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Abstract. Collaborative, Dynamic & Complex (CDC) systems such as
adaptive pervasive systems, eScience applications, and complex business
systems inherently require modeling and run time flexibility. Since domain
problems in CDC systems are expressed as service choreographies and
enacted by service orchestrations, we propose an approach introducing
placeholder modeling constructs usable both on the level of choreographies
and orchestrations, and a classification of strategies for their refinement to
executable workflows. These abstract modeling constructs allow deferring
the modeling decisions to later points in the life cycle of choreographies.
This supports run time scenarios such as incorporating new participants
into a choreography after its enactment has started or enhancing the
process logic of some of the participants. We provide a prototypical
implementation of the approach and evaluate it by means of a case study.

Keywords: Process Flexibility, Choreography Flexibility, Refinement
Strategies, Late Modeling, Late Selection, Process Fragments

1 Introduction

In our research in Collaborative, Dynamic & Complex systems (CDC) [3] we aim
at supporting several application domains exhibiting overlapping requirements,
but so far diverging solutions, with unified concepts, techniques and tools. The
domains we consider are scientific experiments and workflows, pervasive adap-
tive systems, service networks, configurable multi-tenant applications (see also
Sec. 2.1). We have introduced a three-phase life cycle of CDC systems comprising
Modeling, Provision, and Execution phases (cf. Sec. 3). To capture the overall
communication behavior of applications in such systems, we use choreographies.
Choreographies are a concept known from the business domain that enables
independent organizations to collaborate and reach a common business goal. They
provide a global view on the interconnection of independent, but collaborating
organizations, which are denoted by choreography participants, communicating
without a central coordinator [8]. The publicly visible communication interfaces
of each choreography participant are enacted, i.e., implemented by services or
orchestrations of services (workflows). In previous work, we have enabled the



enactment of choreographies modeling CDC systems through a mapping/trans-
formation to abstract workflows (containing only the communication activities),
and their manual refinement to executable service orchestrations for the above
mentioned domains [3]. This implies that the CDC Modeling phase is divided
into a choreography modeling, a transformation, and a workflow modeling phase.
A central concept of CDC systems is flexibility. In our work and in numerous
related works, concepts, methods and techniques for flexible workflows have been
studied in detail [24], [25]. Generally, the flexibility aspects can be divided into
means to arbitrarily change workflows during modeling or run time [19], [24] or
means for changes in predefined regions (cf. Sec. 2.3). Flexibility in choreogra-
phies, however, while instrumental for CDC systems, has not yet been studied as
much as workflow flexibility. The few existing works on arbitrary choreography
adaptation, changes and change propagation such as [10], [21], [27] are only one
aspect of choreography flexibility. Towards reaching the goal of more choreogra-
phy related flexibility, we propose an approach in Sec. 3 that introduces abstract
placeholders/constructs, namely abstract activities and abstract connectors, on
the level of choreographies in order to defer choreography modeling decisions to
a later point in time. That means, our approach enables changes in predefined
regions considering also the choreography level and refinement of the regions in
all CDC life cycle phases. We call this end-to-end flexibility. We identify a set of
strategies to refine the abstract constructs and position them with respect to the
life cycle of CDC systems. The need for placeholders and their refinement not
only on the orchestration level but also on the level of choreographies is explicitly
motivated using three application domains (Sec. 2.1) and an motivating example
(Sec. 2.2) to derive a set of requirements. These requirements are compared to
related work to show the research gap we aim to fill with our approach (Sec. 2.3).
Furthermore, we present a prototypical implementation of our approach (Sec. 4),
which includes the extension of the choreography language BPEL4Chor [9] and
the workflow language BPEL [18], and evaluate the approach in a case study.
The paper is concluded with a summary and outlook to future work (Sec. 5).

2 Motivation and Related Work

2.1 Motivating Scenarios

In our research we are working towards enabling IT support for scenarios from
three different fields: scientific experiments, collective adaptive systems, and
configurable multi-tenant applications. We have already shown that these areas
impose overlapping requirements on the supporting applications systems [3] and
we introduced the notion of CDC systems as a type of applications fulfilling
these requirements. Since in this work we focus on the dynamic aspect of CDCs,
here we will identify the requirements on CDC systems that, when fulfilled, will
significantly improve their flexibility.

Scientific (multi-scale and multi-field) experiments: In our work in the scope
of the Cluster of Excellence Simulation Technology (SimTech1) we want to enable

1 SimTech: http://www.iaas.uni-stuttgart.de/forschung/projects/simtech/



scientists to model and execute multi-scale and multi-field experiments in a user
friendly manner. Previously [24], concepts and a workflow management system for
supporting the trial-and-error nature of scientific simulations have been developed.
Workflows that are not completely specified can be started and altered during
run time. These simulation workflows orchestrate scientific services dealing with
one scientific field which operates on one scale. For scientists, however, it is
extremely important to be able to couple scientific models representing distinct
scientific fields, such as biology, chemistry, and physics, and operating on different
length scales, such as micro, macro or continuum scale, just by combining the
already available simulation applications in a more complex application that
represents the multi-scale and multi-field experiment. For this, we model the
overall experiment as a choreography which is enacted by simulation workflows.
The support for the trial-and-error manner of interleaved modeling and execution
of experiments and the cooperative nature of the interactions among scientists
is also particularly important. When collaboratively modeling the multi-scale
and multi-field experiment as a choreography, scientists may want to define with
an abstract placeholder that certain simulation steps have to be conducted such
as building a Finite Element Method (FEM) but the concrete specification is
left open for the particular scientist with the expertise to refine the enacting
simulation workflow. The abstract placeholder defined on the choreography level
would provide some guidance for refinement on the workflow level. The refinement
of the abstract placeholders may even be conducted after the experiment has been
started. This would allow to take intermediate results into account when deciding
on the next concrete steps in a choreography of scientific workflows. Furthermore,
in order to hide technical details of the communication between different scientific
fields and scales, facilities to define communication relationships in an abstract
way and refine them later would be helpful for scientists not familiar with technical
details of the execution environment.

Collective Adaptive Systems (CAS) comprise heterogeneous entities that col-
laborate towards achieving their own objectives, and the overall objective of the
collective [2]. These entities can be either virtual or physical, and organizationally
and geographically distributed. The interaction of such entities with the collective
highly influences the behavior of the system, as individual entity objectives may
conflict with the behavior or decisions of other entities. Furthermore, unexpected
changes in the entities’ environment may trigger an individual or collective be-
havioral change. For purposes of providing a system capable of supporting this
behavioral definition, monitoring, and adaptation in the EU ALLOW Ensembles
project2, we define the underpinning concepts for modeling, execution, and adap-
tation of CAS entities and their interactions. In particular, we propose to model
and manage entities as collections of cells encapsulating their functionalities; cells
are realized by service orchestrations. Entities collaborate with each other to
achieve their objectives in the context of ensembles, enacted as choreographies,
describing the interactions among them [2]. CAS are based on fundamental con-
cepts from the so-called Adaptable Pervasive Flows (APF) [7], [13]. Adaptability

2 ALLOW Ensembles: http://www.allow-ensembles.eu



of CAS is required on the level of both cells and ensembles and hence has to be
supported by means of flexible orchestrations and the interactions among them
in choreographies. The cells’ behavior can be partially or completely specified
during the modeling phase. The partial specification of the cell behavior covers
the partial definition of one or more of their tasks as abstract tasks, which must
be refined by concrete tasks during run time.

Configurable Workflows is a research area that we investigate towards enabling
multi-tenant applications, i.e., applications that are designed to maximize the
resource sharing between multiple consumers. Configurable applications are
capable to adapt their behavior or appearance without the necessity to change
the underlying implementation [11], [14] to the needs of entities (e.g., tenants,
tenant users). The multi-tenant aware Service Composition Engine (SCEMT)
introduced in [12] is one example of a SCE that can be shared by different entities.
Furthermore, it enables users to customize predefined workflow models based
on their needs by providing a set of configuration data without the necessity
to create new or adapt existing workflow models. These configuration data are
used in all instances of a workflow model which belong to a corresponding user.
Currently, SCEMT supports the registration of runtime data (e.g., variable or
service endpoint values). On the one hand, this enables users to customize an
existing model by overriding predefined values (e.g., constants specified in a
workflow model). On the other hand, workflow modelers are able to define more
generic and reusable models (process templates) which can be adapted by the
users themselves through configuration. For example, any country specific values
of a payment process such as tax rates can be dynamically replaced during run
time by using registered model configurations related to the user who instantiates
the workflow model. In order to provide a user the ability to customize parts of
the control flow logic of a workflow model, a modeler should be able to insert
placeholders into a workflow model. The placeholders can be refined with the
registered logic of a user during a later point in the life cycle of the workflow. This
provides a much more general, flexible and powerful solution for the configuration
of workflow models because a user would be able to customize the control flow
and therefore the behavior of a workflow model. Configurability is also required
on the level of choreographies which would enable the configuration of the entire
set of interconnected workflow models by a user.

2.2 Example and Requirement Identification

Fig. 1 shows a trip booking example from the CAS domain to illustrate the
need for placeholder flexibility constructs beginning from the choreography level
to the execution of the enacting workflows. The example forms a choreography
consisting of three participants showing only their public interfaces: the passenger,
the passenger management system, and a payment manager. The passenger
participant initiates a conversation with the passenger management system
exchanging trip and payment details. After specifying the payment details, the
payment manager participant comes into play. Let’s assume that the modeler of
the choreography only wants to model a communication relationship between



the passenger management system and the payment manager and does not care
about the technical details of the communication. That means for example that
it is left unspecified by the modeler if the communication pattern is synchronous
or asynchronous. Furthermore, the choreography modeler only knows that the
payment manager participant will somehow conduct a payment depending on
the payment preferences of the passenger. However, it is left unspecified how
the payment will be processed and whether other participants will join the
choreography to execute the payment. To realize this kind of flexibility that
allows the specification of an abstract placeholder for the logic to invoke services
or other participants during the Modeling phase of a CDC system but defers the
decision about the concrete workflow logic to a later point in time (at latest to
run time), two concepts are needed: (i) a placeholder for workflow logic and (ii) a
logical connector between choreography participants that can be refined later.
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Payment Manager

Receive Request 
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Info

Receive Trip 
Decision

Request 
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Receive 
Payment Details

Passenger

Request Trip
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Confirm 
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Confirmation
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Fig. 1: Trip booking example from the Collective Adaptive System domain

Based on the three application domains in general and the motivating example
in particular, we identify the following requirements for an approach to enable
the discussed end-to-end flexibility features on both the level of choreographies
and the enacting workflows.

R1. Choreography placeholders: Choreography modelers need capabilities
for specifying placeholders in their models to defer decisions about concrete



orchestration steps. The refinement of the placeholders must be feasible in
any CDC life cycle phase.

R2. Workflow placeholders: Workflow modelers refining the generated non-
executable workflows which enact a choreography must also have access to
placeholder constructs to defer the decision about orchestration steps to the
Provision or Execution phase.

R3. Same semantics: The placeholder constructs should have the same seman-
tics on both the choreography and workflow level and modelers should be
able to use them consistently on both levels.

R4. Manual and automatic refinement: The refinement of placeholders
with process fragments must be possible both manually by human modelers
and automatically through a model (choreography or workflow) fragment
discovery operation.

R5. Execution of unrefined workflows: Workflows having unrefined place-
holders must still be executable, i.e., the workflows must be instantiable and
executable until a placeholder is reached. Then either a manual or automatic
refinement must take place.

R6. Phase annotation: The placeholder must be annotated with information
in which life cycle phase the refinement has to take place. The CDC system
has to enforce the annotated information.

R7. Abstract definition of collaborations: It must be possible for chore-
ography modelers to specify the collaboration between participants in an
abstract manner to defer the decision about the technical realization in terms
of transport protocol and Message Exchange Pattern (MEP). This helps
non-technical users of the system to avoid dealing with technical details.

R8. Discovery of participants: The definition of abstract collaborations of
choreography participants which are unknown at design time but dynamically
discovered during run time must be possible. That means an placeholder
indicates the communication with an not yet known participant.

R9. Generality: The concept of the placeholders should be generic and not
tailored to a specific application domain, but also support the idiosyncrasies
of different domains.

2.3 Review of Existing Concepts

The central concept needed by all three presented domains is an abstract place-
holder (on the level of choreographies and workflows) that can be refined with
concrete workflow logic even after the Modeling life cycle phase. The workflow
logic for refinement contains either single tasks, also called activities, or process
fragments, which are a set of activities connected by control and data flow.
Existing work uses the concept of predefined regions representing placeholders in
workflow models that can be refined after the instantiation of the model. The
refinement is denoted by Late modeling of process fragments in case the activities
or process fragments are newly specified inside a placeholder during run time and
Late selection of process fragments in case a set of activities or process fragments
has been pre-modeled but the actual selection happens during run time based on



predefined rules or user decisions [25]. There are several approaches realizing these
generic patterns. In [1], the notion of worklets, which are completely specified
YAWL processes that refine a worklet enabled parent YAWL task at run time, is
used for workflows in order to provide workflow run time flexibility. The selection
of the most appropriate worklet for a worklet enabled task is based on rules
considering context information. In [22], the concept of Pockets of Flexibility
(PoF) is introduced. The PoF which contain a set of activities and the control flow
between the activities are defined during run time, either (semi-)automatically
or manually depending on previously executed activities. Ardissono et al. use a
planning based approach for retrieving sub-processes implementing a so-called
abstract activity [4], while in [6] from the field of pervasive flows planning based
techniques are used to generate a sub-process. The domain of Adaptable Pervasive
Flows (APF) [7], [13] also uses the concept of abstract activities which are refined
depending on the context of the entities represented by a workflow.

All these approaches have in common that they concentrate on providing
flexibility on the level of individual workflows. They fulfill the requirement R2
for having a workflow placeholder, R5 for being executable even with unrefined
regions, R4 demanding manual or automatic refinement, and are mostly generic
and not limited to a particular domain as stated in R9. However, our scenarios
explicitly demand the concept of predefined regions on the level of choreographies
in order to give guidance for workflow refinement, to incorporate further partici-
pants during later life cycle phases or defer the decision about communication
patterns to later phases (R1, R3, R6, R7, R8). To the best our our knowledge,
these requirements are not fulfilled by the existing concepts.

Regarding choreography flexibility in general, i.e., without the use of place-
holders, several approaches exist. For example, in [21] the propagation of changes
appearing in the private process of one choreography participant to the affected
business partners is enabled without considering already running choreographed
workflow instances. Formal methods are used to calculate if and what changes are
necessary and if the new message interchange is deadlock free. In [27], an improved
formal approach is introduced for change propagation from choreographies to
orchestrations. In [10], a generic approach for propagation of local changes to
directly as well as transitively dependent business partners is shown. A framework
for collaborative choreography customization is presented in [16]. The so-called
global (choreographies) and local views of each participant are expressed in the
agent-oriented software development methodology Tropos. Participants agree on
customization alternatives that best fulfill their business needs, i.e., their local
view. Basically, such approaches enable the change of already existing choreog-
raphy models and propagate changes to the enacting workflows and services.
They are orthogonal to our requirement for abstract modeling constructs in
order to enable end-to-end flexibility through late modeling and selection for
choreographies and their enacting workflows. To the best of our knowledge, there
are no available approaches satisfying this requirement. In Sec. 3 we propose a
new approach to close this research gap.



3 End-to-End Flexibility and Refinement Strategies

Based on the requirements identified in Sec. 2.2, we present our approach for pro-
viding end-to-end flexibility throughout the Modeling, Provision, and Execution
life cycle phases of CDC systems which are realized through choreographies and
orchestrations. We propose the use of abstract constructs during the different
life cycle phases of a CDC system. These abstract constructs are denoted in the
scope of our work as abstract activities and abstract connectors.

3.1 Abstract Constructs

We define an abstract activity as a placeholder in a choreography or workflow
model, which should be refined to concrete choreography or orchestration logic
immediately before its execution at the latest. An abstract activity is connected
to the preceding and succeeding activities by control and data flow. Definition 1
expresses formally the properties of an abstract activity.

Definition 1 (Abstract Activity). An abstract activity a is represented by
the tuple a = (n, α, ω, τ, ε, T, σ) where n is the name of a, α specifies the life cycle
phase in which the refinement of a may first be conducted, ω specifies the life cycle
phase in which the refinement of a has to be conducted at latest, τ is the plugin
type of a, ε is the failure handling strategy for a, T denotes the type-specific content
of a, and σ is the plugin selection function σ : τ 7→ T , which maps the plugin
type τ to the type-specific content T . For α and ω the following applies: α, ω ∈
{”choreography modeling”,”workflow modeling”,”provision”,”execution”,∅}. For
the failure handling strategy ε applies: ε ∈ {”none”, ”retry”, ”manual”}.

An abstract activity a is a generic placeholder that can be typed through
the plugin type attribute τ . This attribute allows the assignment of different
implementations realizing different refinement behavior or simply indicates that
the refinement has to be conducted manually. The plugin selection is formally
defined by the plugin selection function σ mapping the plugin type of τ to the
type-specific content T of the abstract activity (i.e., the plugin). The plugin
selection function σ is important for providing the correct execution plugin in a
workflow engine and the correct user interface plugin for modeling in a modeling
tool. For example to take into account the context and objectives of the entities
represented by the workflows for the refinement of an abstract activity, the
value APF AdaptationManager could be assigned for τ . This implies that the
type-specific content T is populated with concepts from the Adaptable Pervasive
Flows domain (APF) [7], [13]. For example, preconditions and effects attributes
are introduced that specify the desired behavior of the logic the abstract activity
represents without limiting it to predefined execution patterns. The preconditions
specify in which state the context of the particular workflow has to be prior to the
refinement of an abstract activity. The effects specify the desired state after the
execution of the refined logic. A workflow engine implementation supporting the
APF AdaptationManager plugin expects the specified type-specific attributes



and contacts an external adaptation manager to retrieve a process fragment based
on the context values. For other domains τ and T may have completely different
values. The failure handling strategy ε of an abstract activity specifies how a
supporting workflow engine should behave if σ(τ) = ∅ in case an appropriate
plugin is not installed in the engine. Possible strategies could be retrying the
selection or asking a user for resolution.

The discovery of an appropriate fragment is the responsibility of the selected
plugin, i.e., the type-specific content T of an abstract activity. The discovery is
formally defined in Definition 2.

Definition 2 (Fragment Discovery). The fragment discovery function δ :
T 7→ f is a function that maps the type-specific content T to a model fragment
f ∈ F where F is a set of process or choreography fragments. We denote the
application of δ as the refinement of the abstract activity a.

Each plugin implements the function δ offering different discovery methods/
algorithms for example for manual or automatic selection. A further advantage of
using a plugin concept is the possibility to specify different refinement/discovery
methods inside an individual choreography or workflow model.

An abstract connector is a composite modeling element for choreographies
that consists of two so-called abstract containers and a communication link. The
abstract containers represent the source and the target of the communication
link connecting the involved choreography participants. If one participant has to
send messages to more than one participant, this is not modeled by an abstract
connector but rather the choreography language itself has to provide means for
expressing a set of participants whose number is not known at design time [9]. An
abstract connector can be modeled between sending and receiving participants
(or sets of them) in order to postpone the decision about the MEP to be used.
Definition 3 describes the properties of an abstract connector formally.

Definition 3 (Abstract Connector). An abstract connector c is represented
by a tuple c = (n,Csource, Ctarget, λ, α, ω, τ, ε, T ) where n is the name of c, Csource

is the abstract container that represents the source of c, Ctarget is the abstract
container that represents the target of c, and λ : Csource 7→ Ctarget is the connector
link of c. An abstract container C is itself a tuple C = (nC,M) where nC is the
name and M is the content of the abstract container which may be empty or
contain all elements for specifying control and data flow in the used choreography
or orchestration language, as well as abstract activities and nested abstract
containers. The remaining elements α, ω, τ , ε, and T have the same semantics
as defined in Definition 1.

The abstract containers Csource and Ctarget define the region in which the
message exchange between two choreography participants has to take place. The
content M of an abstract container C may be empty and thus only expressing the
communication relationship between two participants or contain communication
constructs, abstract activities, or nested abstract containers. The optional plugin
type τ and the corresponding type-specific content T of an abstract connector



c define how the source and the target abstract containers Csource and Ctarget

have to be refined, i.e., the MEPs, the derived roles for the participants, and the
implementation in terms of communication protocols and middleware. During
refinement of an abstract connector, communication activities are placed in the
abstract containers . This is also realized by a corresponding implementation of
the function δ.

3.2 Refinement Strategies

The main focus of our approach is to provide modeling constructs that span
from choreography modeling to execution of the enacting workflows and to
identify refinement strategies, which will be positioned within the CDC life cycle.
While identifying refinement strategies and suggesting the use of some refinement
mechanisms such as the refinement with process fragments, it is not our goal
here to provide decisions support for finding the most suitable process fragments
for refining an abstract activity or an abstract connector. That means we do not
discuss and provide implementations for the function δ in this paper but leave it
open for future work.

Fig. 2 shows the phases of our approach and the models and artifacts needed
as input to and produced as output by each phase. Additionally, we also show the
use of abstract constructs and their potential refinements throughout all phases.
For every step in our approach the following is true: Abstract constructs are
annotated by its modeler with information in which steps of our approach the
refinement is allowed to be carried out (thus addressing requirement R6). The
information defines a range of approach steps, i.e., in which step the refinement
can be conducted first and in which step the refinement has to be conducted
at the latest. This relates to the attributes α and ω in Definition 1. With the
concept of the plugin type τ and the type-specific content T , i.e., the plugin
concept, of an abstract construct, we fulfill requirement R9 since the abstract
constructs are generic but provide possibilities to consider the idiosyncrasies of
different domains.

The first three phases of Fig. 2 belong to the CDC Modeling phase. A domain
problem (Fig. 2, (1)) is transformed into a choreography (Fig. 2, (2)) through
collaborative manual modeling using a choreography editor. We identify the
following cases where abstract constructs can be used: (i) Choreography modelers
add abstract activities to define placeholders for orchestration logic that has to
be concretized later during workflow refinement, deployment or execution (R1).
The modelers must specify the plugin type τ and, thus, type-specific content T ,
e.g., preconditions and effects relating to a choreography context model (R9).
(ii) Choreography modelers specify abstract activities to defer the decision if and
which participant should be part of the overall choreography to a following life cy-
cle phase (R8). (iii) A choreography modeler specifies two or more communicating
participants without defining the Message Exchange Pattern [17]. That means,
it is only specified that the choreography participants will exchange messages
during runtime but all details are left open (R7) (e.g., if an immediate response
has to follow after a request or if fault messages could be thrown). To realize this
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we use the abstract connectors. The plugin type of the abstract connector can be
used to specify a plugin realizing a specific MEP. If the plugin type is left empty
by the choreography modeler, we envision an wizard that let the user answer
predefined questions to determine an appropriate refinement. Since choreography
modeling languages are often not executable [8], the modeled choreography is
automatically transformed into an abstract representation (Fig. 2, (3)) of an
executable workflow language. This representation is not yet executable. For
each participant a separate workflow model is generated capturing the individual
communication behavior through communication constructs such as sending and
receiving activities. The abstract constructs modeled in the previous phase are em-
bedded into the abstract workflow models. The communication links represented
by the abstract connectors are expressed in the existing language capabilities of
the target workflow language, e.g., Partner Links in the case of BPEL.

In the next phase the abstract workflow models are refined manually by
domain experts, who add orchestration logic such as backend service invocations
and variable assignments thus making the models executable (Fig. 2,(4)). We
identify the following refinement cases that can take place during the workflow
refinement phase: (i) The abstract activities inserted in the choreography modeling
phase can be refined using workflow fragments from a repository and by placing
the fragments on the abstract activity in a workflow modeling editor (R2). In
this case the process modeler may optionally consider the type-specific content
T for the fragment selection. Alternatively, an appropriate process fragment may
be selected automatically by involving a recommendation service that contacts a
external context-aware decision component for this purpose. Note that the inserted
process fragments may also contain abstract activities which have to be refined
immediately or during workflow run time. (ii) Abstract activities of a workflow
model with communication related process fragments may be inserted, i.e.,
fragments containing sending and receiving activities. The actual collaboration
partner has to be discovered during deployment or run time. (iii) Existing
abstract activities may remain unchanged. (iv) Abstract connectors can be
refined by inserting the necessary communication related process fragments in
the corresponding abstract containers of the collaborating workflows.

The deployment phase of the enacting workflows is related to the CDC
Provision phase. The executable workflow models are deployed (Fig. 2, (5)) on
one or more workflow engines. The refinement possibilities during deployment
are: (i) Modeled abstract activities can be refined automatically through the
assistance of the external context-aware decision component that is contacted by
a deployment manager component in order to retrieve an appropriate process
fragment. (ii) Modeled abstract activities are refined manually by asking a user to
provide appropriate process fragments. (iii) Abstract connectors can be refined by
automatically inserting appropriate process fragments in the involved workflows.
(iv) Abstract connectors can be refined by asking a user to insert appropriate
process fragments in the involved workflows.

The last phase of our approach is the Execution phase of the CDC system.
Possible refinements in this phase are: (i) Substitution of abstract activities



with fragments or executable activities automatically. Hence, partially refined
workflows can be executed, too (R5). Note that the process fragment may also
contain further abstract activities. (ii) Manually specification of process fragments
replacing an abstract activity using a workflow editor or retrieving the fragments
from a repository. This implies pausing the execution and explicitly asking a
user to provide the necessary refinement by considering the current context.
(iii) Refinement of abstract connectors by inserting process fragments and/or
executable activities in the affected workflow instances on both sides of the
connector, i.e., refining the corresponding abstract containers. Note that abstract
activities can also be placed in fault handling or compensation constructs on
choreography and workflow level. The fault handling or compensation activities
are refined using the same strategies as described above. To ensure that a
choreography is still enactable and deadlock free the resulting choreography has
to be verified [15] and the correctness of the enacting workflows guaranteed.
Verification mechanisms, however, are not in the scope of this paper.

4 Realization

4.1 Required Language and Tool Extensions

In order to enable the modeling of different domain problems with our approach,
a choreography language and a choreography editor are needed. As a basis for a
CDC system modeling tool we use our ChorDesigner [26] as choreography editor
and we have chosen BPEL4Chor [9] as the choreography language to serialize the
choreographies in. BPEL4Chor forms a layer on top of BPEL and specifies the
participants of a choreography, their communication behavior and the message
links between them. The technical details of the communication are separated
from the choreography. Because BPEL4Chor itself is not executable, we transform
the choreography models to abstract BPEL processes [20] and refine them with
orchestration logic. For the purpose of enabling our approach, extensions of both
the choreography language and the modeling tool were required. BPEL4Chor and
BPEL have been extended with the concept of abstract activities. Additionally,
BPEL4Chor has been extended with the concept of abstract connectors.

Extending BPEL4Chor for flexibility: The communication behavior of a chore-
ography participant is specified in BPEL4Chor by the so-called Participant
Behavior Descriptions (PBD). PBDs are based on abstract BPEL processes
with a more restricting profile excluding BPEL Partner Links. To enable more
flexibility when modeling choreographies, we extended the BPEL4Chor language
with abstract activities using the extension mechanism of BPEL to define an
extension activity denoted as abstractActivity in the PBD. Listing 1 shows an
example of an abstract activity already taking into account the APF domain
(pluginType = APF AdaptationManager) embedded into a BPEL4Chor PBD.
The abstract activity represents the behavior of a payment participant, which is a
part of a trip booking choreography from our motivating example in Sec. 2.2. The
participant has to receive a payment request, process it and reply accordingly.
Instead of specifying the payment orchestration logic, the PBD contains the



extension activity <abstractActivity>. The refinementStartPhase and refine-
mentEndPhase attributes indicate in this example that it can be done in the
workflow modeling phase, or during deployment or run time. The refinement
manner, i.e., manually or automatically, depends entirely on the plugin.

Listing 1: Extended BPEL4Chor Participant Behavior Description

<process name="payment" targetNamespace="urn:allowEnsembles:payment"

abstractProcessProfile="urn:HPI_IAAS:choreography:profile:2006 /12"

xmlns:aa="urn:abstractActivity" xmlns:apf="urn:flows">

<sequence >

<receive wsu:id="receivePaymentRequest"/>

<extensionActivity >

<aa:abstractActivity name="ConductPayment"

refinementStartPhase="workflow_modeling"

refinementEndPhase="execution" pluginType="

APF_AdaptationManager" failureStrategy="none">

<aa:typeSpecificContent >

<apf:entities/>

<apf:preCondition/>

<apf:effect/>

<apf:goal/>

<apf:compansationGoal/>

</aa:typeSpecificContent >

</aa:abstractActivity >

</extensionActivity >

<reply wsu:id="replyPaymentRequest"/>

</sequence >

</process >

In the example of Listing 1, the plugin is of the type APF AdaptationManager
integrating entity, precondition, effects, goal, and compensations goal elements
without specifying their details for the sake of brevity. Abstract connectors are
realized by an extension activity in the PBDs representing source and target
abstract containers of an abstract connector as well as by an extension of the
BPEL4Chor Message Link concept with the attributes defined in Definition 3.

Extending BPEL for flexibility: We use the standard extensibility mechanism
of BPEL and define an extension activity representing an abstract activity as
a part of an executable BPEL process. By using the standard extensibility
mechanism we remain compliant to the BPEL standard. The extension activity
in a BPEL process has an identical structure as the one depicted in Listing 1 for
the BPEL4Chor Participant Behavior Description. Furthermore, an additional
extension activity represents the source and target abstract containers of an
abstract connector in the BPEL workflows.

Extensions in the transformation from BPEL4Chor to BPEL: We have ex-
tended the transformation from BPEL4Chor to BPEL with the necessary mapping
of the BPEL4Chor abstract activity to the BPEL abstract activity. BPEL4Chor
Message Links that represent abstract connectors are transformed into BPEL
Partner Links. The corresponding source and target abstract containers are
transformed to their BPEL extension activity equivalent.



Plugin Concept: The realized abstract constructs specify the attributes defined
formally in Sec. 3.1 and exhibit a plugin-point for type-specific content. In our
Eclipse-based3 implementation of the choreography [26] and workflow editor [23],
the plugins consists of an EMF data model to describe the type-specific content
and a user interface extension for each plugin. The user interface extension pro-
vides input fields for populating the type-specific content of the plugin. Depending
on the type-specific content, the refinement of the abstract constructs, i.e., the
application of the function δ, is either done manually or automatically. In our
workflow engine SCEMT [12], plugins can be registered implementing automatic
refinement functions for different plugin types.

4.2 Case Study

Fig. 3: Trip booking scenario modeled as choreography with our ChorDesigner

For the evaluation of our approach we use the motivating example from
Sec. 2.2 to demonstrate how the modeling and manual refinement of the abstract
activities and connectors have been enabled. Fig. 3 shows the trip booking scenario
modeled as a choreography with the ChorDesigner. There are three participants
connected with message links. Note that an abstract activity has been modeled in

3 http://www.eclipse.org
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Fig. 4: Exemplary refinement of abstract constructs using the Mayflower BPEL Designer

the PaymentManager participant to provide a placeholder for the actual payment
logic that can be refined during later phases. Furthermore, the interaction between
the Passenger Management System and the Payment Manager is not explicitly
specified via message links indicating an MEP, but rather with an abstract
connector allowing to defer this decision to a later point in time. The tool set
presented here allows for transforming the BPEL4Chor choreography into abstract
BPEL processes [26]. All newly introduced choreography level abstract constructs
are transformed into the corresponding constructs on the orchestration level;
our system also generates valid WSDL interfaces. The refinement of abstract
BPEL processes is conducted with the Mayflower BPEL Designer [23] and Fig. 4
shows some possible refinement steps of the generated BPEL process of the
PaymentManager participant. First, the target abstract container is refined with
communication activities, then the conductPayment abstract activity is replaced
by a credit card process fragment. Additionally, our workflow management system



is capable of refining abstract activities during run time on the workflow level [5]
as well as arbitrary manual insertion of process fragments during run time [24].
Not yet realized but planned for the near future is the run time refinement of
abstract connectors and abstract activities that implies that new participants
are joining the choreography.

5 Conclusions and Future Work

In this work we have introduced an approach that uses abstract constructs
(abstract activities and abstract connectors) and refinement strategies as means
to provide end-to-end flexibility to Collaborative, Dynamic & Complex systems
and their realization in terms of choreographies and enacting workflows. The
approach permits the use of abstract constructs and their refinement to concrete
logic – manually or automatically – throughout the whole life cycle of CDC
systems. With this approach modeling decisions can be deferred to later points in
the CDC life cycle – a requirement from different domains where CDC systems are
applied, which has not been addressed by literature yet. With this approach we
also support the use of many existing approaches for modeling and/or generation
of concrete logic on the level of the enacting orchestrations. We plan to investigate
the run time refinement of abstract activities and connectors on the level of
choreographies and address the case of introducing new choreography participants
during execution. Run time changes of choreographies and their propagation to
the enacting workflows are also part of our future research.
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