
Design Support for Performance-aware Cloud
Application (Re-)Distribution

Santiago Gómez Sáez and Frank Leymann

IAAS, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany

{gomez-saez,leymann}@iaas.uni-stuttgart.de

Abstract. The Cloud computing paradigm emerged by establishing inno-
vative resources provisioning and consumption models. Together with the
improvement of resource management techniques, these models have con-
tributed to an increase in the number of application developers that are
strong supporters of partially or completely migrating their application to a
highly scalable and pay-per-use infrastructure. However, due to the continuous
growth of Cloud providers and Cloud offerings, Cloud application developers
nowadays must face additional application design challenges related to the
efficient selection of such offerings to optimally distribute the application in a
Cloud infrastructure. Focusing on the performance aspects of the application,
additional challenges arise, as application workloads fluctuate over time, and
therefore produce a variation of the infrastructure resources demands. In this
research work we aim to define and realize the underpinning concepts towards
supporting the optimal (re-)distribution of an application in the Cloud in
order to handle fluctuating over time workloads.

Keywords: Cloud application distribution; application performance; appli-
cation workload evolution; Cloud application topology

1 Introduction

In the last years the Cloud computing paradigm has successfully emerged and its
model has been largely adopted by industry and research domains. Together with the
exponential increase of available Cloud services, application developers can decide
between partially or completely deploying their applications in a Cloud infrastructure.
For example, with the successful introduction of DBaaS solutions, it became possible
to host only some of the application components off-premise (in the Cloud), e.g. its
database, while the remaining of the application remains on-premise.

Standards like TOSCA1 allow for the modeling and management of application
topology models in an interoperable and dynamic manner, further supporting the
application distribution capabilities, potentially even in a multi-Cloud environment.
However, such technological approaches lack support for guiding the application
developer in tasks related to efficiently selecting the Cloud offerings to distribute the

1 Topology and Orchestration Specification for Cloud Applications (TOSCA) Version 1.0:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html



application. In this work, we aim to leverage the opportunities provided by such a
technological landscape and develop the means to allow the dynamic deployment and
re-deployment of application components across multiple services, in order to cope
with performance demands which evolve during the life of the application. There
are two fundamental observations in this effort that are going to be discussed in
more length during the rest of the paper. Firstly, the distribution of the application
topology in the Cloud has a severe effect on the performance of the application —
however it is not always obvious whether it is beneficial or detrimental. Secondly, a
realistic application workload fluctuates over time, and its topology may have to be
adapted to address the workload evolution.

Approaches such as MADCAT focus on providing a methodological approach
targeting the design and creation of structured native applications [10]. The Cloud-
Mig approach builds on an initial topology [7] of the application which is then
adapted through model transformation based on existing cloud offerings. The Palla-
dio Component Model2 aims at predicting the performance of model-driven software
architectures, and is used in [12] towards optimizing for availability and operational
expenses. Similar model-driven approaches focusing on multi-cloud management en-
vironments are investigated in the MODAClouds3 project. The MOCCA framework
focuses on optimizing the application topology by introducing variability points in
the topology model and using optimization techniques to find the most suitable
cloud offerings [11]. However, such approaches either do not explicitly focus on the
performance-aware aspects of the application, or provide decision support mechanisms
during the design phase of the application. In this work we aim at going a step further
by providing the decision support mechanisms to Cloud application developers to
efficiently (re-)distribute their applications to cope with evolving application workload
behaviors, and performance and resource demands.

2 Motivation & Problem Statement

The deployment of an application in the Cloud often requires Cloud application
developers to specify its underlying resources, calculate its cost, or analyze its expected
performance, etc. Such tasks are supported as part of several approaches such as
CloudML [5] or TOSCA. For example, the Policy4TOSCA approach enables a policy-
based description of application non-functional aspects [13]. In Figure 1 we depict the
topology model of a simple web shop application, which is constituted by its front-end
and logic, and a back-end database. In a first step, the Cloud application developer
may consider running the complete application stack in an on-premise virtualized
infrastructure. Consequently, the required infrastructure must be provisioned in order
to satisfy the functional and non-functional aspects of the application. However, when
deciding to partially or completely distribute the application among an off-premise
Cloud infrastructure, Cloud application developers must face further challenges
related to deciding which Cloud provider and Cloud offering to use to partially

2 Palladio Component Model: http://sdqweb.ipd.kit.edu/wiki/Palladio_Component_
Model

3 MODAClouds: http://www.modaclouds.eu/



or completely run the application. For example, the application database can be
deployed in the AWS RDS DBaaS infrastructure4 and the application logic in an
AWS EC25 m1.medium instance or in an AWS Elastic Beanstalk6 container.

The existence of multiple Cloud offerings, which are in some cases provided by
several Cloud providers, builds an alternative topologies space depicting all possible
application distribution alternatives [2]. Such application distribution posibilities are
also motivated from the perspective of the multiple application partial and complete
migration categories presented in [1]. Cloud application developers must analyze
and evaluate the alternative topologies space towards achieving an efficient selection
of Cloud offerings to distribute the application. The existence of such alternatives
introduces a multi-dimensional problem related to evaluating and deciding among
such alternatives. Cloud providers typically offer Cloud application developers tools
for targeting one dimension, e.g. to calculate and analyze the monetary cost when
using their offered services, such as the Amazon Simple Monthly Calculator7, and
provide configuration samples for different applications types and resources demands.

WebShop: WAR 

Apache_Tomcat: 
Servlet_Container 

Ubuntu10.04: 
Virt_Linux_OS 

IBM_Server: 
Physical_Server 

Product_DB: 
SQL_DB 

MySQL: 
SQL_RDBMS_Server 

AWS_EC2_m1. 
xlarge: AWS_EC2 

Ubuntu13.10: 
Virt_Linux_OS 

MySQL: 
SQL_RDBMS_Server 

AWS_RDS_mediumDB
: AWS_RDS 

MySQL: 
SQL_DBaaS 

AWS_EC2_ 
m1.medium: 

AWS_EC2 

Ubuntu13.0: 
Virt_Linux_OS 

AWS_Elastic_BeansTalk: 
Application_Container 

Legend 
Application-specific node 
Non application-specific sub-topology 
Sub-topology alternative 

Functional annotation 

interacts 
 

Alternative hosted-on 
 

Hosted-on 
 

Performance-aware annotation 

Fig. 1. Web Shop Application Topology Model (extended from [2])

The application performance is typically evaluated and analyzed in all phases of
its life cycle, and therefore has a significant impact on the application design decisions.
Moreover, its workload fluctuation and the impact on the expected performance
and resources demands arises several additional challenges. For example, a web shop
application workload can increase at certain time periods, e.g. before the Christmas
season, and therefore would require the usage and configuration of concrete resources
towards satisfying the expected performance. However, such configuration may
generate unnecessary monetary costs in time periods with a lower performance

4 AWS RDS: http://aws.amazon.com/rds/
5 AWS EC2: http://aws.amazon.com/ec2/
6 AWS Elastic Beanstalk: http://aws.amazon.com/elasticbeanstalk/
7 Amazon Simple Monthly Calculator: http://calculator.s3.amazonaws.com/index.

html



demand. Optimizing the application distribution towards balancing the performance-
cost trade-off must be considered as a long-term collaborative task which focuses on
the one hand on the evolutionary aspect of the application workload, and on the other
hand ensures that the triggered resource allocations and dynamic adaptations comply
with the expected service objectives. Cloud elasticity techniques aim at dynamically
and automatically pulling and releasing of computational resources. However, most
providers nowadays offer reactive-based elasticity features which must be configured
in advance by the developer, e.g. static thresholds definition in AWS Autoscaling8.

3 Research Challenges

Providing therefore the Cloud application developers with such design support
to optimally distribute and re-distribute the application to cope with fluctuating
workloads and performance demands raises several challenges. Such decision support
must cover the complete application life-cycle, define the underpinning concepts, and
provide the required mechanisms towards targeting the analysis and evaluation of
the evolutionary aspects of the application performance, e.g. its workload fluctuation.
The following research challenges are identified as part of this research work:

1. How to partially or completely specify during the design phase the Cloud appli-
cation topology and its performance-aware aspects.

2. Based on such specification, we must provide the techniques to derive the alter-
native topologies among existing Cloud offerings and prune the alternative space
conforming to application performance requirements.

3. The analysis of the application workload behavior and its resource demands
evolution towards

4. deriving and assessing the Cloud application developer with efficient application
(re-)distribution alternatives and profitable resources configuration.

4 Work in Progress & Research Plan

As a first step of this research work, we focused on three-layered applications defined
in [6]. The optimal distribution of the application in the Cloud is targeted as in [2]
by proposing a technology agnostic framework for deriving the multiple topology
alternatives and selecting the optimal application distribution through the usage
of utility-based ranking techniques. Focusing on the application performance, in [9]
we identified the need to partially or completely distribute the application layers
among multiple Cloud offerings to cope with application workloads fluctuations.
Two approaches for analyzing the application workload behavior and evolution were
identified: top-down and bottom-up. The top-down approach comprises the application
workload characterization and the application behavior model derivation, before or
during the deployment of the application. However, the top-down analysis approach
is restricted to handling the workload evolution over time. Bottom-up approaches
address this deficiency with the help of resource consumption monitoring techniques

8 AWS Autoscaling:http://aws.amazon.com/autoscaling/



and performance metrics. Both top-down and bottom-up analysis approaches can
be combined over time in order to support the dynamic (re-)destribution of an
application topology to cope with varying resources demand [9].

Re-distribution 

Model 
Application 

Topology 

Enrich 
Topology 

Model 

Derive WL 
Model & 
Topology 

Alternatives 

Deployment 
& Production 

Evaluate (Re-) 
Distribution 

Performance Evolution 

Performance 
Registration 

Monitor & 
Analysis 

Functional annotation 

Performance-aware annotation 

Legend 

Fig. 2. Performance-aware Application (Re-)Distribution Process

Based on the consolidation of the previous analysis approaches, we then proposed
an application analysis and distribution process which can be used to enable the
application (re-)distribution based on dynamic analysis of the workload [9]. As
depicted in Figure 2, such process consists of several tasks: (i) modeling the application
topology, (ii) enriching such topology with performance awareness, e.g. expected
performance or workload behavior, (iii) deriving the alternative topologies space
and the workload distribution model, (iv) pruning the alternative topologies space
by using utility-based evaluation techniques and based on historical knowledge or
empirical results, (v) deploying the application, and (vi) registering the application
performance demands and workload behavior evolution during its production phase
through monitoring techniques. We proposed the Collaborative Loop as an approach
to support the (re-)distribution of the application over time to proactively react to
fluctuating workloads. Implementing the toolchain required as part of this process
and creating a comprehensive framework for application distribution support is
our main task in ongoing work, as a number of tools are already in place both
for workload analysis and application topology management. In this respect, our
focus is on integrating them, rather than developing them from scratch, except from
when deemed necessary, as for example in the case of defining a performance-aware
deployment language and container for the Cloud. Ongoing work focus on fleshing
out the individual process tasks and connecting them with the specific techniques
and tools. For example, the TOSCA specification can be used for specifying the
Cloud application topology and the Policy4TOSCA for indicating the non-functional
aspects of the application [13]. Application workloads characteristics can be also
specified using the GT-CWSL language [3]. During the application workload analysis
and generation tasks, existing tools such as the Faban Harness9 or the Rain [4]
workload generator can be integrated.

Driven experiments showed significant performance improvement of the applica-
tion database layer when migrating its data to IaaS or DBaaS solutions, showing

9 Faban: http://faban.org



the latter to have the most improved performance for different workload character-
istics [9]. In [8] we evaluated different caching strategies which can be utilized for
mitigating the migration of the application data to the Cloud and its transparent
access through a message-based middleware. Future work comprises the evaluation
of the performance of the overall process when (re-)distributing, i.e. (re-)deploying
the different application components. Utility-based techniques can be helpful to
investigate the relationship between user preferences and application performance,
as well as the usage monitoring and analysis tools and approaches.

Acknowledgment

This work is partially funded by the FP7 EU-FET project 600792 ALLOW Ensembles.
Many thanks to Vasilios Andrikopoulos for his invaluable input.

References

1. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to Adapt Applications for
the Cloud Environment. Computing 95(6), 493–535 (2013)

2. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal Distribution
of Applications in the Cloud. In: Proceedings of CAiSE’14. Springer (June 2014)

3. Bahga, A., Madisetti, V.K.: Synthetic Workload Generation for Cloud Computing
Applications. Journal of Software Engineering and Applications 4, 396–410 (2011)

4. Beitch, A., Liu, B., Yung, T., Griffith, R., Fox, A., Patterson, D.A.: Rain: A Workload
Generation Toolkit for Cloud Computing Applications. Tech. Rep. UCB/EECS-2010-14,
University of California (2010)

5. Brandtzæg, E., Mohagheghi, P., Mosser, S.: Towards a domain-specific language to
deploy applications in the clouds. In: Proceedings of Cloud Computing 2012. pp. 213–218.
IARIA (2012)

6. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Profes-
sional (2002)

7. Frey, S., Hasselbring, W.: The CloudMIG approach: Model-based migration of software
systems to cloud-optimized applications. International Journal on Advances in Software
4(3 and 4), 342–353 (2011)

8. Gómez Sáez, S., Andrikopoulos, V., Leymann, F., Strauch, S.: Evaluating Caching
Strategies for Cloud Data Access using an Enterprise Service Bus. In: Proceedings of
IC2E’14 (2014)

9. Gómez Sáez, S., Andrikopoulos, V., Leymann, F., Strauch, S.: Towards Dynamic
Application Distribution Support for Performance Optimization in the Cloud. In:
Proceedings of CLOUD’14 (June 2014)

10. Inzinger, C., Nastic, S., Sehic, S., Voegler, M., Li, F., Dustdar, S.: MADCAT - A
Methodology For Architecture And Deployment Of Cloud Application Topologies. In:
Proceedings of SOSE’14 (2014)

11. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving Applications to
the Cloud: An Approach based on Application Model Enrichment. IJCIS 20(3), 307–356
(October 2011)

12. Miglierina, M., Gibilisco, G., Ardagna, D., Di Nitto, E.: Model based control for
multi-cloud applications. In: Proceedings of MiSE’13. pp. 37–43 (2013)

13. Waizenegger, T., Wieland, M., Binz, T., Breitenbücher, U., Haupt, F., Kopp, O.,
Leymann, F., Mitschang, B., Nowak, A., Wagner, S.: Policy4TOSCA: A Policy-Aware
Cloud Service Provisioning Approach to Enable Secure Cloud Computing. In: OTM’13


