
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

SCEMT: A Multi-tenant Service Composition Engine

Michael Hahn, Santiago Gómez Sáez, Vasilios Andrikopoulos,
Dimka Karastoyanova, Frank Leymann

© 2012 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2014-69,
author = {Michael Hahn and Santiago G{\'o}mez S{\'a}ez and Vasilios

Andrikopoulos and Dimka Karastoyanova and Frank Leymann},
title = {{SCE^MT: A Multi-tenant Service Composition Engine}},
booktitle = {Proceedings of the 7th International Conference on Service-

Oriented Computing and Applications, SOCA 2014, 17-19 November
2014, Matsue, Japan},

year = {2014},
pages = {89--96},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

SCEMT: A Multi-tenant Service Composition Engine

Michael Hahn, Santiago Gómez Sáez, Vasilios Andrikopoulos, Dimka Karastoyanova and Frank Leymann
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany
Email: {firstname.lastname}@iaas.uni-stuttgart.de

Abstract—The support of multi-tenancy is an essential re-
quirement for leveraging the full capacity of Cloud comput-
ing. Multi-tenancy enables service providers to maximize the
utilization of their infrastructure and to reduce the servicing
costs per customer, thus indirectly benefiting also the customers.
In addition, it allows both providers and consumers to reap
the advantages of Cloud-based applications configurable for the
needs of different tenants. Nowadays, new applications or services
are typically compositions of multiple existing services. Service
Composition Engines (SCEs) provide the required functionality to
enable the definition and execution of such compositions. Multi-
tenancy on the level of SCEs allows for both process model, as
well as underlying infrastructure sharing. Towards the goal of
enabling multi-tenancy of SCEs, in this paper, we investigate the
requirements and define a general architecture for the realization
of a multi-tenant SCE solution. This architecture is prototypically
realized based on an open-source SCE implementation and
integrated into an existing multi-tenant aware Enterprise Service
Bus (ESB). The performance evaluation of our prototype shows
promising results in terms of the degradation introduced due to
processing and communication overhead.

I. INTRODUCTION

Cloud solutions provide IT resources in an agile man-
ner over the Internet in a pay-per-use model resulting into
numerous advantages when outsourcing applications and ser-
vices into the Cloud, e.g. reduced operational costs and rapid
elasticity for enterprises. To benefit from the full potential of
Cloud computing, outsourced applications and services need
to be multi-tenant aware [1], [2]. Multi-tenancy implies that
applications should be designed so that they maximize the
resource sharing between multiple consumers. Thus service
providers are able to maximize the resource utilization and as
a result reduce their servicing costs per customer [3]. Multi-
tenancy is a main prerequisite to enable other very important
characteristics of applications or services like isolation, con-
figurability and scalability [1], [4], [5]. There is a variety of
different multi-tenancy definitions in literature, for example
in [2], [4] or [5]. For this paper we use the definition provided
in [3] as a basis, where multi-tenancy is defined as the sharing
of the whole technological stack (hardware, operating system,
middleware and application instances) at the same time by
different tenants (organizational units) and their corresponding
(tenant) users.

In this work we focus on the multi-tenancy of middleware,
and in particular on the sharing of a single Service Composition
Engine (SCE) instance among multiple consumers, positioned
therefore in the Platform as a Service (PaaS) Cloud delivery
model. This sharing manifests both in terms of multiple
tenants using the same engine in an isolated manner, but
also as different combinations of tenants and/or tenant users

sharing the same process model, potentially with different
configuration options per tenant as discussed e.g. in [6].
Previous work [7] demonstrated that the concept of SCE as
a Service is both feasible and efficient, however by delegating
the problem of multi-tenant awareness on the level of the
messaging middleware used. In this work, we instead propose
a generic, reusable architecture for multi-tenant aware SCEs
that separates the composition aspect from tenant management.
As discussed in the following sections, this approach returns
results similar to the ones reported by [7], while allowing for
multiple potential realizations and multi-tenancy on the level
of both process model and engine instance.

More specifically, the contributions of this paper can be
summarized as follows:

1) An identification of the requirements for a multi-
tenant aware SCE solution.

2) A generic, implementation-agnostic SCE architecture
of a multi-tenant Service Composition Engine, ad-
dressing these requirements.

3) A prototypical realization (SCEMT) and performance
evaluation of the proposed architecture.

The rest of this paper is structured as follows: Section II
discusses the desired behavior of multi-tenant SCE solution,
based on which, and in combination with a literature survey, a
set of requirements are extracted. These requirements are used
to drive the design of a multi-tenant aware SCE architecture
(Section III), a prototype implementation of which (SCEMT)
is presented in Section IV. Section V focuses on evaluating
the performance of SCEMT. Finally, the paper concludes with
related work (Section VI), and a summary of our findings
together with a short outlook on future work (Section VII).

II. REQUIREMENTS ON A MULTI-TENANT SCE

The main requirement in a multi-tenant environment is to
be able to correctly identify the resources associated with a
tenant, both in terms of exchanged and persisted data, as well
as underlying computational infrastructure. This is the basis
for all higher-level functionalities like configurability, isolation
and accounting. To uniquely identify a tenant or tenant user
in the rest of the discussion we use the concept of tenant
context [3], [8], as e.g. a combination of a unique tenant
and user ID. To distinguish if an operation (e.g. deployment,
administration, invocation) is executed by a tenant or tenant
user, we then use the term “under tenant context”.

A. Behavior of a Multi-tenant SCE

The following general for all SCEs use cases have to be
considered with respect to the required behavior of a multi-

tenant SCE:

Access Control Layer: A multi-tenant SCE requires an
access control layer (ACL) which (1) is able to identify a
tenant (or tenant user) and (2) provides an access control
mechanism that checks if an identified user has the required
access rights to use a specific part of the functionality of
an SCE like deployment, management or instantiation of a
process model. For this, the mechanism compares the tenant
information associated to the resource to be processed (e.g.
a process model on process instantiation) and the identified
tenant using e.g. the tenant context.

Process Deployment: After process models are defined
they have to be deployed on an SCE to enable their exe-
cution. For this purpose, the so called Deployment Bundles
are generated, containing a set of process models and related
files like service interface descriptions (e.g. using WSDL1),
required data models (e.g. specified as XSD2) or some required
SCE-specific information (e.g. endpoints of services) collected
in a deployment descriptor. If such a Deployment Bundle is
deployed by a tenant user to a multi-tenant aware SCE, all
contained resources/artifacts must be associated to the tenant
user. This is realized inside the SCE by attaching tenant in-
formation to all contained resources of a Deployment Bundle.
The related data are persisted in a multi-tenant aware Model
Database. Independent of the underlying implementation (e.g.
database, file system), this Model Database must be able to
isolate the Deployment Bundles of different tenant users based
on the assigned tenant information. Chong et al. provide three
main strategies for data isolation on the database level [9]: sep-
arate databases, shared database/separate schemas, and shared
database/shared schemas.

Process Instantiation: Upon process instantiation, the SCE
should be able to identify which message belongs to which
tenant user in order to uniquely identify the initiator of a
process instance. This enables the ACL to check if an incoming
request sent to a process service should be processed by
a new process instance, or whether the request should be
immediately rejected. Therefore, the ACL compares the tenant
user associated to the incoming request with the tenant user
associated to the process model stored in the Model Database.
In other words, the engine has to check if the sender of the
request is allowed to instantiate the process model. If the
tenant information refers to the same tenant user, the ACL
can forward the request to the service interface of the process
model. If the tenant information is not the same, the ACL
returns a corresponding fault message to the requester. The
generated new process instance is directly associated with the
tenant user to whom the request belongs. This is necessary to
allow the ACL later to authenticate calls to the Management
Interfaces for an instance, like suspending or terminating the
instance. If a tenant has registered any configuration data for
the instantiated process model, the data are dynamically loaded
from a multi-tenant aware Configuration Database and as-
signed to the instance. The runtime data of all process instances
are persisted in a multi-tenant aware Runtime Database.

1Web Services Description Language (WSDL) 1.1: http://www.w3.org/TR/
wsdl

2XML Schema Definition Language (XSD) 1.1: http://www.w3.org/TR/
xmlschema11-1/

Configurability: Due to the fact that the SCE is shared
between multiple tenant users, it should support configuration
possibilities. This means it should allow tenant users to cus-
tomize some parts of the engine to their needs without the
necessity to change the underlying implementation of the SCE.
In order to enable also the sharing of the enacted process mod-
els, in addition the SCE should provide configurability on the
process model level. This enables the customization of process
models on a tenant user basis by specifying configuration data
while the underlying model remains unchanged. Therefore, the
configuration data has to be stored in a multi-tenant aware
Configuration Database (as in the Process Instantion case) to
enforce its isolation on a tenant user basis.

Service Invocation: For the invocation of the composed
services, the identification of the tenant user, on behalf of
whom the message is sent, plays an important role. If the
invoked service is also multi-tenant aware, the tenant informa-
tion is used to check if the identified user has the permissions
to invoke the service or not. For that purpose, the tenant
information must be forwarded by the SCE to any invoked
service whether it is multi-tenant or not. A non multi-tenant
aware service will ignore the tenant information sent with
the request message. A multi-tenant aware service will use
the received tenant information to authenticate the incoming
request, and may use it to support isolation and accounting
of the utilized resources. Upon successful authentication, the
service processes the request and replies a corresponding
response message. If the authentication fails, the service rejects
the incoming request and replies a corresponding fault message
to the requester. Fault messages can then be handled by the
SCE with the fault handling mechanisms of the underlying
process execution language (e.g. languages like BPEL [10]).

Process Instance Correlation: A correlation context is
usually used by SCEs to identify the correct instance of a
process model to which the message should be forwarded, es-
pecially in the case of asynchronous communication. Enabling
multi-tenancy does not affect the correlation mechanism of an
SCE. The tenant information will be forwarded in all message
exchanges and may be considered separately.

B. Requirements

Based on the required SCE behavior, as discussed above,
and the existing requirements found in literature, e.g. [2], [3],
[4], [11], the following set of functional and non-functional
requirements to be fulfilled by any multi-tenant aware SCE
solution can be identified:

1) Functional Requirements:

FR1 Tenant awareness: An SCE must be able to identify
multiple tenants and their associated resources like
deployment bundles, process instances, messages, etc.
This in turn requires enabling tenant-based authenti-
cation and role-based access control for tenants and
their users.

FR2 Tenant-based configuration and deployment: The
SCE should support tenant-based configurations of
the engine itself and all deployed process models.
Furthermore, the SCE must enable the deployment
of process models on a per-tenant basis.

FR3 Tenant-specific interfaces: A set of customizable Web
Service interfaces and GUIs must be provided to en-
able the tenant-based management of SCE resources,
like process models, instances or configuration data.

FR4 Shared registries: Since the SCE solution might be
integrated into an environment with other multi-
tenant aware components demanding similar infor-
mation, the SCE should work with a set of shared
registries that contain data about tenants and their
users, services and configurations.

FR5 Backward compatibility: The SCE solution must be
able to provide its functionality also to non multi-
tenant aware applications.

2) Non-functional Requirements:

NFR1 Tenant Isolation: Tenants and their resources must be
isolated on all layers of the SCE to prevent the tenants
from gaining access to resources of other tenants.

NFR2 Reusability & Extensibility: The multi-tenancy en-
abling mechanisms and the underlying concepts must
be agnostic to specific SCE implementations and
technologies. The defined mechanisms, concepts and
components should therefore be extensible, adaptable
and reusable in different SCEs.

NFR3 Transparent integration: Beyond the addition of the
tenant context, the behavior and appearance of the
SCE should be the same from a user’s point of
view, irrespective of how the multi-tenancy enabling
mechanisms are realized.

NFR4 Scalability: To enable horizontal scalability [12]
(scale out) the SCE should run in a stateless fashion.

In the following section we present our proposal for a multi-
tenant aware SCE architecture that addresses these identified
requirements.

III. MULTI-TENANT AWARE SCE ARCHITECTURE

In order to ensure the generality of the proposed approach,
we not only abstract from the specifics of a particular SCE
solution, but we also attempt to decouple as much as possible
the operation of the SCE from the multi-tenancy management
mechanisms that need to be put into place. For this purpose,
we distinguish between two major components of the proposed
architecture: an SCE Multi-tenancy Manager (SCE-MT Man-
ager) and the Multi-tenant Service Composition Engine itself,
as shown in Fig. 1. These two design decisions allow for the
realization of our proposal by multiple SCE solutions, with
the potential to be able to reuse an SCE-MT Manager across
different SCE realizations.

A. SCE-MT Manager

The SCE-MT Manager acts as a Multi-tenancy Enablement
Layer (NFR2, NFR4) and provides the necessary support for
administering and managing a clustered container potentially
hosting different multi-tenant aware SCE implementations. It is
a middleware component realizing the multi-tenancy function-
ality in a reusable way and therefore is not bound to a single
SCE implementation. The concrete SCE implementations must
only be adapted to integrate with the SCE-MT Manager. In
addition, the SCE-MT Manager can be extended to provide

Multi-tenant Service Composition EngineMulti-tenant Service Composition EngineMulti-tenant Service Composition Engine
Integration Layer

Runtime Layer
Navigator

...

Service Interfaces

Configuration Interface

Multi-tenant
Process/Instance

Manager

...

Multi-tenant
Message Exchange

Processor

SCE Multi-tenancy Manager
Integration Layer

Data Access Layer

Application Layer

Web Service
API

Security
Configurability Scalability

Performance
Isolation

...

...Messaging API

Config.
ManagerActivity

Runtime

Data LayerMulti-tenant
Model

Database

Multi-tenant
Runtime
Database

...

External
Registry
Clients

Multi-tenant
Correlator

Management Interfaces

SCE
Management
Interfaces

Process
Service
Interface(s)

Tenant
Registry

Config.
Registry

External
Registries

...

Service
Registry

New component Adapted or extended
componentCommunication channel

Figure 1. Architecture of a multi-tenant SCE with a separate multi-tenancy
enablement layer

advanced functionality like performance isolation or scalability
to all connected SCE implementations (NFR1, NFR4).

The SCE-MT Manager acts as an intermediate layer be-
tween a tenant user and an SCE. This means all requests sent to
one of the SCE interfaces (Management Interfaces or Process
Service Interfaces in Fig. 1) are consumed by the SCE-MT
Manager which authenticates and reroutes them to the correct
interface of one of the connected SCE instances (FR1, NFR3).
For this purpose, the SCE-MT Manager may provide the SCE
interfaces over a Middleware Container like an ESB to the
outside. The authentication of all incoming requests sent to
the SCE interfaces can then be handled over the ESB message
routing mechanisms. On successful authentication the message
is forwarded to the corresponding SCE service and in any other
case the message is directly rejected.

The SCE-MT Manager follows a three layer architecture
pattern [13]. The Integration Layer provides a Web Service
and a Messaging API which enable the communication with
the SCE-MT Manager, and the set of connected to it SCE
instances (FR3). An SCE can use the Messaging API or the
Web Service to register itself with the SCE-MT Manager.
The SCE-MT Manager also uses these APIs to communicate
with all registered SCE instances, e.g. to send configuration
data to an SCE if a new tenant is registered at the Tenant
Registry. The Data Access Layer contains a list of clients

(External Registry Clients) which are used to integrate a set
of distributed registries, like the Service Registry, the Tenant
Registry or the Configuration Registry (FR4). The distributed
Service Registry stores process models independent of any
SCE instance. The Tenant Registry provides the management
of tenants and their users. Furthermore, the contained tenant
data is used in all other registries to uniquely assign a resource
(e.g. services, configuration data) to a tenant. The distributed
Configuration Registry manages tenant-based configuration
data, for example, configuration data for process models or
an SCE instance registered by a tenant.

The Application Layer contains the following modules: The
Security module contains all security related functionality and
enables Communication Isolation, like the already described
authentication of incoming messages (NFR1). Furthermore, it
realizes Administration Isolation by the authentication of any
access to the distributed registries. The Configurability module
handles the management of tenant-based configurations (FR2).
For example, on process instantiation it collects all necessary
configuration data referenced by the calling tenant from the
Configuration Registry and sends the data to the Configuration
Interface of the corresponding SCE instance. The Scalability
module provides functionality to enable scaling out like the
dynamic creation of new SCE instances and can potentially
provide a load balancing mechanism (NFR4). The Performance
Isolation module provides functionality to analyze the perfor-
mance of all registered SCE instances (e.g. based on auditing
data) and potentially reject new incoming requests of a tenant
if he exceeds his quotas (NFR1). More details on these two
modules are out of the scope of this paper.

B. Multi-tenant SCE

In order to allow the implementation of multi-tenancy in
different SCE implementations, we abstract away from the
specifics of SCE solutions like Apache ODE3, WSO2 Business
Process Server4, OW2 Orchestra5 or the YAWL Workflow
Engine6, and we compose logical components standing for
specific SCE functionalities (e.g. navigation through the pro-
cess model) in a unified architecture model. These logical
components are also organized in three layers, as shown in
Figure 1.

The Integration Layer exposes the engine-internal function-
ality to the outside and enables communication. It contains
a Message Exchange Processor which handles the correct
routing of incoming and outgoing messages to the their corre-
sponding services (process models). For example, if a request
is sent to the service interface of a process model which
creates a new instance of the model, the Message Exchange
Processor routes the request to the created instance and returns
the response message of the instance back to the sender of the
request. The Service Interfaces component provides the service
endpoint for each deployed process model to the outside
(e.g. as Web Service) and therefore enables sending requests
to a process model. The Management Interfaces component
provides the management functionality of the SCE to the

3Apache ODE (Orchestration Director Engine): http://ode.apache.org
4WSO2 Business Process Server: http://wso2.com/products/

business-process-server/
5OW2 Orchestra: http://orchestra.ow2.org
6YAWL (Yet Another Workflow Language): http://www.yawlfoundation.org

outside (e.g. as a Web Service), like querying all deployed
models or suspending a running instance.

The Runtime Layer contains the actual logic of the engine.
The Navigator is responsible for the execution of process in-
stances based on the control flow defined in the process model.
The engine provides an Activity Runtime component for the
functionality of each activity type of the underlying process
model language. The Correlator component is responsible for
the correlation of request and response messages. For example,
if a process model has multiple concurrently running instances
which invoke an external service, the response of this service
has to be routed to the instance which sends the corresponding
request. The Process/Instance Manager component contains
the implementation of all process and instance management
functionality which is provided over the Management Inter-
faces. This contains for example, the change of the execution
state of an instance (e.g. suspend, resume, terminate), the
deployment or undeployment of process models or querying
some information from the engines databases, like a list of
running instances.

The Data Layer provides the persistent stores of the
engine which are typically realized using databases. The Model
Database contains all process-related data, like a persisted
version of all deployed process models, the state of each
process model or a complete list of all started instances of
each process. The Runtime Database contains all runtime-
related data. This database is very important because it holds
the instance contexts of all process instances, like variable
data, incoming and outgoing messages or activity states. The
Navigator and other components of the Runtime Layer use
this instance contexts and the Runtime Database to provide
their functionality. The Process/Instance Manager component
also works with the databases. For example, undeploying a
process model through the Process/Instance Manager causes
the deletion of the corresponding process model from the
Model Database.

Next we take a look at components that have to be adapted
or are missing in conventional, non multi-tenant aware SCEs
in order to enable multi-tenancy. The Message Exchange Pro-
cessor must be extended to allow bi-directional tenant-aware
communications (FR1). Tenant-aware communications are sup-
ported by means of incorporating tenant context information
in all incoming and outgoing messages, i.e. tenant and tenant
user unique identifiers, and a key value structure for tenant
specific additional information as shown in Figure 2. Such
information enables the authentication and correlation of each
incoming and outgoing message to their corresponding tenant
and tenant user. The Message Exchange Processor should be
able to handle seamlessly the communication with both non
multi-tenant and multi-tenant aware services (FR5). In addition
to that, the Model and Runtime Databases should be extended
to store any tenant-specific data in a tenant-aware manner [9]
(FR1). The Application Layer must also be adapted to support
tenant-based configurations of the SCE (FR2).

To enable the correlation of tenant-aware message ex-
changes and provide communication isolation (NFR1), the
Correlator has to be extended. The authentication of incoming
messages sent to the Management Interfaces of an SCE can
be handled in two ways. Either the messages are also au-
thenticated by the SCE-MT Manager or they are authenticated

tenantContext

tenantId
ref UUIDType
userId
ref UUIDType
optionalEntry
minOccurs 0
maxOccurs unbounded

key
type string
value
type anyValue

UUIDType
Pattern [a-f0-9]{8}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{4}-[a-f0-9]{12}

Figure 2. Schema of a Tenant Context to uniquely identify a tenant user [14]

by the SCE internally. Both approaches have their advantages
and disadvantages. Since in principle we want to provide fine-
grained access permissions on an operation-level, we propose
to handle the authentication of management messages inside
the SCE. Therefore, the Process/Instance Manager component
has to be extended to handle the authentication of incoming
calls to the Management Interfaces. This enables the use of
context-related data during the authentication like the instance
or process model for which a management operation is in-
voked. If we outsource the authentication to the SCE-MT
Manager, we have to query the SCE for the necessary data
to handle the authentication. Finally, the new Configuration
Manager component provides the functionality to configure
the SCE and its process models on a tenant basis. It contains
all implementation specific code and is provided through a new
Configuration Interface to the outside. The SCE-MT Manager
uses this interface to configure an SCE or one of the deployed
process models.

IV. REALIZATION

Figure 3 shows the overall architecture of SCEMT, our
prototypical realization of the multi-tenant aware SCE ar-
chitecture discussed in the previous section. The realization
approach focused on maximizing the integration and extension
of existing multi-tenancy enablement components and the
development of new components when deemed necessary. For
instance, the SCE-MT Manager modules (see Fig. 1) integrate
and reuse two existing components. More specifically, the
multi-tenant aware Enterprise Service Bus7 ESBMT described
in [3] and [15], is used to provide communication isolation
for the (process model) services exposed by the SCE. ESBMT

is based on the open source ESB implementation Apache
ServiceMix8 (ServiceMix) version 4.3.0. In addition, we use
the integration and routing capabilities of the ESB to connect
all components (SCE-MT Manager, multi-tenant aware SCE
and JBIMulti2) and to hide the complex structure of the inte-
grated system from the users at the same time. Since the SCE
also needs a secure administration and management interface,
for example to register configuration data, we integrated and
extended JBIMulti2 — a tenant-aware web application for the
administration and management of Java Business Integration
(JBI) environments which is provided with ESBMT [16]. The
JBI architecture [17] allows different vendors to “plug in” their
components into a standardized infrastructure which enables
the decoupling and interoperability between their components
on the basis of standards-based messaging.

As in the original ESBMT setup, all registry components in

7ESBMT: http://www.iaas.uni-stuttgart.de/esbmt/
8Apache ServiceMix: http://servicemix.apache.org/

SCEMT are realized based on PostgreSQL9 version 9.1.1. We
added a new Event Registry which stores all event messages
emitted by an SCE (e.g. during process instance execution) in a
tenant isolated manner. The event data is stored in a separate,
distributed database. The existing ConfigurationRegistry and
ServiceRegistry are extended to store some new SCE and
process model related data. The registries are also used to
integrate the SCE-MT Manager with the JBIMulti2 application
without having any duplicated data or the need to synchronize
data between two separated sets of databases. This is important
because the SCE-MT Manager inserts data to the registries
later read by JBIMulti2, and vice versa the SCE-MT Manager
reads data inserted in the registries by JBIMulti2. As a result,
JBIMulti2 and the SCE-MT Manager write and read data to
and from the shared registries without the need to send the
data to each other. The only required communication between
JBIMulti2 and the SCE-MT Manager consists of sending status
updates which are simple event messages to inform the SCE-
MT Manager that something has changed in the registries.
For example, if a tenant registers new configuration data over
JBIMulti2, the SCE-MT Manager has to query the data from
the Configuration Registry and forward it to all registered SCE
instances which provide a process model of the tenant.

JBIMulti2 is extended to support the tenant-based admin-
istration and management of SCEs. For this purpose, its Web
Service API is extended with new operations which are real-
ized in the corresponding components of the Business Logic
layer. For example, a new operation to register configuration
data for a process model is added to the Web Service API and
its implementation is added to the ConfigurationRegistryMan-
ager (see Fig. 3). The new SCE-MT Manager Client enables
the required communication with the SCE-MT Manager. For
example if new configuration data for a process model are
registered, a corresponding message is sent by the client to
the SCE-MT Manager over its queue.

The JMSManagementService OSGi10 Bundle shown in
Figure 3 is provided with ESBMT and is responsible for
the installation/uninstallation and configuration of Binding
Components (BC) and Service Engines (SE). Furthermore, it
realizes the tenant aware deployment/undeployment of Service
Assemblies (SA) and Service Units (SU) to the BCs and
SEs of a JBI environment. We extended the functionality
of the JMSManagementService by enabling the feature-based
installation/uninstallation of BCs and SEs using the interfaces
provided by Apache Karaf11 which is included in ServiceMix,
to simplify the installation of SCEMT. The multi-tenant aware
SCE realization is based on the open source BPEL Engine
Apache ODE version 1.3.5. To provide multi-tenancy support
in ODE, we applied the identified adaptations and extensions
introduced in Section III to the underlying implementation.
The resulting SCE realization is integrated as a JBI Service
Engine into ESBMT by using the existing JBI Integration Layer
of ODE.

The SCE-MT Manager is realized as an OSGi bundle
and is installed to the underlying OSGi platform on which
ServiceMix is built on. The way we implement the three
layer architecture introduced in Section III is shown on the

9PostgreSQL: http://www.postgresql.org/
10OSGi Alliance: http://www.osgi.org/
11Apache Karaf: http://karaf.apache.org/

ESBMT (Apache ServiceMix)
OSGi

JBI Environment

HTTP-MT JMS-MT ...

Camel-MT

Normalized Message Router

Standardised Interfaces for Binding Components

Standardised Interfaces for Service Engines

SCEMT

JMSManagementService
OSGi Bundle (ESBMT)

Database Connection
Message-based Communication

SCE Multi-tenancy Manager (OSGi Bundle)

Integration Layer

Data Access Layer

Application Layer

Messaging API

Data Access Objects

ActiveMQ
Management

Messages.topic

Unprocessable
Messages.queue

Web Service API

JBIMulti2
User
Interface

Business
Logic

JBIContainerManager

ServiceAssemblyManager

ServiceRegistryManager

Config.RegistryManager

TenantRegistryManager

SCE-MT Manager Client

PostgreSQL

Tenant
Registry

Config.
Registry

Service
Registry

Event
Registry

SCE-MT Manager
Messages.queue

Process Manager

SCE Manager Config. Manager

Event Manager

EventRegistryManager

New component
Adapted or extended
component

Figure 3. Overall architecture of the SCEMT realization using ESBMT and JBIMulti2

bottom left of Fig. 3. The Messaging API is used to enable
the communication between the SCE-MT Manager, JBIMulti2
and the connected SCEMT implementations. The SCE Man-
ager module provides the required functionality to manage a
dynamic changing set of SCE instances and their integration
into the ESB during runtime, to support scalability in a future
version. The Process Manager module is aware of the status
of a process model and where it is actually deployed. This
can be used in a future version to enable load balancing by
deploying a process model to different SCE instances based on
the current workload. An additional benefit of this approach is
that a tenant does not need to know on which SCE instance(s)
its process models are deployed or, on which SCE instance
the corresponding process instances are executed. Furthermore,
the SCE-MT Manager is responsible for the tenant-isolated
storage of all event messages in the new EventRegistry. The
Event Manager persists the received event messages from all
connected SCE instances into the Event Registry to enable
their later use. The Configuration Manager realizes the con-
figuration of SCE instances and process models. It collects the
configuration data from the Configuration Registry and sends
these data to the set of SCE instances managed by the SCE-
MT Manager. The SCE-MT Manager therefore cooperates with
JBIMulti2 and uses the powerful message routing functionality
of the ESB by deploying a set of message routes to it.

Further information on the realization of SCEMT, including
demo videos, is publicly available online12.

12SCEMT: http://www.iaas.uni-stuttgart.de/scemt/

V. EVALUATION

For the purposes of evaluating SCEMT, we focus on two dif-
ferent dimensions. The first dimension consists of empirically
evaluating two possible realization architecture alternatives:
integrating the SCE directly with the ESB as a JBI component
(JBI integration), versus the indirect stand-alone deployment
and integration through the Apache eXtensible Interaction Sys-
tem v.2 (Axis213 integration). The second dimension aims at
evaluating the performance variation when introducing multi-
tenant communication capabilities at the integration layer, i.e.
the support for dynamically creating unique endpoints for a
(tenant) user-based process deployment and processing the
incoming and outgoing messages in an isolated manner.

Toward this goal, we follow the example of [7], and
we measure for the same workload the performance varia-
tion perceived by each user when introducing multi-tenancy
awareness in relation to the non multi-tenant aware solution.
In terms of the evaluation setup, in both cases the SCE is
deployed in a virtual machine hosted in an on-premise private
Cloud infrastructure with the following configuration: 2 vCPUs
AMD Opteron 2,30 GHz, 4GB RAM, and 60GB disk space.
Towards emulating a remote access to the processes deployed
in the SCE, the load driver is deployed in a separate virtual
machine. The generated workload consists of a set of random
1KB SOAP over HTTP messages, which are sent concurrently
among the endpoints in different load bursts according to the
following function over time: m(ti) = w(t0)+

∑5
i=1 2

i−1 ·k |
13Apache Axis2: http://axis.apache.org/axis2/java/core/

0

20

40

60

80

100

120

140

160

180

Axis2 JBI Integration

Latency (ms)

5 Concurrent Users

10 Concurrent Users

30 Concurrent Users

50 Concurrent Users

(a) Latency per endpoint perceived by each tenant user

0

20

40

60

5 10 30 50 # Users

Average CPU (%)

Axis2 JBI Integration

0

100

200

300

5 10 30 50 # Users

Average Memory (MB)

Axis2 JBI Integration

(b) Resource utilization

Figure 4. Axis2- vs. JBI-based integration of plain ODE with ESB

k = {2000}, w(t0) = 10240. For each scenario, a warmup
phase w(t0) of 10240 requests is followed by a set of load
bursts that follow an exponential function of base 2, with an
initial burst of 2000 requests and a total of 62000 requests. A
simple “echo” process model is used in all cases. The latency
perceived by each tenant user is measured in milliseconds,
and the CPU and Memory utilization in usage ratio and MB,
respectively.

With respect to the JBI-based integration of the ESB and
SCE (plain ODE) solutions, the evaluation results depicted in
Fig. 4a show that the performance is decreased by approxi-
mately 5% when concurrently accessing 5 endpoints. However,
as the number of concurrently used endpoints are increased, it
can be observed that there is a performance improvement of
approximately 22%, 43%, and 50% for the scenarios where 10,
30, and 50 endpoints, respectively, are accessed concurrently.
Therefore, it can be deduced that in a multi-tenant scenario
where an SCE is shared among multiple users, there is a sig-
nificant performance improvement when the SCE is integrated
directly into the ESB as a JBI Service Engine. When looking
at resource utilization however (Fig. 4b), it can seen that the
JBI-based approach puts additional strain on the computational
resources required, which may have an undesired effect as the
number of endpoints/concurrent requests increases.

Figure 5 summarizes the results of the multi-tenant versus
non multi-tenant performance comparison on an endpoint ba-

sis. The defined scenarios consist of evaluating an equal num-
ber of configured users for both multi-tenant and non multi-
tenant approaches. For example, the evaluation scenario for
10 Endpoints in Fig. 5 consists of comparing the performance
of 10 users (10 non multi-tenant endpoints) and two tenants
with 5 users per tenant (10 multi-tenant endpoints). The eval-
uation results depicted in Fig. 5 show that the performance is
degraded by approximately 1% when accessing 5 multi-tenant
endpoints. However, as the number of tenant-aware and non
tenant-aware endpoints are increased, it can be observed that
there is no performance degradation, but there actually exists
a slight performance improvement of approximately 2%, 4%,
and 2.5% for the scenarios where 10, 30, and 50 multi-tenant
aware endpoints, respectively, are accessed. It can therefore
be deduced that there is no significant performance alteration
when introducing multi-tenancy in the SCEMT. These results
are consistent with and/or improve on the ones discussed by [7]
for their multi-tenant aware SCE implementation.

0

5000

10000

15000

20000

25000

30000

35000

40000

non-MT MT

Latency (ms)

5 Endpoints

10 Endpoints

30 Endpoints

50 Endpoints

Figure 5. Multi-tenant vs. non multi-tenant endpoint performance comparison

VI. RELATED WORK

Anstett et al. investigated the execution of BPEL processes
in the Cloud based on different delivery models namely
Infrastructure as a Service (IaaS), Platform as a Service
(PaaS) and Software as a Service (SaaS) [8]. They point
out a set of requirements and challenges based on the used
delivery model. Furthermore, they identify the need for multi-
tenancy on the SaaS level. They do not however describe an
architecture or realization approach how multi-tenancy can
be supported. Looking specifically at the SaaS model, the
work in [6] discusses how a BPMN-based business process
execution engine can be made multi-tenant to allow for tenant-
based configuration of the application-supporting processes.
The discussion however focuses on the modeling aspect of
processes and does not provide any architectural insights into
how to implement a multi-tenant aware execution engine.

As already mentioned in the previous section, Pathirage
et al. introduced a multi-tenant SCE architecture based on
the open source ODE BPEL engine [7]. They use the WSO2
Carbon14 platform to enable multi-tenancy in ODE. WSO2
Carbon is an OSGi-based platform for building scalable, high
performance servers. It provides multi-tenancy support by
some adaptations to its underlying execution engine Axis2.
In [7] the authors reuse the multi-tenancy functionality of

14WSO2 Carbon: http://wso2.com/products/carbon

WSO2 Carbon in ODE by adapting the Axis2 integration layer
of ODE. An integration layer enables the communication with
external services and provides the internal services of ODE to
the outside by the use of a service middleware (e.g. Axis2,
Enterprise Service Bus). This differs from our approach be-
cause the use of Axis2 as multi-tenancy enablement layer and
the adaption of ODE’s integration layer makes the approach
solution specific. Other SCE implementations may use another
service middleware or do not offer the ability to provide a set
of interchangeable integration layer implementations. We try
to separate as much of the multi-tenancy functionality from
the SCE internal logic as possible to provide a general and
reusable approach, as discussed in Section III. Therefore, we
realize communication isolation for the ODE services (process
models) at the ESB, by using the corresponding functionality
of ESBMT. To isolate the process models of different tenants
inside ODE, the work in [7] uses an instance of a tenant-
aware Process Store for each tenant. In our work, we extended
the Process Store of ODE to natively support the isolation of
process models on a tenant user basis by associating a process
model with the tenant context of its owner.

VII. CONCLUSION AND FUTURE WORK

Enabling multi-tenancy on the level of a Service Com-
position Engine (SCE) allows for the offering of the engine
as a PaaS solution, promoting resource sharing and offering
advantages to both service providers and consumers. Toward
this goal, in the previous sections we identified a set of
functional and non-functional requirements for multi-tenant
SCEs including aspects like isolation, configurability, and
scalability. Starting with these requirements as the premise we
proposed a generic and reusable multi-tenant SCE architecture
which decouples the actual engine from the multi-tenancy
management concerns. The proposed architecture allows for
realization by various SCE solutions and the potential reuse of
the management aspect by many SCE instances. We based
the prototypical realization of this architecture on Apache
ODE, and previous work on enabling multi-tenancy on the
level of ESB middleware, resulting in the SCEMT solution.
By evaluating SCEMT against a non multi-tenant option in
an equivalent scenario we have demonstrated that there are
actually small but interesting performance improvements.

Furthermore, when compared with the approach taken
by the closest related work [7], we showed that additional
performance improvements can be achieved through the direct
integration of SCE and ESB. However, a systematic compari-
son of SCEMT with the solution discussed in [7] is required for
validation purposes. Beyond this further evaluation, the design
and development of configurable tenant-aware interfaces and
GUIs to the SCEMT are also planned for the immediate future.
Due to the fact that configurability is one of the most important
capabilities of a multi-tenant application from a users point of
view, we want to define and classify all possible configuration
options — on both the SCE and the process model level —
in future work. In addition to that, we plan to elaborate and
realize the horizontal scalability of SCEMT based on the ideas
introduced in this paper. This provides us the basis to realize
the automatic provisioning and de-provisioning of integrated
ESBMT with SCEMT instances based on changing workload or
performance.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the German Research Foundation (DFG) within the
Cluster of Excellence in Simulation Technology (EXC310) and
from the EU FP7 600792 project ALLOW Ensembles.

REFERENCES

[1] F. Chong and G. Carraro, “Architecture Strategies for Catching
the Long Tail,” 2006. [Online]. Available: http://msdn.microsoft.com/
en-us/library/aa479069.aspx

[2] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A Framework
for Native Multi-Tenancy Application Development and Management,”
in E-Commerce Technology and CEC/EEE 2007, 2007, pp. 551–558.

[3] S. Strauch, V. Andrikopoulos, F. Leymann, and D. Muhler, “ESBMT:
Enabling Multi-Tenancy in Enterprise Service Buses,” in Proceedings
of CloudCom’12, 2012, Konferenz-Beitrag, pp. 456–463.

[4] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns in Multi-
tenant SaaS Applications,” in Proceedings of CLOSER’12, 2012, pp.
426–431.

[5] S. Walraven, E. Truyen, and W. Joosen, “A Middleware Layer for
Flexible and Cost-Efficient Multi-tenant Applications,” in Middleware
2011, ser. Lecture Notes in Computer Science, F. Kon and A.-M.
Kermarrec, Eds., 2011, vol. 7049, pp. 370–389.

[6] F. Gey, S. Walraven, D. Van Landuyt, and W. Joosen, “Building a cus-
tomizable business-process-as-a-service application with current state-
of-practice,” in Software Composition, 12th International Conference
(SC 2013). Springer, 2013, pp. 113–127.

[7] M. Pathirage, S. Perera, I. Kumara, and S. Weerawarana, “A Multi-
tenant Architecture for Business Process Executions,” in Web Services
(ICWS), 2011 IEEE International Conference on, 2011, pp. 121–128.

[8] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards BPEL
in the Cloud: Exploiting Different Delivery Models for the Execution
of Business Processes,” in Proceedings of IWCS’09 in conjunction with
ICWS’09, Workshop-Beitrag, pp. 670–677.

[9] F. Chong, G. Carraro, and R. Wolter, “Multi-Tenant Data Architecture,”
2006. [Online]. Available: http://msdn.microsoft.com/en-us/library/
aa479086.aspx

[10] “Organization for the Advancement of Structured Information
Standards (OASIS). Web Services Business Process Execution
Language Version 2.0. OASIS Standard,” 2007. [Online]. Available:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[11] R. Mietzner, T. Unger, R. Titze, and F. Leymann, “Combining Different
Multi-Tenancy Patterns in Service-Oriented Applications,” in Proceed-
ings of EDOC’09, I. C. Society, Ed., 2009, Konferenz-Beitrag, pp. 131–
140.

[12] L. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically Scaling
Applications in the Cloud,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 1, pp. 45–52, 2011.

[13] M. Fowler et al., Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, November 2002.

[14] S. Strauch, V. Andrikopoulos, S. G. Sáez, and F. Leymann, “ESBMT:
A Multi-tenant Aware Enterprise Service Bus,” International Journal
of Next-Generation Computing, vol. 4, no. 3, pp. 230–249, November
2013.

[15] S. Strauch, V. Andrikopoulos, S. G. Saéz, and F. Leymann, “Imple-
mentation and Evaluation of a Multi-tenant Open-Source ESB,” in
Proceedings of ESOCC’13, ser. Lecture Notes in Computer Science
(LNCS), vol. 8135, 2013, pp. 79–93.

[16] S. Strauch, V. Andrikopoulos, S. G. Sáez, F. Leymann, and D. Muh-
ler, “Enabling Tenant-Aware Administration and Management for JBI
Environments,” in Proceedings of SOCA’12, 2012, Konferenz-Beitrag,
pp. 206–213.

[17] Java Community Process, “Java Business Integration (JBI) 1.0,
Final Release,” 2005. [Online]. Available: https://jcp.org/aboutJava/
communityprocess/final/jsr208/

All links were last followed on September 19, 2014.

