bottom-up life cycle as perceived by the scientist

enacting workflows and scientific services has to support
context-awareness and adaptation mechanisms to enable
the flexibility needed for executing Model-as-you-go for
choreographies operations. Some of the adaptations may
be predefined in the choreography model, such as abstract
activities that have to be refined at run time [20], reactions
to context changes, and binding strategies for the simulation
services [19]. Other adaptations are inherent to the execution
phase and have to be addressed in an ad hoc manner.
Examples are the manual adaptations of the choreography
model conducted by a scientist by pausing execution, perform-
ing Model-as-you-go operations both on the workflow and
choreography level, and resuming execution. Furthermore,
the forced termination of the choreography, the substitution of
scientific service endpoints, the substitution of choreography
participant types, or insertion of additional ones, and others.
The overall execution environment must also be able to
cope with an increasing number of scientists, simulation
participants, and interactions between the participants, i.e., the
system must scale with its load both in terms of computation
power needed and data used. Observations during the
Execution and Monitoring phase can be incorporated into new
versions of the choreography model and trigger re-executions
of the scientific experiment. Execution and Monitoring of
the running choreography must be indistinguishable for the
scientist as in previous work [14]. This is motivated by
the fact that for the scientist the monitoring of a running
workflow instance is the visual representation of it. After the
execution all provisioned systems and services have to be
de-provisioned [19].

B. Bottom up life cycle

Fig. 3 shows the bottom-up modeling approach view on
life cycle as the scientist experiences it. The life cycle starts
with the Workflow Modeling phase and the modeling of
workflows (1), which are interconnected but the intercon-
nection is not explicitly captured by a choreography model.
The scientist is able to run the workflows and proceed to
the Execution and Monitoring phase, again the deployment
is hidden behind the Run/Resume action. In this phase,
scientists can suspend one or all running workflows using the
Suspend Workflow action and thus returning to the Workflow
Modeling phase in order to adapt them. Furthermore, the
Derive/Update action can be used to derive a meaningful
multi-scale and/or multi-field choreography model (2) from
the interconnected workflows. If the model has already been
derived once, it is updated. Note that the derivation can be
triggered either in the Execution and Monitoring phase under
consideration of the already running workflow instances
and their state or directly from the Workflow Modeling
phase only considering the existing workflow models. The
derived choreography reflects the error handling, monitoring,
and adaptation capabilities of the underlying executable
workflows and services. It can be examined and adapted
in the choreography editor. Finally, the derived choreography
represents a specific scientific multi-scale and multi-field
problem (3). The adaptation on the choreography level can
be used to update the existing executable workflows in a
round-trip fashion. The Update/Transform action modifies the
underlying workflow models and at the same time enforces
correctness of the changes. The life cycle is concluded by

Workflow Modeling

Deployment
. Scientist
Logic Monitoring

Dimension
Transformation

Adaptation
Choreography
Modeling

Logic
Dimension
Adaptation

Logic & Functions
Dimension

Legend

User,,

Figure 4: Bottom-up life cycle from the sSWfMS perspective

the Analysis phase where the experiment result are evaluated.

Fig. 4 depicts the bottom-up modeling approach life cycle
from the perspective of the supporting sSWfMS, i.e., the
life cycle that has to be implemented by a sWIMS to
enable the perceived life cycle. As its top-down counterpart,
the technical deployment phase has been hidden in Fig. 3
behind the Run/Resume action. Four adaptation cycles can
be observed: In the Execution and Monitoring phase, the

system is adapted along the functions and the logic dimension.

The other three adaptation cycle depict the capabilities of
adapting the enacting workflows and the choreography along
the logic dimension, i.e., the adaptation of the workflow
and choreography constructs. The Derive/Update action is
technically realized by the Derivation phase. The Deployment
and the Monitoring and Execution phase exhibit the same
properties as discussed for the top-down life cycle in
Sec. III-A.

IV. RELATED WORK

In this section we compare our approach to existing
ones documented in literature. Scherp and Hasselbring
[21] propose an model-driven approach with two levels of
abstractions for scientific workflows. On the domain-specific
level scientists model data and control flow with BPMN
in order to hide the technical complexity of executable
workflow languages from scientists. The resulting model
is transformed into an executable control flow oriented
workflow language. While our work also uses conventional
workflow technology from the business domain, we aim at
enabling scientists to create and conduct coupled multi-*
experiments using choreographed workflows. Moreover, we
also consider the blending of modeling and adaptation phases
of choreographies and workflows.

In [22] a scientific workflow system for molecular biology
MoBiFlow is presented. The system’s functionality has
been derived from a set of biology-specific and technical
requirements and uses a Web 2.0 based graphical user

interface that abstracts from the underlying BPEL workflow
language. Although the collaborative aspect of scientific
workflow modeling is the main focus, the interconnection
of software systems from different scientific fields in one
experiment are not considered. Furthermore, the system
does not incorporate flexibility aspects that allow adapting
workflow instances during run time to facilitate a trial-and-
error approach for the scientists.

Fleuren et al. [23] propose an approach and an implemen-
tation for integrating control and data flow by combining
orchestration and choreography. The main workflow is
modeled as an orchestration using a control flow perspective
also considering fault handling and compensation. Data
flow is integrated into the main workflow as sub-workflows
denoted by workflow skeletons. Inside the workflow skeletons
choreographed proxies represent workflow tasks such as
service calls or job executions and are responsible for
parallel data handling. Data is exchanged directly between
proxies to avoid the central orchestration engine becoming a
bottleneck. In contrast, we do not only model data flow as
choreographies but control flow as well and also consider
bottom-up derivation.

An architecture with centralized control flow and dis-
tributed data flow is introduced in [24]. A central concept in
the proposed Circulate approach is the notion of a proxy. A
proxy in this work is a middleware component that encapsu-
lates web service invocation in order to avoid the necessity of
reconfiguration of individual services. The service invocations
are delegated to the proxies by a centralized engine. Data
references are exchanged through the engine, whereas the
actual data is directly transfered from proxy to proxy. While
the centralized orchestrations can be modeled using BPEL or
any other executable workflow language, it is not explicitly
discussed how the interconnection of the choreographed
proxies can be modeled or adapted.

Ludischer et al. present a scientific workflow life cycle
in [25]. In contrast to our work, the life cycle does not
explicitly distinguish between top-down and bottom-up
modeling views. Furthermore, it does not consider modeling
multi-* experiments as choreographies to realize a distributed,
collaborative experiments. In [15], a generic choreography
life cycle is presented. However, it only supports choreogra-
phy modeling beginning with a domain specific problem, i.e.,
top-down modeling. The life cycle presented in our work
also considers starting bottom-up with executable workflows
from which a choreography model is derived.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a life cycle that utilizes
the notion of choreographies to enable the trial-and-error
modeling and execution of multi-* simulations. The life
cycle exhibits two views reflecting the characteristics of
modeling and execution in a top-down and bottom-up manner.
It supports the collaborative development and execution

of complex multi-* simulations involving software from
different research or industry organizations. Furthermore,
the life cycle is geared towards existing, standard-based
technologies known from business applications that will be
extended for composing data-intensive, scientific workflows
in a generic, domain-independent way as choreographies
and thus provide scientists with means for collaborative
and integrated data management. In our future research we
plan to enhance our work with techniques for modeling
complex correlation dependencies among the participant
simulations in a choreography, enable the definition of a
common context, improve reusability of choreographies by
means of choreography fragments or templates and by means
of generic configurable connectors. With respect to the
dynamic provisioning and de-provisioning of choreographed
simulations we need to focus more on the optimization of
the distribution of the simulations or parts of them as well
as the placement of individual simulation (Web or REST)
services across a distributed infrastructure. Provenance of
scientific workflows and simulations is of major importance
in eScience and is also part of our future research plans.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project
within the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart.

REFERENCES

[1] T. Hey, S. Tansley, and K. Tolle, Eds., The fourth paradigm:
data-intensive scientific discovery. Microsoft Research, 2009.

[2] R. Krause, B. Markert, and W. Ehlers, “A porous media model
for the description of adaptive bone remodelling,” PAMM,
vol. 10, no. 1, pp. 79-80, 2010.

D. Molnar, R. Mukherjee, A. Choudhury, A. Mora, P. Binkele,
M. Selzer, B. Nestler, and S. Schmauder, “Multiscale sim-
ulations on the coarsening of cu-rich precipitates in a-fe
using kinetic monte carlo, molecular dynamics and phase-field
simulations,” Acta Materialia, vol. 60, no. 20, pp. 6961-6971,
2012.

M. Sonntag, D. Karastoyanova, and F. Leymann, “The Missing
Features of Workflow Systems for Scientific Computations,”
in GWW’10. Gesellschaft fiir Informatik e.V. (GI), 2010, pp.
209-216.

[5] K. Gorlach, M. Sonntag, D. Karastoyanova, F. Leymann, and
M. Reiter, Conventional Workflow Technology for Scientific
Simulation. Springer, 2011, pp. 323-352.

[6] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, and J. Myers,
“Examining the challenges of scientific workflows,” Computer,
vol. 40, no. 12, pp. 24-32, 2007.

I. Foster and C. Kesselman, The Grid 2: Blueprint for a new
computing infrastructure. Elsevier, 2003.

[8] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F.
Ferguson, Web Services Platform Architecture. Prentice Hall,
2005.

13

—

[4

—

[7

—

[9] F. Leymann and D. Roller, Production Workflows. Prentice

Hall, 1999.

[10] M. Sonntag, M. Hahn, and D. Karastoyanova, “Mayflower -
Explorative Modeling of Scientific Workflows with BPEL,” in
CEUR Workshop’12. Springer, 2012, pp. 1-5.

[11] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, and
F. Leymann, “SIMPL - A Framework for Accessing External
Data in Simulation Workflows,” in BTW’11, vol. 180, 2011,
pp- 534-553.

[12] D. Schumm, D. Karastoyanova, F. Leymann, and S. Strauch,
“Fragmento: Advanced Process Fragment Library,” in ISD’10.
Springer, 2010.

[13] M. Sonntag and D. Karastoyanova, ‘“Model-as-you-go: An
Approach for an Advanced Infrastructure for Scientific Work-
flows,” Grid Computing, vol. 11, no. 3, pp. 553-583, 2013.

[14] M. Sonntag and D. Karastoyanova, ‘“Next Generation In-
teractive Scientific Experimenting Based On The Workflow
Technology,” in MS’10. ACTA Press, 2010.

[15] G. Decker, O. Kopp, and A. Barros, “An Introduction to
Service Choreographies,” Information Technology, vol. 50,
no. 2, pp. 122-127, 2008.

[16] J. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker,
“Bridging global and local models of service-oriented systems,”
Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 38, no. 3, pp. 302-318,
2008.

[17] M. Sonntag, S. Hotta, D. Karastoyanova, D. Molnar, and
S. Schmauder, “Using Services and Service Compositions
to Enable the Distributed Execution of Legacy Simulation
Applications,” in ServiceWave’ll. Springer, 2011, pp. 1-12.

[18] R. Barga and D. Gannon, “Scientific versus Business Work-
flows,” in Workflows for e-Science. Springer, 2007, pp. 9-16.

[19] K. Vukojevic-Haupt, D. Karastoyanova, and F. Leymann,
“On-demand Provisioning of Infrastructure, Middleware and
Services for Simulation Workflows,” in SOCA’13, 2013, pp.
1-8.

[20] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik,
“Dynamic Adaptation of Fragment-Based and Context-Aware
Business Processes,” in ICWS’12, 2012, pp. 33-41.

[21] G. Scherp and W. Hasselbring, “Towards a model-driven
transformation framework for scientific workflows,” Procedia
Computer Science, vol. 1, no. 1, pp. 1519 — 1526, 2010.

[22] M. Held, W. Kiichlin, and W. Blochinger, “Mobiflow: Princi-
ples and design of a workflow system for molecular biology,”
IJSSMET, no. 4, pp. 67-78, 2011.

[23] T. Fleuren, J. Gotze, and P. Miiller, “Workflow Skeletons:
Increasing Scalability of Scientific Workflows by Combining
Orchestration and Choreography,” in ECOWS’11. IEEE, 2011,
pp- 99-106.

[24] A. Barker, J. B. Weissman, and J. I. van Hemert, “Reducing
Data Transfer in Service-Oriented Architectures: The Circulate
Approach,” IEEE Transactions on Services Computing, vol. 5,
no. 3, pp. 437-449, 2012.

[25] B. Ludéscher, M. Weske, T. McPhillips, and S. Bowers, “Sci-
entific workflows: Business as usual?” in BPM’09. Springer,
2009, pp. 31-47.

