
1Institute of Architecture of Application Systems, University of Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

2Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland
cesare.pautasso@usi.ch

A conversation based approach
for modeling REST APIs

Florian Haupt1, Frank Leymann1, Cesare Pautasso2

© 2015 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{INPROC-2015-10,
author = {Florian Haupt and Frank Leymann and Cesare Pautasso},
title = {A conversation based approach for modeling REST APIs},
booktitle = {12th Working IEEE / IFIP Conference on

Software Architecture - WICSA 2015},
year = {2015},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

A conversation based approach

for modeling REST APIs

Florian Haupt, Frank Leymann

Institute of Architecture of Application Systems

University of Stuttgart

Stuttgart, Germany

{firstname.lastname}@iaas.uni-stuttgart.de

Cesare Pautasso

Faculty of Informatics

University of Lugano (USI)

Lugano, Switzerland

cesare.pautasso@usi.ch

Abstract—Conversations are a well-known concept in service

design to describe complex interactions between a client and one

or multiple services. The REST architectural style constrains the

characteristics of clients, servers and their interactions in REST

architectures which consequently has an impact on conversations

in such systems. The relation between conversations and REST

architectures and how such RESTful conversations can be

characterized has not been studied in detail yet. In this paper we

discuss the characteristics of conversations in REST

architectures and introduce an initial set of commonly used

conversation types. Based on this, we propose to use

conversations as a modeling tool for the design of REST APIs at

a higher level of abstraction. We also introduce a corresponding

interaction centric metamodel for REST APIs. The

characterization of RESTful conversations enables a new

interaction centric viewpoint on REST architectures which can

be also applied for modeling REST APIs on an abstraction level

that enables users to focus on the essential functionality of their

REST API.

Keywords—REST; Conversation; Model Driven Design

I. INTRODUCTION

Web services following the Representational State Transfer
(REST) architectural style [1] publish a set of related resources
that clients can discover following hyperlinks and interact with
according to their uniform interface. Linking resources implies
that clients will typically perform multiple interactions to
achieve their goal and bring the application to a new stable
state. It is possible to use the well-known concept of service
conversation, borrowed from messaging systems [2], to
indicate a set of basic HyperText Transfer Protocol (HTTP)
request-response interactions that are driven by the same client
interacting with one or more RESTful Web services.

In this paper we study the specific characteristics of
RESTful conversations and introduce the concept of
conversation type, which can be used to identify a set of
interactions with a predefined structure. These recurring
conversation types are commonly found in the field and go
from relatively simple indirect resource lookups, or long
running operations to more complex structures, such as the one
used with collection resources and in the Try-Confirm/Cancel
protocol for achieving atomicity in distributed transactions
involving multiple REST APIs [3]. Conversation types play

also a very useful role when modeling and describing the
interface of a RESTful Web service at a higher level of
abstraction, since, as we are going to show, they help to reduce
the amount of details that need to be specified during the
design of a RESTful API.

The rest of the paper is structured as follows. In section II
we will introduce the concept of RESTful conversations and in
section III we will show some types of such conversations.
Section IV introduces an interaction centric metamodel for
REST APIs whereas section V extends this to a conversation
centric metamodel. The transformation between these models
is discussed in section VI. Section VII gives an overview about
relevant related work and section VIII closes the paper with a
conclusion and outlook.

II. RESTFUL CONVERSATIONS

A conversation typically denotes a set of communication
activities between two or more participants. In the context of
REST we focus on the communication between a client and a
RESTful Web API, i.e. a set of resources. Conversations
between a client and a set of resources, what we call RESTful
conversation, can be characterized as follows.

There are two types of participants in a RESTful
conversation. Clients are interacting with an API to fulfill a
certain goal. Resources are the building blocks of each
RESTful Web API; they provide a uniform interface enabling
to access and modify their state. An interaction between a
client and an API may result in the creation or deletion of its
resources, or in the retrieval and update of the representation of
its resources.

The communication primitives used in a conversation are
given by the uniform interface of the REST architecture. In the
case of APIs making use of the HTTP protocol, each
communication is initiated by the client and consists of a
request followed by a response message. Together with the
resource identifier, each request message includes the HTTP
verb (e.g., GET, PUT, POST, DELETE) defining the operation
to be performed on the resource.

Each basic communication is stateless, i.e. its successful
processing by the server does not rely on any previous
communication. All relevant data, i.e. the state, is contained in
the message. The whole conversation comprising multiple

basic communication rounds may be stateful. The state of the
conversation (indicating the progress within the conversation)
is maintained and managed by the client. The course of the
conversation is determined by the client (which is responsible
for initiating the next request/response communication round
with the selected resource) but can be influenced by the server
(which may reply with one or more hyperlinks – or hypermedia
controls [4] and affordances [5] – embedded within a resource
representation or the corresponding metadata).

Resources can redirect a client interacting with them to
other resources. This characteristic follows from the Hypertext
as the Engine of Application State (HATEOAS) constraint of
the REST architectural style. As a consequence, the course (or
all possible courses) of a RESTful conversation is controlled
by the resources and dynamically discovered by the client
involved within the conversation. Whenever a client interacts
with a resource, this resource is either the starting point of a
conversation or the client has been forwarded to this resource
by following the hyperlinks embedded in the representation of
another resource.

Resource

Uniform
Interface

C
reate R

eso
u

rce

St
a

te
le

ss
C

o
m

m
u

n
ic

a
ti

o
n

s

reference

Client

Conversation
State

Resource

Uniform
Interface

Resource

Uniform
Interface

create

Link Relationships

Fig. 1. RESTful conversation

The common characteristics of RESTful conversations are
sketched in Fig. 1. To summarize, a RESTful conversation is a
conversation between a client and one or more resources. Each
basic communication is stateless and based on the uniform
interface. The course of the conversation is controlled by the
resources following the HATEOAS principle and driven by the
client that is responsible for triggering the next request-
response round and choosing the hyperlink to be followed.
During a conversation, resources may be created or deleted.

III. RESTFUL CONVERSATION TYPES

In this section we have collected four examples of RESTful
conversations that happen in practice. The goal is to show that
conversations do play an important role in non-trivial real-
world client/server exchanges and also to provide concrete

examples for the evaluation of the model driven approach
described later in the paper. The conversations are presented by
showing the sequence (or possible sequences) of
request/response communication activities listed in a log of the
HTTP interactions and also visualized using UML sequence
diagrams.

A. Redirect

This simple, but also a very fundamental conversation type
describes the communication of a client with a resource which
then redirects the client to another resource. This conversation
type realizes one level of indirection and therefore reduces
coupling.

Client R1 R2

request

response

parse & identify
relevant metadata

request

response

Fig. 2. Redirect conversation

The sequence of basic communications of a Redirect
conversation is depicted in Fig. 2. The client first sends a
request message to the resource R1. The response of R1
contains metadata redirecting the client to R2. The client reads
the response, identifies the redirecting metadata and then sends
a request to the resource R2.

GET /resource1 HTTP/1.1

HTTP/1.1 303 See Other

Location: /resource2

GET /resource1 HTTP/1.1

HTTP/1.1 200 OK

Link: </resource2>; rel=”related”

GET /resource1 HTTP/1.1

HTTP/1.1 200 OK

<html>

 …

</html>

Listing 1. Redirect examples

In HTTP based architectures there are multiple ways how
this conversation type can be realized. Some examples are
shown in Listing 1. After sending a request to the resource
“/resource1”, the response might contain the HTTP status code
“303 See Other” [6], telling the client to issue the request again
to the URL given in the “Location” header field. The resource
might also respond with a “200 OK” status code together with
a “Link” header field [7] containing the redirecting URL.
Another realization of this conversation type is to deliver a

representation of the requested resource which then contains
hyperlinks that redirect the client.

A common use case for redirect conversations are so called
home documents of REST applications. The root resource of a
REST application provides a set of links to the main resources
of the application. The client accesses the root resource, selects
an appropriate link, and then navigates to the linked resource.
A practical example for this use case is given by the GitHub
API. When accessing the root URL of the API, it provides the
client with a set of URLs (and URL templates) pointing to
resources realizing the core functionalities of GitHub, like for
example user management or repository access. An excerpt of
the home document of GitHub is shown in Listing 2.

{

 "current_user_url":

 "https://api.github.com/user",

 "repository_url":

 "https://api.github.com/repos/{owner}/{repo}",

 "team_url":

 "https://api.github.com/teams",

 "user_url":

 "https://api.github.com/users/{user}",

 "user_search_url":

"https://api.github.com/search/users?q={query}{

&page,per_page,sort,order}"

}

Listing 2. GitHub home document, excerpt from https://api.github.com/

B. Accessing Collections of Resources

Collection resources are a specific kind of resource which
acts as a container for other resources. For example, the
collection of products within a catalog, the pictures taken by a
given user, the blog posts within a given year are all collections
of resources of the same type. These resources can be listed by
querying their collection. When created, they are added to the
collection and conversely, when they are deleted they are
removed from the collection. The main interactions of a
conversation that manages a collection are shown in Fig. 3.

Client
Collection
Resource

Item
Resource

add

created

create

request

response

Fig. 3. Collection management conversation

The standard ATOMPUB protocol [8] defines how clients
may perform such operations (addition, removal and
enumeration) of entries within a collection. In ATOMPUB
collections are named feeds, since the entries are considered

with a temporal order, but the approach can be
generalized/abstracted as in the following example
conversations. An example for collection management using
ATOMPUB is shown in Listing 3. A new entry is added to a
collection. When a representation of the new entry is retrieved,
a link to update it is provided (edit link relation). The link is
followed by the client which updates the entry with a PUT
request.

POST /blog HTTP/1.1

Content-Type: application/atom+xml;type=entry

Slug: my post

HTTP/1.1 201 Created

Location: /blog/my-post

<entry xmlns="http://www.w3.org/2005/Atom">

 <link rel="edit" href="/blog/my-post" />

</entry>

PUT /blog/my-post HTTP/1.1

HTTP/1.1 204 No Content

Listing 3. ATOMPUB entry creation and modification

For very large collections, it may be impractical for a
service to return the entire index in a single
response/representation. Thus clients may have to engage in a
conversation with the service to retrieve the index and locate
the resources within the collection they are interested in. As
shown in Listing 4, the partial representation of a large
collection will embed hyperlinks to the first, last as well as the
next/previous set of entries. This way, clients can determine
when they have scanned the entire collection and incrementally
retrieve a manageable amount of entries.

GET /blog HTTP/1.1

<feed xmlns="http://www.w3.org/2005/Atom">

 <link rel="first" href="/blog" />

 <link rel="next" href="/blog/2" />

 <link rel="last" href="/blog/10" />

</feed>

GET /blog/2 HTTP/1.1

<feed xmlns="http://www.w3.org/2005/Atom">

 <link rel="first" href="/blog" />

 <link rel="prev" href="/blog" />

 <link rel="next" href="/blog/3" />

 <link rel="last" href="/blog/10" />

</feed>

Listing 4. Atompub large collection traversal

C. Try-Confirm-Cancel

The Try-Confirm-Cancel (TCC) pattern is used to design
RESTful Web services that can participate in distributed
atomic transactions [3]. Clients using them may temporarily
change the state of a resource, e.g., when performing a booking
request, and only later confirm the state transition, e.g., when
all reservations have been successfully made. The TCC
approach to distributed atomic transactions assumes that the
resources that have been temporarily reserved will
autonomously revert back to their original state, unless they are
confirmed within a given timeframe. This way, if the client
does not initiate the confirmation round the atomicity of the

distributed transaction will be guaranteed. Once the client
begins the confirmation, it should use idempotent interactions
that can be retried as many times as it is necessary to confirm
all participant resources.

A TCC distributed atomic transaction between multiple
resources can be also seen as a conversation involving a client
interacting with multiple participant services that will first
provide the client with a hyperlink referring to the temporary
reservation resource and later receive either a confirmation
(PUT) or cancellation (DELETE) request addressed to the
same reservation resource. An example is shown in Listing 5.
Participants that have independently timed-out will respond
with a 404 status code, while if the confirmation is successful
they will respond with 200.

Try POST /booking HTTP/1.1

 HTTP/1.1 302 Found

 Link: /booking/A; rel=”tcc”

Confirm PUT /booking/A HTTP/1.1

 HTTP/1.1 200 OK

Cancel DELETE /booking/A HTTP/1.1

 HTTP/1.1 204 No Content

Confirm after timeout PUT /booking/A HTTP/1.1

 HTTP/1.1 404 Not Found

Cancel after timeout DELETE /booking/A HTTP/1.1

 HTTP/1.1 404 Not Found

Listing 5. Try (POST) Confirm (PUT) Cancel (DELETE), including timeout

D. Long running Requests

In some scenarios it may be disadvantageous for clients to
wait for their requests to be completely processed by the
service since this may block their processing. It may also
happen that a service is busy when the request arrives and it
may want to delay its processing without keeping the client
waiting for a potentially long time. To avoid dealing with
network timeouts, which may occur for clients that wait for too
long, it is possible to use the conversation shown in Listing 6.

The client sends the original request to the “job manager”
resource, carrying a payload with the input data to be
processed. The server will accept the request and respond
immediately with a hyperlink referring to the “job resource”
that the client can use to track the progress of the request. The
client will periodically poll the given resource with a GET
request, whose response will determine if the long running
request has been completed. If the response is 200, the client
must repeat the same request again; if the response is 303 the
client will be redirected to another resource whose
representation will contain the results of the long running
request. Thus the client will follow the hyperlink and perform
one last GET request to retrieve the output data.

As with every background form of processing, carried out
asynchronously by the service, it is possible for clients to
cancel it by issuing a DELETE request on the job resource

identifier. Similarly, clients that have successfully retrieved the
final results may want to DELETE them from the service.

Send request POST /job HTTP/1.1

 HTTP/1.1 202 Accepted

 Content-Location: /job/20150112

Polling GET /job/20150112 HTTP/1.1

 HTTP/1.1 200 OK

 GET /job/20150112 HTTP/1.1

 HTTP/1.1 303 See Other

 Location: /job/20150112/output

Read result GET /job/20150112/output HTTP/1.1

 HTTP/1.1 200 OK

Cancellation DELETE /job/20150112 HTTP/1.1

 HTTP/1.1 204 No Content

Cleanup DELETE /job/20150112/output HTTP/1.1

 HTTP/1.1 204 No Content

Listing 6. Long running requests (with cancellation and cleanup)

This conversation thus covers the whole lifecycle of a long
running request, from its creation to its completion and cleanup
or cancellation. The main interactions of the conversation are
summarized in Fig. 4. All aspects of the long running request
(the request itself, its progress status, its results) are turned into
a resource that the client can discover by following hyperlinks
and interact with using the HTTP uniform interface.

Client
Manager
Resource

Job
Resource

request

accepted

query

response

create

request

response

while

no result available Result
Resource

create
opt

result available

Fig. 4. Long running request conversation

POST /{AccountId}/vaults/

 {VaultName}/jobs

GET /{AccountId}/vaults/

 {VaultName}/jobs/{JobID}

GET /{AccountId}/vaults/

 {VaultName}/jobs/{JobID}/output

Listing 7. AWS Glacier job management requests

A real world example for a long running request
conversation can be found in the AWS Glacier REST API1.
Glacier is a cloud service for storing infrequently used “cold”
data. Retrieving data archived in Glacier typically takes around

1 http://docs.aws.amazon.com/amazonglacier/latest/dev/job-operations.html

3-5 hours2 and is therefore realized as a long running request
conversation. The interactions used for a data retrieval request
are sketched in Listing 7.

IV. AN INTERACTION CENTRIC METAMODEL FOR REST APIS

After discussing conversations in context of REST and
introducing some RESTful conversation types in the previous
sections, here we aim at applying conversation types for
modeling REST APIs. In this section, we will introduce the
basics of REST API modeling and motivate the idea to use
conversation types as modeling tool for REST APIs.

The design and realization of REST APIs is a challenging
task. There have been several studies conducted that show that
most APIs calling themselves RESTful are in fact not
[9][10][11]. The violation of constraints that define the REST
architectural style in most cases leads to APIs that miss some
of the desired quality attributes of REST compliant APIs like
cacheability, scalability or loose coupling. As a consequence,
new methods and techniques are needed that help service
designers and developers to create REST compliant APIs.

Domain Model

Composite

Resource Model

Atomic

Resource Model

URL Model

Java

Code

Java

Code

Java

Code

JAX-RS

Application Model

JAX-RS

Application Model

JAX-RS

Application Model

WADL

Service Description

WADL

Service Description

WADL

Service Description

model-to-model

transformation

code generation

model reference

Fig. 5. Metamodel for MDSD based design and creation of REST APIs [12]

Our approach to ease the creation of RESTful APIs has
been proposed in [12]. The main idea is to follow a model
driven software design (MDSD) approach for the design and
realization of REST APIs. The approach is based on a set of
metamodels shown in Fig. 5. As a starting point a service
designer can model a service in a domain specific and REST
independent way (Domain Model). The domain model can then
automatically be transformed into a resource model which can
afterwards be refined and customized by the service designer.
Alternatively, a service designer can also start modeling the
resource model without providing a domain model. For the
resource modeling, two different models have been defined, the

2 http://aws.amazon.com/glacier/

Atomic Resource Model and the Composite Resource Model
(we will discuss them soon).

One important difference between the metamodel described
in [12] and already existing metamodels for REST APIs is that
the resource models in [12] do not specify any URLs. The
definition of a URL structure for the resource model is
contained in a separate model, the URL Model. Following this
modeling approach, the definition of the resource model as
well as the documentation of the modeled REST API generated
from the model do only specify links between resources, but no
specific URLs. Linking resources and then navigating through
an API based on links realizes the HATEOAS constraint of the
REST architectural style, an important feature to achieve loose
coupling between client and server and also to enable the
description of many conversation types.

The atomic resource model allows describing a REST API
based on its fundamental (atomic) ingredients, like resources,
methods or representations. The idea of the composite resource
model is to allow aggregating (composing) multiple elements
of the atomic resource model into new and coarser grained
modeling constructs to enable modeling on a higher level of
abstraction. In the following, we will extend and refine the
work of [12] by introducing an interaction centric metamodel
as atomic resource model as well as a conversation centric
metamodel as composite resource model.

The interaction centric metamodel is shown in Fig. 6 as
UML class diagram. The interaction centric metamodel
comprises only the white elements, the red elements are part of
the conversation centric metamodel extension that will be
discussed later. One core entity of the metamodel is the
Resource. A resource can have a name and be marked as being
an entry resource. Entry resources are the starting point for
interacting with a REST API, there has to be at least one entry
resource defined for each API. The URLs of entry resources
are supposed to be well known to all clients of an API, which
then use these resources as a starting point to navigate through
the API. Most REST APIs define exactly one entry resource,
often called the root resource.

Each resource can support interactions based on any of the
methods defined by HTTP, which are all (except CONNECT
and TRACE) defined as separate entities in the metamodel.
Interactions using these methods have some common
characteristics but also some fundamental differences, the
metamodel therefore defines a corresponding inheritance
hierarchy. All interactions are derived from the common
superclass InteractionBase. The HEAD and OPTIONS
interactions are direct children of this class. Both methods do
not support any request or response entity: request and
response messages consist only of a HTTP header without any
body. For all other methods (GET, PUT, POST, DELETE) the
response message may contain an entity representation,
represented by the InteractionWithResponseEntity class. Each
interaction supporting a payload in the response message refers
to one or multiple representations it supports. Each
representation is of a specific MediaType and can be associated
with a Schema describing its structure (e.g. an XML/JSON
schema document) and an Example showing how a
representation may look like (e.g. a JSON or XML document).

Interactions based on PUT and POST do not only support to
receive a response entity but also to send a request entity. The
InteractionWithRequestAndResponseEntity class indicates this
with the reference to the representations for the request.

The metamodel described so far allows for modeling
resources together with the interactions they support. Another
feature at least as important is the interconnection between
related resources. Sending a POST request to a resource may
result in the creation of another resource. Sending a GET
request to a resource may return data that can be used to access
other resources, typically by following hyperlinks. The
relationship between two resources, e.g. that one resource can
be used to create another resource or that the representation
provided by one resource allows addressing another resource,
must be realized by clients that interact with the source
resource of the relationship within a conversation. Therefore, in
our metamodel each interaction may be connected with a
Relationship. The base relationship types defined in the
metamodel are Navigation and Creation. Each relationship
points to a resource which is the target of the relationship. The
Grounding class can be used to provide additional information

about how a relationship is realized. The conversation
involving the navigation from one resource to another may be
realized by sending a “303 See Other” status code, by using the
Link header or by providing links in the representation sent in
the body of the message (see also Listing 1). A grounding is
specified by defining the GroundingType together with a
specification, giving additional details for the selected
grounding type, for example the name of the relevant header
field. If the grounding is of the type “Body” then it is
connected to the representations it refers to.

To demonstrate the application of our metamodel, Fig. 7
shows a model of a simple REST API supporting a collection
conversation as introduced in section III B and also shown in
Listing 3. Each interaction with the API starts at the MyAPI
resource, the root (entry) resource of the API. A GET
interaction (G1) with this resource returns a response in XML
representation (RP1) which enables navigating (R1) to the Blog
resource. The corresponding grounding (GR1) specifies that
the hyperlink to the Blog resource is provided using a Link
header. The Blog resource supports two interactions. The GET
interaction (G2) returns an ATOMPUB representation (RP4)

Fig. 6. Interaction centric Metamodel for REST APIs with conversation centric extension

(elements of the conversation centric metamodel are highlighted)

Fig. 7. Modeling a collection, interaction level

Resource

+name: String
+isEntry: Boolean

GET

PUT

DELETE

HEAD

POST

InteractionWithResponseEntity

InteractionBase

InteractionWithRequestAndResponseEntity
Representation

+MediaType

Schema

Example

0..1

0..1

+request1..*

+response

1..*

OPTIONS
0..1

0..1

0..1

0..1

0..1

0..*

Relationship

+target

+enables0..*

Navigation

Creation

0..*
Grounding

+type: GroundingTypes
+specification: String

0..1

«enumeration»
GroundingTypes

Header
Body
Status Collection

TCC

LongRunningRequest

1

0..*

Redirection

Blog: Resource BlogPost: ResourceP1: POST

RP3: Representation

MediaType = application/atom+xml;type=entry

+response R2: Navigation

GR2: Grounding

type = Status
specification = "201 Created"

R3: Creation

RP2: Representation

MediaType = application/atom+xml;type=entry

+request

MyAPI: Resource

isEntry = true
G1: GET R1: Navigation

GR1: Grounding

type = Header
specification = "Link"

RP1: Representation

MediaType = application/xml

+response

RP4: Representation

MediaType = application/atom+xml

G2: GET

+response

R4: Navigation

GR3: Grounding

type = Body
specification = //entry/link

and thereby enables navigating (R4) to the BlogPost resource.
The grounding (GR3) contains an XPath expression that
specifies where in the representation of the Blog resource the
hyperlinks for navigating to the BlogPost resources are
contained. The second interaction supported by the Blog
resources is a POST interaction (P1) enabling to create (R3) a
BlogPost resource as well as to navigate (R2) to the created
resource. The POST interaction can process ATOMPUB Entry
Feed representations (RP2) and also returns the same type of
representation (RP3). Navigating to a newly created resource is
realized, as defined in the corresponding grounding (GR2), by
returning a status code of “201 Created” which in turn means
that there will also be a Location header containing a hyperlink
to the created resource.

The interaction centric metamodel for REST APIs
introduced in this section is defined as part of a model driven
approach for creating REST APIs. The final goal of model
driven software design is the ability to generate executable
code out of a model of an application. The level of detail
shown in our metamodel is required to achieve this goal while
keeping flexibility for the modeler. A major drawback is, as
seen in the example model shown in Fig. 7, that models soon
become too complex and thus incomprehensible, a potential
source for modeling errors. This altogether leads to the
requirement for raising the modeling approach to a higher
abstraction level, providing less but more powerful modeling
constructs that ease modeling, improve intelligibility and hide
repetitive details. In the following section, we will show how
we do so by using RESTful conversation types.

V. MODELING REST APIS BASED ON CONVERSATIONS

Modeling a REST API has been so far described as the task
of identifying the set of resources the API shall provide, how
they are interconnected and which interactions each resource
supports. However, if we broaden this perspective, we can also
describe modeling as the task of identifying which
conversation types a REST API shall support. Doing so, we are
able to push the modeling task to a higher level of abstraction.
As already demonstrated in section III, supporting a
conversation in most cases comprises multiple resources and
interactions. Therefore, when modeling in terms of
conversations instead of modeling single resources and their
basic interactions, the modeler of a REST API can focus on
higher level capabilities of a REST API (“what conversations
do I want to support”) instead of lower level design details
(“how do I support the conversations”).

Interaction-centric

Metamodel

(Atomic Resource Model)

Conversation-centric

Metamodel

(Composite Resource Model)

High Level Model Low Level Model
transformation

instance of instance of

extends

Fig. 8. Modeling approach summary

The main idea of the modeling approach introduced in this
section is summarized in Fig. 8. By introducing conversations
as modeling elements we allow for the creation of models on a

high level of abstraction (high level model) which are instances
of the conversation centric metamodel. The conversation
centric metamodel is an extension of the interaction centric
metamodel. High level models can be transformed into low
level models which are instances of the interaction centric
metamodel.

The example shown in Fig. 7 models a REST API
supporting a collection conversation. The model comprises
resources together with their supported interactions, which
altogether enables the API to participate in a collection
conversation. When switching from an interaction centric
modeling approach to a conversation centric modeling
approach, the model becomes far less complex as the
corresponding example in Fig. 9 shows. In this model, we
describe on a higher level that the MyAPI resource supports a
collection conversation for a collection of BlogPost resources.
Any details about the inner structure of the conversation like
which additional resources are involved and which interactions
are needed are hidden.

MyAPI: Resource

isEntry = true
BlogPost: ResourceBlog: Collection

Fig. 9. Modeling a collection, conversation level

To enable modeling a REST API using conversations, we
require a corresponding metamodel. In the example shown in
Fig. 9 the modeling element Blog of the type Collection does
not comply with the existing interaction centric metamodel.
The model shown is a mix of known modeling elements as
well as new, conversation specific modeling elements.
Although we introduce conversation support as modeling
construct we still need the ability to model, as before, resources
and their interactions in disaggregated form. Parts of a REST
API can be modeled using conversations whenever applicable,
but it is always possible to resort to the basic elements of the
interaction-based metamodel.

The extension of our interaction centric metamodel to also
support conversation centric modeling is shown in Fig. 6. The
conversation centric metamodel comprises both, the white
elements of the original interaction centric metamodel as well
the red extension elements. The Collection conversation is
directly associated to a resource. A resource can support
multiple collections and a collection points to exactly one
resource (the resource the collection manages). Although a
collection describes a relationship between two resources, it is
not associated to any interaction (unless the Navigation and
Creation relationships). In case of a collection conversation,
the involved interactions are hidden by the high level modeling
constructs. The Try-Confirm-Cancel (TCC) conversation
extends the metamodel as a subclass of the Creation
relationship. TCC describes the creation of resources, but as a
tentative action that has to be confirmed, cancelled or that
automatically times out. The LongRunningRequest
conversation extends the metamodel as a specialization of a
POST interaction. As POST interactions describe data
processing requests in general, the long running request
conversation is used for such requests that cannot (or should
not) return an immediate response.

The transformation of conversation centric models, like the
one shown in Fig. 9, into interaction centric models, like shown
in Fig. 7, is an important part in our overall modeling approach
that has not been discussed so far. In the following section we
will introduce our template-based approach for this
transformation.

VI. TEMPLATES AND THEIR EXPANSION

By introducing the conversation centric metamodel for
REST APIs we enable service designers to create less complex
and more understandable models on a higher level of
abstraction (conversations instead of interactions). However, to
integrate this metamodel into our model driven software
development approach [12], we need to be able to transform
conversation centric models into interaction centric models. In
the following we will call this transformation an expansion, as
it in general replaces a single modeling element by a set (or
graph) of interconnected elements. One important aspect when
designing this expansion is the observation, that there are
typically multiple expansions possible for the same
conversation. In section III we introduced some RESTful
conversation types. For the Redirect conversation type we
showed different ways to realize it (see Listing 1). The same
applies for the Collections conversation type. The example
shown in Listing 3 realizes collection management based on
the ATOMPUB standard. However, it might have also been
possible to realize the same conversation based on the
Collection+JSON media type [13] or by using the XLink
standard [14].

In this section we introduce the concept of Templates as a
means to describe the expansion between the conversation
centric and interaction centric metamodel. A template
comprises all that is needed to transform a conversation type
modeled in the high level model into a set of resources and
interactions that realize this conversation. As there are in
general multiple of such expansions possible, a template
includes all these alternatives and also provides the possibility
to select one of the applicable expansions.

Template

Expansion

1..*

ConversationType
+appliesTo

1

Precondition
0..*

Feature

+optional: boolean0..*

Implementation

1

Fig. 10. Metamodel for templates

A formal description of the structure of a template is shown
in Fig. 10 as UML class diagram. The transformation from
elements of a conversation centric model into an interaction
centric model is realized by an Implementation (which may be
a piece of code, a XSLT stylesheet, graph grammar rules or
any other artifact that implements the model transformation).

The Expansion attaches additional information to an
implementation, namely its Features as well as the
Preconditions for its applicability. The Template in turn is a
container for a set of expansions that all apply to the same
Conversation Type, i.e. they all result in models supporting the
same conversation type. The most important parts of the
template are the Preconditions and Features each expansion
may be associated with. In the following, we will discuss them
in more detail.

A. Expansion Preconditions

One reason for having multiple expansions for the same
conversation is that they might not always be applicable in all
cases. An example for this is given by the Redirect
conversation type and the example shown in Listing 1. If a
redirection is realized by sending a corresponding status code
like “303 See Other”, there is exactly one target for the
redirection. When realizing a redirection using the Link header
it is however possible to include one or more hyperlinks, i.e.
the redirection can have multiple (maybe alternative) targets to
be selected by the client. Given that, a precondition for an
expansion that realizes a redirection by sending appropriate
status codes is that the redirection has exactly one target. In
contrast, expansions realizing the redirection based on the Link
header or based on hyperlinks in the representation would not
be associated with this precondition.

T1: Template

RE: Redirection

+appliesTo E1: Expansion

E2: Expansion

E3: Expansion

I1: Implementation

I2: Implementation

I3: Implementation

SingleTarget: Precondition

StatusCode303: Feature

LinkHeader: Feature

HyperlinkInRepresentation: Feature

Fig. 11. Template for redirect conversation type

The general structure of the template for the Redirect
conversation type is shown in Fig. 11. The template T1 refers
to the Redirection element which is part of the extended
metamodel shown in Fig. 6. The template defines three
expansions that correspond to the examples shown in Listing 1.
As discussed before, the expansion based on using status codes
for redirection is associated with a Precondition whereas the
other expansions are not.

B. Expansion Features

Whereas the concept of preconditions is needed to
determine which expansions are applicable at all, features can
be used to select and configure one of multiple applicable
expansions. In case of the redirection conversation and as
shown in Fig. 11, the expansion realizing the redirection using
the Link header may be associated with the feature “Link
header” and the expansion realizing the redirection based on
status code may be associated with the feature “status code

303” (the “status code 303” feature includes that the Location
header contains the redirecting link, this is already set by the
HTTP specification and therefore not modeled as a separate
feature like the “Link header”). During the application of a
transformation the information given by the features may then
be used to select one of multiple applicable expansions.

As shown in the template metamodel in Fig. 10, features
may also be marked as being optional. When applying an
expansion with optional features, these features can be
activated or deactivated and thereby configure the way the
expansion is performed. The example of a collection
management conversation shown in Listing 3 is realized based
on the ATOMPUB standard, which can be described as a
feature of the expansion. The same expansion may in addition
realize the collection conversation using the Collection+JSON
media type, enabling a client to decide by content negotiation
which representation it wants to access. These two different
representations for collections, ATOMPUB and
Collection+JSON, can be described as optional features. The
structure of the corresponding template is shown in Fig. 12.
When applying the template, it can be selected if either both
representations or only one of them should be generated.

T1: Template

C: Collection
+appliesTo

E1: Expansion

E2: Expansion

I1: Implementation

I2: Implementation

ATOMPUB: Feature

optional = true

Collection+JSON: Feature

optional = true

Fig. 12. Template for collection management conversation type

C. Applying Templates

After introducing the general structure of templates and
giving some examples, we will now shortly discuss how
templates are applied to a conversation centric model of a
REST API. As described in the metamodel for templates (Fig.
10), a template applies to exactly one conversation type. In
addition we assume that there exists exactly one template
defined for each conversation type.

For each conversation type that occurs in the model of a
REST API, the corresponding template is selected. In the first
step, the preconditions for each of the expansions of the
template are evaluated. Expansions with unfulfilled
preconditions are discarded. In the second step, one of the
remaining expansions has to be chosen. The decision can be
based on the set of features provided by each expansion; the
decision can be made by a human user or by any selection
criteria. After an expansion has been selected, it has to be
checked if there are any optional features associated with it.
For each optional feature it has to be defined, if the feature
shall be realized by the expansion or not. In the last step, the
implementation for the selected expansion is retrieved and
applied to the model. The decision about optional features that
shall be realized by the expansion is passed to the
implementation of the expansion as input parameters.

D. Realizing Expansions

For the realization of the expansions we use attributed
graph grammars [15], a mature and well-understood technique
often used for model transformations [16]. Attributed graph
grammars define graph transformations as replacements rules
based on typed graphs. Before the rules of an attributed graph
grammar can be defined, a type graph has to be created
representing the element types that may be part of a graph. In
our work, the type graph corresponds to the metamodel shown
in Fig. 6. Afterwards, for each expansion an associated graph
grammar rule has to be defined. We use the AGG tool3 for
defining and executing the graph transformation rules. AGG
allows for graphical modeling of both, the type graph as well as
the transformation rules. Another advantage of AGG is that it
already allows the definition of preconditions that can be
associated with transformation rules, a convenient way to
realize preconditions associated with expansions.

VII. RELATED WORK

Thanks to hypermedia and the uniform interface (e.g.,
idempotent receiver semantics are implicitly given), applying
conversations to REST gives an elegant solution to some of the
conversation description challenges identified by [17], where
the importance of conversations and the need for services to
describe the supported conversation types was originally
discussed in the context of messaging middleware. A good
starting point showing how conversations were introduced for
traditional WSDL-based services is [18], where the authors
develop the concept starting from a survey of e-commerce Web
portals, which were however analyzed abstracting away the
underlying HTTP interactions. More recently, the need for an
architecture-centric approach to deal with the complexity of
consistently configuring message-based service systems was
illustrated in [19]. The authors define a message-centric
extension for the xADL architectural description language and
describe how to generate the corresponding message routing
configuration for the specific message bus.

Model driven service engineering for RESTful APIs has
been introduced in [20] defining an extensive metamodel
comprising structural as well as behavioral aspects. The
applicability of UML for the model driven development of
REST APIs is demonstrated in [21]. The authors present a
modeling approach tightly integrated with UML that is based
on a REST specific UML profile and is tailored to Java EE
environments. A complementary work on model driven
development for REST is presented in [22], proposing an
iterative approach for defining and improving model
transformations. In addition to model driven approaches for
REST APIs there has been developed several description
languages for REST APIs. The Web Application Description
Language (WADL) [23] has been developed as the REST
counterpart to the Web Services Description Language
(WSDL) [24] but has never been significantly adopted in
practice. Current state of the art approaches for describing
REST APIs include the RESTful API Modeling Language
RAML4 dedicated to a technical description approach and

3 http://user.cs.tu-berlin.de/~gragra/agg/index.html

4 http://raml.org/spec.html

Swagger5 which enables the automated generation of user
friendly API documentation.

VIII. CONCLUSION AND FUTURE WORK

This paper introduced the concept of RESTful
conversations, whereby multiple request/response interactions
of one client with one or more resources published by various
RESTful Web APIs are considered as a whole. RESTful
conversations emerge from the navigation of a client within a
Web of hypermedia relationships. Clients drive forward the
progress of the conversation by issuing additional request
messages, while services may influence the course taken by the
client by embedding hyperlinks to related resources in the
representations sent as part of the responses. Some
conversations have a regular structure, which can be abstracted
into a conversation type. In this paper we have collected four
real-world conversation types, which can be realized with
different concrete HTTP request-response interactions.

The main contribution of this paper lies in the use of
RESTful conversations for modeling purposes. In particular,
the description and specification of a RESTful Web API can be
greatly simplified by using conversations. The second part of
this paper shows how a model driven approach for describing
and realizing RESTful Web APIs can be extended to support
conversations. This way, the abstraction level of the service
descriptions is raised, the corresponding model gets
significantly simplified and the modeler of a REST API can
focus on higher-level capabilities of a REST API (“what
conversations do I want to support”) instead of lower level
design details (“how do I support the conversations”). The
conversation centric model can then be automatically expanded
into a fine-grained and interaction centric model using graph
transformation techniques. The generated model will be further
refined and extended to drive the code generator to build a
service that can participate in different types of RESTful
conversations.

The work on RESTful conversations presented in this paper
assumes one client interacting with one REST API. For future
work this might be extended to also cover scenarios comprising
multiple clients as well as conversations including multiple
REST APIs. Another aspect that can be elaborated in addition
is the use of callback mechanisms as part of a conversation.
The question on how to model APIs which combine together
multiple basic conversation types also remains open. The
conversation type examples shown in this paper can be used as
a starting point for creating an extensive collection of
conversation types supported by todays REST APIs. It would
be interesting to investigate if such a collection can serve as a
first step towards a (RESTful) conversation pattern language.

ACKNOWLEDGMENT

The authors would like to thank Gregor Hohpe, Silvia
Schreier, and Guy Pardon for their valuable feedback.

5 http://swagger.io/

REFERENCES

[1] R.T. Fielding and R.N. Taylor, “Principled design of the modern Web
architecture”, ACM Trans. Internet Technol. 2, May 2002: 115-150.

[2] G. Hohpe and B. Woolf, “Enterprise integration patterns: Designing,
building, and deploying messaging solutions”, Addison-Wesley
Professional, 2004.

[3] G. Pardon and C. Pautasso, "Atomic Distributed Transactions: a
RESTful Design", WS-REST, 2014.

[4] J. Webber, S. Parastatidis and I. Robinson, “REST in Practice”,
O’Reilly, 2010.

[5] R. Verborgh, M. Hausenblas, T. Steiner, E. Mannens, and R. van de
Walle, "Distributed affordance: An open-world assumption for
hypermedia", WS-REST, 2013.

[6] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content”, RFC 7231, 2014,
http://www.ietf.org/rfc/rfc7231.txt.

[7] M. Nottingham, “Web Linking”, RFC 5988, 2010,
http://www.ietf.org/rfc/rfc5988.txt.

[8] J. Gregorio and B. de Hora, “The Atom Publishing Protocol”, RFC
5023, 2007, http://www.ietf.org/rfc/rfc5023.txt.

[9] D. Renzel, P. Schlebusch, and R. Klamma, “Today’s top ‘RESTful’
services and why they are not RESTful”, WISE, 2012.

[10] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web apis
on the world wide web”, ECOWS, 2010.

[11] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, "REST and
Web services: In theory and in practice", REST: from Research to
Practice, Springer New York, 2011.

[12] F. Haupt, D. Karastoyanova, F. Leymann, and B. Schroth, “A model-
driven approach for REST compliant services”, ICWS, 2014.

[13] M. Amundsen, “Application/vnd.collection+json”, IANA Media Type
Registration, https://www.iana.org/assignments/media-
types/application/vnd.collection+json

[14] S. DeRose, E. Maler, D. Orchard and N. Walsh, “XML Linking
Language (XLink) Version 1.1”, W3C Recommendation,
http://www.w3.org/TR/xlink11/.

[15] G. Rozenberg and H. Ehrig, “Handbook of graph grammars and
computing by graph transformation”, World Scientific Publishing
Company, 1999.

[16] H. Ehrig, U. Prange, and G. Taentzer, "Fundamental theory for typed
attributed graph transformation", Graph transformations, Springer Berlin
Heidelberg, 2004. 161-177.

[17] G. Hohpe, "Let's have a conversation", Internet Computing, IEEE 11.3
(2007): 78-81.

[18] B. Benatallah, F. Casati, and F. Toumani, "Web service conversation
modeling: A cornerstone for e-business automation", Internet
Computing, IEEE 8.1 (2004): 46-54.

[19] C. Dorn, P. Waibel, and S. Dustdar, "Architecture-Centric Design of
Complex Message-Based Service Systems", Service-Oriented
Computing, Springer Berlin Heidelberg, 2014. 184-198.

[20] S. Schreier, "Modeling RESTful applications", Proceedings of the
Second International Workshop on RESTful Design. ACM, 2011.

[21] R.V.V. Sanchez, R.R. de Oliveira, and R. Pontin de Mattos Fortes,
"RestML: Modeling RESTful Web Services", REST: Advanced
Research Topics and Practical Applications. Springer New York, 2014.

[22] M. Siikarla, M. Laitkorpi, P. Selonen, and T. Systä, "Transformations
have to be developed ReST assured", Theory and Practice of Model
Transformations , Springer Berlin Heidelberg, 2008.

[23] M. Hadley, “Web Application Description Language”, W3C Member
Submission, http://www.w3.org/Submission/wadl/.

[24] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
Services Description Language (WSDL) 1.1”, W3C Note,
http://www.w3.org/TR/wsdl

All links were last followed on 27.02.2015

