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Michael Hahn, Santiago Gómez Sáez, Vasilios Andrikopoulos, Dimka Karastoyanova and Frank Leymann
Institute of Architecture of Application Systems (IAAS)

University of Stuttgart, Stuttgart, Germany
Email: {firstname.lastname}@iaas.uni-stuttgart.de

Abstract—In many modern systems, applications or services
are realized as compositions of multiple existing services that
can be enacted by Service Composition Engines (SCEs), which
provide the required functionality to enable their definition and
execution. SCEs typically use the capabilities of an Enterprise
Service Bus (ESB) which serves as the messaging hub between the
composed services aiming at ensuring their integration. Together,
an SCE and ESB solution comprise the service middleware re-
quired for the definition and execution of service-based composite
applications. Offering a service middleware solution as a service
creates a PaaS offering that allows the service consumers to
share the service middleware solution in a multi-tenant manner.
However, multi-tenancy support for service middleware solutions
remains an open issue. For this purpose, in this work we
introduce a general architecture for the realization of a multi-
tenant service middleware PaaS solution. This architecture is
prototypically realized based on open-source, multi-tenant ESB
and SCE solutions. The resulting service middleware provides
configurability for service compositions, tenant-aware messaging,
and tenant-based administration and management of the SCE
and the ESB. We also present an empirical evaluation of the
multi-tenant service middleware with focus on the SCE. The
results of these experiments show a performance degradation
within acceptable limits when scaling the number of tenants and
tenant users.

I. INTRODUCTION

The Cloud computing paradigm has become prominent in
the last years due to its capability of providing IT resources
as commoditised services in an agile manner over the Internet
in a on-demand and pay-per use model. Such utility-based
delivery of services result in an increase of the advantages that
traditional IT infrastructures and their application developers
can leverage from, e.g. reduced operational costs and rapid
elasticity. Application developers are nowadays capable of
selecting among a wide variety of existing SaaS, PaaS, and
IaaS Cloud offerings to partially or completely host their
applications, based on the administration and management tasks
they want to outsource. However, outsourcing an application
to the Cloud requires both application and services to be multi-
tenant aware [1], [2]. Multi-tenancy implies that applications
should be designed so that they maximize the resource sharing
between multiple consumers. Thus, service providers are able
to maximize the resource utilization and as a result reduce
their servicing costs per customer [3]. Multi-tenancy is a
main prerequisite to enable other very important characteristics
of applications or services like isolation, configurability and
scalability [1], [4], [5].

Various multi-tenancy definitions have been provided in the
research and industry domains in the last years, for example

in [3], [4], [6] or [7]. In this work we use the definition provided
in [3] as a basis, where multi-tenancy is defined as the sharing
of the whole technological stack (hardware, operating system,
middleware and application instances) at the same time by
different tenants (organizational units) and their corresponding
(tenant) users. Our main focus in this research work is on
the multi-tenancy support of service middleware, that is the
sharing possibilities of single Enterprise Service Bus (ESB) and
Service Composition Engine (SCE) instances among multiple
consumers, enabling the development, deployment and provi-
sioning of service-based composite applications as supported in
the Platform as a Service (PaaS) Cloud delivery model. ESBs
and SCEs constitute the main underlying service middleware for
deploying and executing service-based composite applications
typically defined as process models (also known as workflows or
workflow models) [8]. The multi-tenancy capabilities discussed
in this work do not only manifest as multiple tenants using the
same underlying service middleware in an isolated manner, but
also as different combinations of tenants and/or tenant users
sharing the same process model, potentially with different
configuration options per tenant as discussed e.g. in [9].

Previous work [10], [11] demonstrated that the concept
of Middleware as a Service is both feasible and efficient,
however by delegating the problem of multi-tenant awareness
on the level of the messaging middleware used. In this work,
we instead propose a generic, reusable architecture for multi-
tenant service middleware that separates the service composition
aspect from tenant management. By realizing this architecture
we create the foundations for a PaaS solution for composite
service applications. Toward this goal, we build on previous
experience with cloud enabling only the ESB as part of a larger
PaaS offering [12].

The contributions of this paper can be summarized as
follows:

1) A generic, implementation-agnostic architecture for
multi-tenant PaaS service middleware.

2) A prototypical realization (SerMidMT) of the proposed
architecture composed of a multi-tenant ESB (ESBMT)
and SCE (SCEMT).

3) A performance evaluation of the SerMidMT realization
with the focus on different sharing configuration
scenarios on the level of the SCE.

The rest of this paper is structured as follows: Section II
provides a brief background on the Service-oriented Archi-
tecture (SOA) paradigm, and some service-based composite
applications fundamentals with respect to Cloud computing.



Section III introduces the generic architecture of our multi-
tenant service middleware solution (SerMidMT) and its pro-
totypical implementation (ESBMT with integrated SCEMT).
Section IV focuses on evaluating the performance variation
among multiple supported process model sharing configurations
of SCEMT. Finally, the paper concludes with related work
(Section V), and a summary of our findings together with an
outlook on future work (Section VI).

II. SOA & COMPOSITE APPLICATIONS

The Service-oriented Architecture (SOA) paradigm has
been widely adopted in the domain of software design and
provisioning as it establishes the foundations for providing
application functionalities as loosely-coupled services which
can be used by third-party applications. The SOA foundations
are based on the principles of service publication, discovery,
selection, and binding [8]. These allow service providers and
consumers to expose and find, respectively, functionalities
which potentially can be combined resulting in more complex
and new service-based composite applications. The utilization
of services as fundamental elements for application development
is mainly addressed by Service-oriented Computing (SOC) [13].
Such service compositions are typically realized by specifying
workflow models which are enacted by workflow engines and
allow the specification of control and data flows among services.

The connection among Cloud computing and SOC has risen
a number of challenges and opportunities, as discussed in [14].
On the one hand, SOC provides the computing of services
which enhances the application landscape with dynamic and
agile features to rapidly adapt to business changes. On the other
hand, Cloud computing provides the services of computing,
by adopting the utility service provisioning model on an on-
demand and pay-per-use basis. Wei et al. conclude in [14] that
challenges that arise when bridging the gap and combining SOC
and Cloud actually serve as opportunities, e.g. service discovery
can benefit from the usage of different Cloud deployment
models by expanding the space of published services.

The Enterprise Service Bus (ESB) and Service Composition
Engine (SCE) constitute the core artifacts for the development
of modern service-based applications [13]. The ESB serves as
the messaging hub between applications aiming at ensuring the
integration among them, while the SCE enables the definition
and the execution of compositions of multiple existing services
(e.g. specified by workflow models). Cloud-enabling such
software artifacts with multi-tenancy capabilities for allowing
users to deploy and run existing or new composite applications
in an isolated manner is therefore a challenging but profitable
task that we aim to address in this work.

III. ARCHITECTURE & IMPLEMENTATION

A. Architecture

Figure 1 provides an overview of the architecture of our
multi-tenant PaaS Service Middleware solution SerMidMT. In
this work we extend the original generic multi-tenant ESB
architecture introduced in [3] by the integration of a multi-
tenant SCE Instance Cluster at the Resources layer, as shown
on the bottom right of Fig. 1. Since our proposal builds
on the architecture discussed in [3] (and more extensively
in [15]), in the following we focus on the additional or extended
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Figure 1. Overall architecture of our Multi-tenant PaaS Service Middleware
solution (SerMidMT), cf. [3], [15]

components that enable, or are required for the integration of
SCE Instances. Therefore, we describe the three layers of the
architecture, namely Presentation layer, Business Logic layer
and Resources layer in a bottom-up fashion.

Resources layer: The Resources layer consists of a set of
registries, an ESB Instance Cluster and a SCE Instance Cluster.
The ESB Instance Cluster is a collection of ESB Instances
where each instance performs tasks like message routing and
transformation that are usually associated with traditional ESB
solutions. The components of a generic ESB Instance and their
description is out of the scope of this work, but we will provide
corresponding details on the level of our prototypical realization
later. Interested readers can find additional information in [3],
[15] and [16]. The SCE Instance Cluster bundles together
multiple SCE Instances where each of them is coupled with an
ESB Instance of the ESB Instance Cluster as shown in Fig. 1.
An SCE Instance enacts service compositions, e.g. specified
as workflow models, which for example realize service-based
composite applications as introduced in Section II. The number
of instances of which the ESB and the SCE Instance Clusters
consist can be, in the simplest case, a single ESB Instance
coupled with a single SCE Instance which together serve all
tenants and their users using a SerMidMT implementation. Since
a single ESB and SCE Instance coupled in a one-to-one manner
may cause performance issues, a clustering mechanism similar
to the one provided by Apache ServiceMix1 is recommended for
the SerMidMT architecture. Therefore, the different possibilities
to associate ESB and SCE Instances have to be considered. For
example, each ESB Instance can be associated with a single
SCE Instance or with a collection of n SCE Instances.

In addition to the introduced clusters, the Resources layer
contains four different types of registries. The Service Registry

1Apache ServiceMix: http://servicemix.apache.org/



is extended to store the process models registered with the
different SCE Instances in addition to the services of the various
ESB Instances as described in [15]. The Tenant Registry is
used to store data about all tenants and their users as well
as associated properties like user names or passwords. The
configuration data of all tenants and their users is stored in
the Configuration Registry. This contains for example the
configuration of ESB and SCE Instances or the mapping
of permissions and roles to the access control mechanisms
offered by the Access Layer component (see Business Logic
layer in Fig. 1). In addition to the existing registries, we
added a new Event Registry which stores all event messages
emitted by a running SCE Instance (e.g. during process instance
execution) in a tenant isolated manner. Since we want to share
the Service Registry and the Event Registry with other PaaS
components, we recommend to realize these two registries
as database clusters to avoid any performance bottlenecks.
Furthermore, all registries have to store the corresponding data
in a tenant-isolated manner, for example by the use of one of the
approaches (e.g. shared schema/shared database) introduced
by Chong et al. [17].

Business Logic layer: The Business Logic layer contains an
Access Layer component which encapsulates authentication and
authorization functionality for the tenant users and therefore
acts as a multi-tenancy enablement layer [6] based on role-
based access control [18]. The Access Layer identifies and
authenticates the tenants and their corresponding users once
the interaction with the ESB and/or SCE Instances is initiated.
In addition, the Access Layer component is responsible for the
registration of tenants and users and granting them access to
ESB and SCE Instances [3], [19].

Furthermore, as shown in Fig. 1 the Business Logic layer
contains a set of Managers which encapsulate the functionality
to interact with and manage the components of the Resources
layer. All registry managers (Tenant Registry, Configuration
Registry, Service Registry and Event Registry Manager) provide
the business logic which is required to retrieve and store data
from and to the corresponding registries in the Resources
layer. The Messaging Adapter/Message Processor Managers
deploy and undeploy corresponding Messaging Adapters and
Message Processors in each ESB Instance in the Cluster [3],
[19]. Since an SCE is a Message Processor, the Messaging
Adapter/Message Processor Managers also deploy and undeploy
corresponding SCE Instances in the SCE Instance Cluster
and associate them with one or more ESB Instances. The
Configuration Managers provide the functionality to configure
all deployed Messaging Adapters and Message Processors
appropriately.

Presentation layer: The Presentation layer contains the Web
service API which allows the customization, administration,
management, and interaction with the SerMidMT implemen-
tation as a PaaS solution. The Web service API offers the
functionality provided by the managers of the Business Logic
layer for the administration and management of the whole
system and also enables the integration and communication of
external components and applications [3], [19].

B. Implementation

As discussed in the previous section, the SerMidMT architec-
ture is based on two associated clusters of multi-tenant ESB and

SCE Instances. In this section, we introduce our prototypical
SerMidMT realization based on the generic architecture shown in
Fig. 1 which integrates our multi-tenant aware SCE realization2

(SCEMT) with an existing ESBMT realization3 [16]. Figure 2
shows an overview of the SerMidMT realization and all its
components based on a single ESB Instance with an integrated
single SCE Instance. In the following we introduce briefly
all components by going through the figure in a top-down
manner. In addition, we describe in more detail how the different
components interact with each other.

In [19] a multi-tenant aware administration and management
framework was introduced that provides the Presentation and
the Business Logic layer of the generic architecture shown in
Fig. 1 for Java Business Integration (JBI) [20] environments.
Based on that, JBIMulti2, a web application was realized
which implements the introduced framework, and therefore
enables the tenant-aware administration and management of JBI
environments. Since JBIMulti2 was designed to only manage
ESB Instances that support the JBI specification, we extended
JBIMulti2 to support also the tenant-based administration and
management of SCE Instances. Therefore, the JBIMulti2 User
Interface and Business Logic layer were extended with new
SCE-specific operations. For example, a new operation to
register configuration data for a process model is added.

Furthermore, we added a new messaging endpoint to JBI-
Multi2 which enables the communication between JBIMulti2
and the SCE Multi-tenancy Manager (SCE-MT Manager in
Fig. 2). For example, if new configuration data for a process
model are registered, a corresponding message is sent through
the new messaging channel to the SCE-MT Manager using a
queue. The communication between JBIMulti2 and the ESB is
based on queue-based messaging since JBIMulti2 is designed
to manage clusters of ESB Instances and some management
tasks (e.g. installation of JBI components) are long running. For
this purpose, in [19] the authors use the open source message
broker Apache ActiveMQ4. For the purposes of SerMidMT,
we added an additional queue (see Fig. 2, SCE-MT Manager
Messages.queue) to realize a new communication channel
between JBIMulti2 and the SCE-MT Manager.

JBIMulti2 uses the set of shared registries introduced in the
previous section to handle the administration and management
of tenant and user data. The registries are realized based
on PostgreSQL version 9.1.15. As already introduced, the
TenantRegistry is used to store any required tenant information
like user names or passwords. The ServiceRegistry stores so
called JBI Service Assemblies (SA) in a tenant-isolated manner.
A SA is a JBI-specific packaging format which consists of
one or more JBI Service Units (SU) providing a collection of
component-specific artifacts that can be deployed to any of
the components of a JBI environment. All other tenant-related
data are stored in the ConfigurationRegistry. This contains for
example the access rights and roles of all tenants and their users.
We added a new EventRegistry which stores all event messages
emitted by an SCE (e.g. during process instance execution) in
a tenant isolated manner. The existing ConfigurationRegistry

2SCEMT: http://www.iaas.uni-stuttgart.de/scemt/
3ESBMT: http://www.iaas.uni-stuttgart.de/esbmt/
4ActiveMQ: http://activemq.apache.org/
5PostgreSQL: http://www.postgresql.org/
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Figure 2. Overview of the prototypical realization of our Multi-tenant PaaS Service Middleware solution based on ESBMT [16]

and ServiceRegistry are extended to store some new SCE and
process model related data.

As already mentioned, the ESBMT solution described in
[16] is used for the integration of SCEMT. ESBMT is based on
the open source ESB solution Apache ServiceMix (ServiceMix)
version 4.3.06 which is compliant to both the JBI [20] and
the OSGi [21] specifications. We use the integration and
routing capabilities of ESBMT to connect all components
(SCE-MT Manager, SCEMT and JBIMulti2) and to hide the
complex structure of the integrated SerMidMT solution from
the users at the same time. The JMSManagementService
belongs to JBIMulti2 and executes all administration and
management tasks triggered through JBIMulti2. Therefore, the
service consumes all messages published to the Management
Messages.topic shown in Fig. 2. For example, the service is
responsible for the installation/uninstallation and configuration
of JBI Binding Components (BC) and Service Engines (SE).
The former realize Messaging Adapters (see Business Logic
layer in Fig. 1) and are used to enable the exchange of
protocol-specific messages between any connected external
service and the JBI environment in a protocol neutral format.
The latter realize Message Processors (see Business Logic
layer in Fig. 1) and provide advanced message processing
functionalities like message transformation, message routing,
or even the composition of existing services. For example, an
SCE is such a JBI SE which enables the composition of existing
services. The JMSManagementService realizes the tenant aware
deployment/undeployment of SAs and SUs to the BCs and SEs

6Apache ServiceMix: http://servicemix.apache.org/

of the JBI environment.

The purpose of the SCE-MT Manager is quite similar to
the one of the JMSManagementService. Instead of providing
support for the administration and management of ESB In-
stances, the SCE-MT Manager enables the management of
SCE Instances and as a result of this, acts as the link between
JBIMulti2 and the set of running SCE Instances. Its Messaging
API is used to enable the communication between the SCE-MT
Manager, JBIMulti2 and running SCEMT Instances. The SCE
Manager module provides the required functionality to manage
a dynamic changing set of SCE Instances and their integration
into the ESB during runtime. The Process Manager module is
aware of the status of all process models and on which SCE
Instance they are actually deployed. The Configuration Manager
realizes the configuration of SCE Instances and process models.
For this purpose, it collects the configuration data from the
ConfigurationRegistry and sends them to a set of SCE Instances.
The SCE-MT Manager cooperates with JBIMulti2 and uses
the powerful message routing functionality of the underlying
ESB Instance by deploying a set of message routes to it.
Whenever an administration or management task is scheduled
through JBIMulti2, the collected data (e.g. process model
configurations) are persisted to the corresponding registry and
then a simple event message is sent to the SCE-MT Manager
by JBIMulti2. The SCE-MT Manager uses the information
contained in the received messages to get the correct data from
the shared registries and trigger the corresponding operation. For
example, if a tenant registers new process model configuration
data over JBIMulti2, the SCE-MT Manager has to query the
data from the ConfigurationRegistry and forward it to all



registered SCE Instances. Furthermore, the SCE-MT Manager is
responsible for the tenant-isolated storage of all event messages
in the EventRegistry. The Event Manager persists the received
event messages from all connected SCE Instances into the
EventRegistry to enable their later use.

The SCEMT realization itself is based on the open source
Apache Orchestration Director Engine (ODE) version 1.3.57.
Apache ODE supports the enactment of process models
specified with the Web Service Business Process Execution
Language (WS-BPEL or BPEL) [22]. ODE is shipped with an
embedded Apache Derby database, but it is possible to change
the underlying database in a configuration file. As shown in
Fig. 2 we use a MySQL Server (Community Edition) version
5.68 — one of the predefined options of ODE — to provide
the required database. Since we can use the functionality of
ESBMT to provide communication isolation (separated message
exchanges for each tenant user [3]) for all services exposed
by the SCE, the SCE does not require a mechanism which
enforces that a process model can only be invoked by the
tenant user to whom it belongs (owner of the model). But
to provide multi-tenancy and configurability support inside
ODE, we applied some adaptations and extensions to the
underlying implementation. More specifically, the message
exchange processor had to be extended to allow tenant-aware
communication in both directions. This means that the tenant
information associated to any incoming message should be
used to identify the sender of the message. Furthermore, the
tenant information should be forwarded in all external service
invocations. The message exchange processor should be able
to handle seamlessly the communication with both non multi-
tenant and multi-tenant aware services. In addition to that, the
engine database had to be extended to store tenant-specific
data (e.g. process models, configurations) in a tenant-aware
manner. Our solution is based on the shared schema, shared
database approach defined in [17] and separates the data of
different tenant users based on two new columns (tenantID
and userID). To support the tenant-based configuration of
the SCE and the process models, we extended the API of
ODE with a new configuration interface. A new Configuration
Manager component implements this interface and by these
means provides the functionality to configure the SCE and
its process models on a tenant basis. The resulting SCEMT

realization is integrated as a JBI SE into the ESB by using the
existing JBI Integration Layer of ODE.

Our current prototypical realization of SerMidMT only
supports one ESBMT Instance that is coupled with one SCEMT

Instance in a one-to-one manner, but we plan to investigate
and evaluate different Clusters and association possibilities of
ESBMT and SCEMT Instances in the future. For example, a
cluster of n ESBMT Instances where each instance is associated
with a single SCEMT Instance, or a cluster of m ESBMT

Instances where each instance is associated with k SCEMT

Instances can be compared. Furthermore, we plan to elaborate
and realize horizontal scalability for our SerMidMT prototype
and based on that enable elasticity on the level of the two
clusters by automatically scaling the number of ESBMT and
SCEMT Instances to react dynamically on changing workload
or performance.

7Apache ODE: http://ode.apache.org
8MySQL Community Edition: http://www.mysql.com/products/community/
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Figure 3. Possible Isolation Types which span a continuum between strict
Isolation and unrestricted Sharing

C. Configurability of SCEMT

Our prototypical SCEMT realization already supports a set
of configurability options for both the SCE and the enacted
process models. For example, tenant administrators are able to
configure an SCE Instance by the registration of customized
implementations for BPEL extension activities on a per-tenant
basis. Extension activities are model constructs of BPEL which
enable the extension of the BPEL language with new user-
defined custom activities that can be used for the definition of
process models. To execute these new extension activities, a
corresponding runtime implementation has to be registered on
the engine side. For this purpose, ODE provides the possibility
to register so called extension bundles which contain the runtime
implementation of one or more BPEL extension activities. We
extended this mechanism so that tenant administrators can
register such extension bundles in a tenant isolated manner
which means only the users of the tenant who registers the
bundle are able to use the customized implementation.

On the level of process models, we support configuration
options for process model runtime data and process model
appearance. Runtime data can be registered on a tenant user
basis for BPEL variables and partner links of a process model.
This enables the customization of (initial) variable values and
service endpoint references over runtime data configurations.
Figure 3 shows one possibility to configure the appearance of
a process model, which means how it is visible and accessible
from the outside through its service interface. The accessibility
of this interface is governed on a per tenant basis by means
of constraints. These access constraints enable the owner of
a process model to specify a scope with specific visibility
and access restrictions and thus only for well-defined groups
of tenant users to have access to the corresponding sets of
process models. As shown in Fig. 3, we identify three options
spanning a continuum between strict isolation (user-private)
on the one side, and full sharing (tenant-public) on the other
side for the communication layer of a process model (service
interface). Thus they are comparable with the introduced options
to introduce multi-tenancy on the database layer by Chong et al.:
separate databases (strict isolation), shared database, separate
schemas and shared database, shared schema (full sharing)
[17]. More specifically, these options are:

Tenant-public: Process models that are configured as tenant-



public do not have any access restrictions and therefore are
visible to and accessible by all users of all tenants. Any
incoming request sent to the service interface of a tenant-public
process model is forwarded without any authentication. These
process models can be used by any user of any tenant without
any restrictions. The fact that a process model is tenant-public
does not mean that its instances are also accessible by any user.
If a tenant-public process model is instantiated by a tenant user,
the instance is directly associated to this user. This secures all
tenant-specific instances and their data from any unauthorized
entities (Data Isolation). If a tenant-public process model is
instantiated without any provided tenant user information, the
instance is also tenant-public. In this case, everyone is able
to manage these instances via the administration functionality
of the SCE. This access constraint enables the provisioning
and sharing of process models which provide some useful
domain-specific functionality to all tenants and their users
while still enforcing Data Isolation on the process instance level.
Furthermore, this constraint enables backward compatibility
because non multi-tenant aware applications or services are
able to send requests to tenant-public process models.

Tenant-private: This constraint isolates a process model on a
tenant basis. Therefore the process model is only visible to/
accessible by the users of one specific tenant. The SCE in
this cases processes only requests which reference the same
tenant as the one associated to the process model to which the
request is sent. For example, if the process model is associated
to tenant A, only requests of users of tenant A are processed
and any other requests are rejected by the SCE. Furthermore,
requests without any associated tenant information have also
to be rejected. Similar to the tenant-public constraint case, the
created instances of a tenant-private model belong to a single
tenant user identified by the tenant information contained in the
initial request sent to the service interface of a process model.

User-private: Process models which are configured as user-
private are only visible to/accessible by one specific user. The
SCE should only process requests referencing the same tenant
and tenant user as the one associated to the invoked process
model. Requests without any associated tenant information are
rejected by the SCE. The created instances of a user-private
model belong to a single tenant user identified by the tenant
information contained in the initial request sent to the service
interface of a process model. This is the default access constraint
which is used when no configuration data is specified for the
accessibility of the service interface of a process model.

Further research is planned to identify and define more
configuration options on the dimensions of process model
runtime data and process model appearance, and to enable the
customization of the logic of a process model by introducing
configuration options on the dimension of process model logic.

IV. EVALUATION

A. Methodology

In previous work we have provided an extended evalu-
ation of the multi-tenancy capabilities of ESBMT (see for
example [15]). For this reason we focus on the evaluation of
SerMidMT at empirically analyzing the performance variation
when introducing process model sharing capabilities to SCEMT.
As previously discussed, there are several configuration options
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Figure 4. Summary of the experimental evaluation scenarios
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Figure 5. Echo process model used for the evaluation in BPMN2 notation

(isolation types) supported in SCEMT on both tenant and (tenant)
user levels, which must be taken into consideration when
analyzing the performance improvement or deterioration among
the different levels of supported access constraints. Figure 4
summarizes the scenarios to be considered in the rest of this
discussion for purposes of evaluating the effect of multi-tenancy
on the level of service middleware.

Based on previous experience from the experiments pre-
sented in [15], a workload consisting of randomly generated
1KB SOAP over HTTP requests distributed among two phases
was generated for the experiments. The warm-up phase consists
of a set of 10K messages and is followed by an experimental
phase comprising a set of 62K requests, both phases following
the same function over time:

m(ti) = w(t0) +

5∑
i=1

2i−1 · k | k = {2000}, w(t0) = 10240

Such workload is concurrently sent to the simple back-end
echo process model depicted in Fig. 5 which is deployed to
a single SCEMT instance. The echo process consists of a pair
of activities (receive and reply) which use an intermediate
process variable to temporarily store and copy the received
message content to the response. As these experiments aim at
analyzing the impact of introducing multi-tenancy, we must
measure the impact from two different perspectives. On the
one hand, the latency variation on a per user basis must be
analyzed. On the other hand, there exists also an impact from
the perspective of the Cloud infrastructure, i.e. the amount of
load that each SCEMT instance is capable of handling when
scaling the number of users and requests. For this reason, we
also measure the throughput per endpoint supported by each
SCEMT instance.

B. Experimental Setup

The experimental setup complying with the previously
discussed evaluation methodology was implemented as follows.
The echo process described in Fig. 5 was implemented using



the WS-BPEL language [22] and deployed in each SCEMT

instance through the extended JBIMulti2 with the corresponding
multi-tenancy isolation types proposed in Fig. 4: user-private,
tenant-private, and tenant-public. For the non multi-tenant
aware scenarios, it was necessary to automate the creation of the
endpoint specification files. For this purpose, we used predefined
endpoint specification templates and the JET framework9 to
create different non multi-tenant aware endpoint specifications.
The scenarios are organized in groups of 1, 5, 10 and 50 users.
In the multi-tenant aware scenarios, the users are distributed
among 1, 2, 5, and 10 tenants, each tenant comprising 1 or 5
users based on the corresponding scenario (see also Table I).
For example, the MT / User-private / 2 Tenants / 5 Users and
Non MT / User-private / 10 Users / 10 Endpoints scenarios
both comprise in total 10 users, however distributed among two
tenants in the multi-tenant case. The deployed process models
and ESB endpoints were allocated differently depending on the
isolation type. For the user-private isolation type, one process
model per user and one unique ESB endpoint are deployed. In
the tenant-private isolation type, all users of the same tenant
share the same process model and ESB endpoint, and therefore
one process model and ESB endpoint per tenant are deployed.
Finally, in the tenant-public isolation type, one shared process
model and ESB endpoint for all tenants and their corresponding
users are deployed.

Two separate SerMidMT instances (Fig. 6) hosting the multi-
tenant and non multi-tenant aware configurations were deployed
in the virtual machines VM2 (disabled multi-tenancy support
using the backward compatibility feature of ESB and SCE)
and VM3 (enabled multi-tenancy support), respectively, both
using the following configuration: 2 vCPUs AMD Opteron 2.3
GHz, 4GB RAM, 100GB disk space, and running the Ubuntu
14.04 distribution. SCEMT also required the deployment of
the JBIMulti2 components and a MySQL server 5.6 engine
database. In order to guarantee an isolated consumption of
allocated virtualized resources for each SCEMT instance, the
Apache JMeter 2.910 was used as the load driver and deployed in
a separate virtual machine (VM1 in Fig. 6), with the following
configuration: 1 vCPUs AMD Opteron 2,30 GHz, 2GB RAM,
60GB disk space, and running the Ubuntu 14.04 distribution.
In terms of the generated workload, random 1KB messages
were generated and imported to the load driver. The load
driver was configured to concurrently send an equal amount of
messages in all scenarios distributed among the users and their
corresponding endpoints, i.e. num requests/(num users ∗
num endpoints). For each endpoint the throughput was
measured in terms of requests per second (req/s); for each
concurrent user we measured the average response time in
milliseconds (ms).

C. Experimental Results

As it can be seen in Fig. 7, when comparing the non multi-
tenant (Non MT) with the multi-tenant (MT) scenarios, there
exists a detrimental impact to the user-observed performance
(response time) when introducing multi-tenancy capabilities

9Model To Text - JET: http://www.eclipse.org/modeling/m2t/?project=jet
10Apache JMeter: http://jmeter.apache.org/
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Figure 6. Experimental setup topology

within the SCE11. However, this impact varies depending
on the isolation type used to configure a process model
enacted by the SCEMT. Comparing the user-private scenarios
(Non MT / User-private / 10 Users / 10 Endpoints vs MT
/ User-private / 2 Tenants / 5 Users) shown in Fig. 7a, the
performance is degraded by approximately 44%. When sharing
the process model within a tenants’ boundaries (tenant-private),
the performance is only degraded by approximately 10% and if
the process model is fully shared (tenant-public) the degradation
reduces to approximately 6%. Overall, the highest performance
deterioration can be observed in average for all scenarios related
to the user-private isolation type.

The results also show that the overhead introduced by the
authentication mechanisms to realize communication isolation
in the SCEMT varies depending on the isolation type. More
specifically, the performance degradation variation directly
depends on the amount of tenant information that must be
processed to authenticate a request at an endpoint. For the user-
private isolation type, the authentication mechanism involves the
verification of tenant and user credentials, while in the tenant-
private type such overhead is reduced since only the tenant
credentials have to be validated, and for tenant-public such
verification is removed completely. However, the performance
degradation perceived by each user tends to be ameliorated
when increasing the number of endpoints at the ESBMT and
process models in the SCEMT, respectively. For example,
comparing the scenarios MT / Tenant-private / 2 Tenants /
5 Users (2 endpoints with 5 users per endpoint, Fig. 7a) and
MT / Tenant-private / 10 Tenants / 5 Users (10 endpoints with
5 users per endpoint, Fig. 7b), there is an average performance
degradation of approximately 10% when using 2 endpoints
which actually changes to a small performance improvement
of approximately 4% when using 10 endpoints.

Furthermore, the response time per user depicted in Fig. 7
shows that there exists a visible latency oscillation among the
different scenarios when increasing the number of requests.
Such fluctuations result to abrupt beneficial or detrimental
performance variations among the different sets of requests
constituting the workload. There exists, however, a performance
degradation overall trend when increasing the total number of
requests concurrently sent per user. With respect to distribut-

11Note: For purposes of presentation and discussion scoping, Figures 7 and 8
report on the results of only 10 and 50 users, respectively. The measurements
for smaller amounts of users (1 and 5) are nevertheless incorporated in later
discussion (Table I).
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ing the load among multiple endpoints, i.e. deploying one
independent endpoint per user, we can observe that SerMidMT

presents a lower response time for each user compared to
the scenarios where multiple users or tenant users share the
same endpoint(s). This conclusion is not always applicable
to the scenarios comprising a total of 10 users (see Fig. 7a),
where the response time highly decreases when user-private
multi-tenancy capabilities are introduced (MT / User-private
/ 2 Tenants/ 5 Users). However, when increasing the number
of users to a total of 50 users, such degradation is ameliorated
with respect to the tenant-public and tenant-private scenarios
(see Figure 7b). The impact of enabling multi-tenant aware
authentication functionalities for the user-private isolation type
highly degrades the response time for each user. However, such
difference is decreased on average when scaling to 50 users
(Fig. 7b), as the total amount of concurrent requests requiring
an user-private authentication mechanism is distributed among
the service middleware endpoints.

From the provider’s perspective, the performance fluctuation
within short time intervals does not show a high variation rate,

Table I. PERFORMANCE VARIATION WHEN ENHANCING THE
MIDDLEWARE WITH MULTI-TENANCY SUPPORT

Tenants Users/Tenant Endpoints Average Throughput
Isolation type Difference (req./s)

User-private

1 1 1 -13.74%
1 5 5 -0.85%
2 5 10 -44.08%

10 5 50 -18.45%

Tenant-private

1 1 1 18.79%
1 5 1 -9.84%
2 5 2 -10.42%

10 5 10 3.54%

Tenant-public

1 1 1 -4.66%
1 5 1 25.04%
2 5 1 -5.57%

10 5 1 -6.61%



as the throughput remains relatively steady when increasing the
number of requests (see Fig. 8), irrespective of the number of
endpoints. Furthermore it can be observed, that the throughput
for each endpoint provisioned by SerMidMT, i.e. the number
of requests that each endpoint is capable of handling, is
also degraded among all isolation type configurations when
introducing multi-tenancy support. The average throughout
deterioration presented in Table I is highly emphasized in
the user-private scenario, while maintained in acceptable
margins for the tenant-private and tenant-public isolation type
configurations. There exists therefore a clear performance
degradation in the SCEMT that depends on the multi-tenant
aware authentication mechanisms introduced by each isolation
type, signified in Fig. 8 by the existence of three independent
bands for each isolation type scenario. In addition to that,
there exists also a throughput deterioration with the scaling
of the number of endpoints and the distribution of the total
workload among them. Such deterioration does not necessarily
imply a performance degradation of the system however, as
the total number of messages processed per endpoint decreases
when distributing the load among further deployed endpoints.
Overall, the performance of the SCEMT maintains stable when
increasing the number of requests constituting the workload,
as the number of requests per second that each endpoint is
capable of handling remains steady when increasing the number
of concurrent requests. Future experiments aim to investigate
further the capacity limitations of the SCEMT when scaling the
amount of tenants, users, and concurrent requests.

V. RELATED WORK

Most of the research in the domain of multi-tenancy
focuses on enabling multi-tenancy support on the level of SaaS
applications, e.g. [6], [23]. There exist only a few existing
works that introduce multi-tenancy capabilities for (service)
middleware targeted for the PaaS delivery model [7], [10], [11].
All the authors of these works however agree that there is a clear
need to introduce multi-tenancy support on the middleware
layer. This enables the development of new multi-tenant aware
service-based composite applications or to support the cloud-
enablement of existing composite applications, respectively, by
leveraging the capabilities of the middleware.

In terms of related works to our approach, Walraven et
al. [7] introduce a middleware layer that allows the development
and execution of multi-tenant applications. Our work however
proposes a more generic approach by introducing native multi-
tenancy support directly into commonly used middleware
components, more precisely into ESB and SCE solutions
that are compliant with the JBI specification. In [11] the
authors introduce an architecture for a multi-tenant middleware
platform, called WSO2 Carbon12, that enables users to run their
services and furthermore provides them an environment to build
multi-tenant applications. WSO2 Carbon provides multi-tenancy
support by appropriate adaptations to its underlying execution
engine Apache Axis213. On top of WSO2 Carbon they support
multi-tenancy at the ESB14 and SCE15 [10] level. This differs

12WSO2 Carbon: http://wso2.com/products/carbon
13Apache Axis2: http://axis.apache.org/
14WSO2 ESB: http://wso2.com/products/enterprise-service-bus/
15WSO2 Business Process Server http://wso2.com/products/

business-process-server/

from our approach since the multi-tenancy support is realized
by mitigating the tenant administration and communication on
the level of the message middleware (Apache Axis2) which
makes the approach solution specific. Thus, this method can
not be applied to other ESB and SCE solutions. The approach
presented in this paper integrates multi-tenancy independently
of any implementation specifics of the underlying ESB and
SCE solution, as it is based on the JBI specification.

The number of approaches to test and evaluate service
middleware solutions steadily grows (e.g. [24]–[27]), but most
of them are only focusing on the evaluation of services without
taking into consideration the used middleware components
and/or the underlying systems [27], [28]. Bianculli et al.
developed SOABench, a testbed generation framework which
enables the performance benchmark of service middleware solu-
tions [24], [25]. In this work, the authors state that it is important
to evaluate the performance of middleware since it provides the
runtime environment for the services and service compositions
and therefore has an huge impact on the performance of the
provisioned services and service compositions, respectively.
In [29] the authors support the assertion that the middleware
often determines the overall performance and therefore has to be
considered. Krebs et al. introduce a performance benchmark for
multi-tenant platforms [30]. To the best of our knowledge, there
exists no performance evaluation or benchmark that supports the
evaluation of multi-tenancy awareness for service middleware
so far. Since configurability is an important capability of multi-
tenant service middleware, such a benchmark also should be
able to evaluate how different configurations of the shared
middleware influence the performance of the overall solution.

VI. CONCLUSION AND FUTURE WORK

Introducing multi-tenancy on the level of service middleware
(i.e. the combination of ESB and SCE solutions required
to support composite service-based applications) allows the
provisioning of the middleware as a PaaS solution, promoting re-
source sharing and offering advantages to both service providers
and consumers. Towards this goal, we introduced a generic and
reusable multi-tenant service middleware architecture which
builds on our previous experience with enabling multi-tenancy
on the level of an ESB solution. The proposed architecture
allows for realization by multiple ESB and SCE solutions
and the potential reuse of the management aspect by many
ESB and SCE instances. Our prototypical realization of this
architecture is based on Apache ServiceMix (ESB) and Apache
ODE (SCE), resulting in the SerMidMT solution. SerMidMT also
supports (currently) three different multi-tenancy types along
the sharing/isolation spectrum. In order to demonstrate the effect
of these types we evaluated the performance of SerMidMT by
comparing the performance variation among multiple supported
process model sharing configurations of SCEMT.

In future work, we plan to investigate the capacity limi-
tations of the proposed SerMidMT solution when scaling the
amount of tenants, users, and concurrent requests under a high
load. Based on the evaluation results in this work, there is
a clear need for capacity planning, in order to find out the
workload threshold under which the service middleware is
capable of responding in an acceptable manner. Furthermore,
our prototypical realization only supports one ESBMT instance
that is coupled with one SCEMT instance in an one-to-one



manner. We therefore plan to investigate and evaluate different
clusters and association possibilities of ESBMT and SCEMT

instances in the future. In relation to this, we will work on
introducing horizontal scalability capabilities for our SerMidMT

prototype, so that we are able to provide elasticity for the two
clusters (ESB and SCE) by automatically scaling the number of
ESBMT and SCEMT instances to react dynamically on changing
workload or performance.
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