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Abstract—Reuse of service orchestrations or service com-
positions is extensively studied in the literature of process
modeling. Sub-processes, process templates, process variants,
and process reference models are employed as reusable ele-
ments for these purposes. The concept of process fragments
has been previously introduced in order to capture parts of
a process model and store them for later reuse. However,
similar efforts on facilitating the reuse of processes that
cross the boundaries of organizations expressed as service
choreographies are not available yet. In this paper, we introduce
the concept of choreography fragments as reusable elements for
service choreography modeling. Choreography fragments can
be extracted from choreography models, adapted, stored, and
later inserted into new models. Based on a formal model for
choreography fragments, we define methods and algorithms
for the extraction and insertion of fragments from and into
service choreographies. We then discuss an experimental and
proof-of-concept evaluation of our proposal.

I. Introduction

Existing process modeling research has already introduced
many interesting concepts and techniques enabling the reuse
of executable business process models viewed as service
orchestrations or compositions. Frequently used orchestration
logic, for instance, can be expressed during modeling time as
sub-processes to be invoked later from their “parent” process
models [1], [2]. Constructs like process templates, process
variants, and process reference models can also be used as
reusable elements for process modeling [3]. Toward this goal,
the notion of process fragments has been introduced in [4],
[5], [6] allowing to capture parts of a process model and to
store them for later (re)use. In contrast however, there is not
much existing work enabling the reuse of cross-organization
process models expressed as services choreographies.

Choreographies model the interconnection of independent
participants by showing only their publicly visible commu-
nication behavior, or protocol [7]. These participants are in
principle implemented as services or service orchestrations,
based on their public interfaces. In this context, reuse
on the level of choreographies has severe implications in
decreasing the time-to-market of such process models. If,
for example, a choreography modeler has the means to
extract the similarities from existing choreographies such
as the communication between participants, store them
as reusable fragments, and insert them when modeling a
new choreography spanning several systems, then there are

significant gains in time spent on modeling. This observation
forms the main motivation behind our work.

More specifically, in this paper we introduce the notion of
choreography fragments in order to provide the means for
reuse in choreography modeling. Choreography fragments
can be used to capture best practices and recurring patterns
in choreography models, store them in an appropriate library,
and insert them into new choreography models. Choreography
fragments can also be used for the refinement of partially
defined choreography models containing abstract constructs,
like the ones introduced in [8], to concrete choreography
models. Similar to process fragments, choreography frag-
ments can be created in either a top-down or bottom-up
manner. Top-down entails the creation of fragments through
extraction from choreography models or mining of audit trails
of interconnected processes, whereas bottom-up refers to the
manual creation of choreography fragments from scratch. In
this work, we concentrate on the top-down approach. We
base our approach on a formal model that abstracts from
the actual underlying modeling language used for service
choreographies and orchestrations.

The contribution of this work is therefore threefold. On the
one hand, we provide a formal model for choreography frag-
ments that is independent of a particular modeling language
and therefore reusable across technologies. On the other hand,
we provide a method for extracting choreography fragments
from choreography models, adapting, and storing them. The
necessary algorithms supporting this extraction are introduced.
Furthermore, we also provide a semi-automated process
of inserting already extracted choreography fragments into
choreography models enabling their reuse.

The rest of this paper is structured as follows. We first
discuss a motivating scenario (Sec. II) and provide a formal
model defining the concept of choreography fragments
(Sec. III). In Sec. IV, we introduce the fundamental concepts
and proposed methods for extracting and inserting choreog-
raphy fragments. The evaluation of the proposed concepts
is then discussed in Sec. V. Sec. VI compares our work to
related ones. Finally, we conclude our paper with a summary
and an outlook to future work in Sec. VII.

II. Motivation

In this section, we introduce a scenario to motivate the
need for choreography fragments.
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Figure 1. Motivating scenario: (a) Choreography model for ordering physical goods (b) Choreography model for ordering digital goods

Fig. 1a shows the (simplified) service orchestrations
involved in the business activities of an online retail company
that sells physical goods such as mobile phones or personal
computers to customers. The service orchestrations form a
choreography. A customer orders the goods from the web
site of the retailer and triggers the ordering process. The
ordering process asks the warehouse process about the item
availability and invokes an external credit rating provider
to assess the customers credit worthiness. Depending on
the resulting credit score, the ordering process decides if
the customer is allowed to order the items with the chosen
payment method. In case the ordering is allowed, a positive
reply is issued and a logistics provider is instructed to conduct
the delivery of the physical goods.

The online retailer might decide that besides selling
physical goods the distribution of digital goods would be
an ideal extension of its portfolio. Its IT department, or an
external consultant, now has to model and implement the
relevant business processes rapidly to seize this business
opportunity. The new choreography model in Fig. 1b shows
that some parts of the model are similar to Fig. 1a. The
interaction with the credit rating provider is still part of the
choreography as well as the interaction between the customer
and the ordering process. If a modeler had the means to
extract these similarities from the existing choreography, store
them as reusable fragments, and insert them when modeling
a new choreography spanning several systems, overall time-
to-market would decrease and choreography models would
not have to be created from scratch. Therefore, even in small-
scale choreography models like the ones discussed in Fig. 1
there exists a potential for reusability of modeling constructs
that the rest of this work aims to support.

III. FormalModel
Our notion of executable process models is oriented on

the work of [9], which is itself based on the formal model
introduced in [1]. Our definition of process fragments adopts
the formal model of [5]. Subsequently, we extend these
definitions to introduce the concepts of choreography models
and fragments. A choreography model consists of at least two
participants, i.e., process models, message links, and explicit
control flow and implicit data flow via the manipulation of
variables. Choreography models typically only show the
publicly visible communication behavior, because the details
of the workflows implementing the choreography participants
are considered sensitive information providing a competitive
advantage to business organizations. However, the granularity
of the choreography model is decided by the involved
organizations and may also allow non-communication related
activities and variables. The usually non-executable choreog-
raphy models are defined collaboratively and used to generate
abstract representations of the choreography participants in a
workflow language. The collaborating business organizations
then refine their workflow models with business logic.

Definition 1 formally specifies our understanding of
process models, which are then used as choreography
participants in a choreography model. Note that we use
the projection operator πn to access the nth element of a
tuple starting from index 1. P(X) denotes the power set of
set X including the empty set ∅. py.X accesses element X
(potentially a set) of element py.

Definition 1 (Process Model, G). A process model is a DAG
represented by the tuple G = (m,V, i, o, A, L), where m ∈ M
is the name of the process model, V is the set of variables,
i is the map of input variables, o is the map of output



variables, A is the set of activities, and L is the set of control
connectors (control flow links). Input variables providing
data to activities can be assigned using an input variable map
i : A→ P(V). Output variables to which activities may write
data to are described by the output variable map o : A →
P(V). Finally, the set of control connectors is L ⊆ A× A×C.
A link l ∈ L is a triple l = (asource, atarget, t | asource, atarget ∈

A, t ∈ C ∧ asource , atarget) connecting a source and a target
activity, while its transition condition (where C is the set
of all conditions) is evaluated during run time. An activity
astart ∈ A is called start activity if it is not the target of a
control flow link: Astart ⊆ A := {a | a ∈ A ∧ ∀l ∈ L, a , π2(l)}.

Definition 2. (Process Fragment, F). A process fragment
is a directed, acyclic graph F �F G represented by a
tuple F = (m,V, i, o, A, L). The �F operator means, that the
components of the tuple F are a subset or equal to the their
corresponding components in the process model tuple G. The
definition of a control connector l ∈ L is extended by the
concept of dangling control connectors. A dangling control
connector is a triple l = (⊥, atarget, t) or l = (asource,⊥, t),
where ⊥ is a missing (undefined) source or target activity.
Therefore, the set L of control connectors is now defined as
L ⊆ (A∪ ⊥) × (A∪ ⊥) ×C, where C is the set of transition
conditions (see Definition 1).

Based on that, we define the notion of choreography model
and choreography fragment. We adopt the concept of typed
participants and so-called participant sets from [10]:

Definition 3. (Choreography Model, C). A choreography
model is a directed, acyclic graph denoted by the tuple
C = (m, P, Pset,ML), where m ∈ M is the name of the chore-
ography model, P is the set of choreography participants, Pset

is the set containing participant sets, ML is the set containing
all message links between the choreography participants. A
choreography participant p ∈ P is a triple p = (m, type,G),
where m ∈ M is the name of the participant, type : P→ T is
the function assigning a type tp ∈ T to the participant, and G
is a process model graph as defined in Definition 1. Typing
the participant allows to express if several participants of
the same type participate in the same choreography. The
set of all participants is denoted by Pall. A participant
set pset ∈ Pset is described by pset ⊆ Pall. This modeling
construct is used to model a set of choreography participants
whose number can be determined only during execution. We
define a containment relation Rcon as Rcon : Pset → P(Pall).
Rcon indicates the participants contained in a participant
set pset. Contained participants in a participant set must
be of the same type and have the same process model graph:
∀px, py ∈ Rcon(pset) : type(px) = type(py) ∧ px.G = py.G.

The set of message links ML is denoted as
ML ⊆ (P ∪ Pset) × P × A × A ×C. A message link is a
tuple ml ∈ ML = (ps, pr, as, ar, t), where ps, pr are the
sending and receiving participants. Furthermore, ps can

be a participant set if any contained participant p in ps:
p ∈ Rcon(ps), ps ∈ π3(C) may send something. For the
sending and receiving participants the following holds:
ps , pr, i.e., the sender and the receiver must not be
identical; as ∈ π5(ps.G) and ar ∈ π5(pr.G) are the sending
and receiving activities for which the following holds:
as , ar. Sending and receiving activities must have only
one outgoing or incoming message link. These activities
are denoted as communication activities. The transition
condition t ∈ C is evaluated during run time. Choreography
participants and participant sets are only connected via
message links. However, a choreography model graph
may have disconnected components because there may be
participants or participant sets that are not connected to
other participants or participant sets via message links. Note
that the disconnection is only allowed between participants
but not between activities of a participant’s process graph.

Definition 4. (Choreography Fragment, Fc). A choreography
fragment Fc �Fc C is a directed, acyclic graph with possibly
disconnected components and is represented by a tuple
Fc = (m, P f , Pset,ML). That means that the choreography
fragment tuple components are a subset or equal to the
corresponding choreography model tuple components. A
participant p f ∈ P f is defined differently compared to the
participant in a choreography model: p f = (m, type, F), where
F is a process fragment. That means, in a choreography
fragment a participant contains a process fragment, which
can also be a process model (cf. Definition 2). The definition
of a message link ml ∈ ML is extended with the concept of
dangling message links. A dangling message link is a tuple
ml = (⊥, pr,⊥, ar, t) or ml = (ps,⊥, as,⊥, t), where ⊥ is a
missing sending participant and sending activity or a missing
receiving participant and receiving activity. The set of mes-
sage links ML in a choreography fragment Fc is defined as
ML ⊆ (P ∪ Pset ⊥) × (P∪ ⊥) × (A∪ ⊥) × (A∪ ⊥) ×C, where
C is the set of (transition) conditions. Distinct participants
may be disconnected, i.e., without message links to any
other participant in the choreography fragment. Depending
on the selection of elements that should belong to a chore-
ography fragment, activities inside participants may become
disconnected. To represent a valid choreography fragment
these disconnections must be repaired, either manually or
automatically. The only exception are activities from parallel
paths that were not connected in the original model. When
creating a choreography fragment the variables an activity
inside a participant reads from or writes to should also
be included. Therefore, all participants from the sets of
participants have to be considered: ∀p ∈ π2(Fc),∀a ∈
π5(p.F) : V f ∈ π2(p.F) ⊆ {v | i(a) ∪ o(a)}. The same
holds for all the participants contained in participant sets:
∀pset ∈ π3(Fc),∀p ∈ Rcon(pset),∀a ∈ π5(p.F) :
V f ∈ π2(p.F) ⊆ {v | i(a) ∪ o(a)}.
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IV. Extraction and Insertion of Choreography Fragments

Based on the formal definition of choreography fragments,
in the following we present a method for their extraction
and insertion from and to choreography models, respectively.
Note that our approach is independent of the granularity of
the choreography model, i.e., the choreography models to
be extracted from or inserted into may also contain business
related activities and variables besides the communication
related activities and variables. For both the extraction and
insertion the user decides which elements, public or private,
are considered.

A. Extraction

Fig. 2 shows the steps of our method for extracting
choreography fragments. First, a human user selects the
elements of a choreography model to be extracted for later
reuse (Element Selection step). The actual extraction of the
choreography fragment graph is conducted in the Extraction
step. Here, the selected elements are copied from the original
model graph to a newly created choreography fragment. We
aim to preserve a valid choreography model for each extracted
fragment in order to allow an easy graphical manipulation of
the fragment with existing tools. This means that, if logic is
extracted from a choreography participant, it is also stored in
a newly created choreography participant to preserve a valid
structure. Additionally, if previously (transitively) connected
activities in the model graph inside a choreography participant
get disconnected, we reconnect them to preserve the original
semantics of the choreography model. The results of the
Extraction step can be reviewed and changed in the Repair
step. Here, a human modeler can decide if the reconnection
of control flow was according to the modelers intention. The
choreography fragment can be adapted and enriched with
additional modeling elements in the Adaptation step. Finally,
the fragment is made persistent in the Storing step.

Algorithm 1 shows the procedure to be used in the
Extraction step. The main idea of the algorithm is the iteration
over all elements in the set S which have been manually
selected in the Selection step. Subject to the type of the
selected element, an appropriate sub-procedure is invoked
to handle the element. Note that not all sub-procedures are
shown due to space limitations. After all selected elements
have been handled appropriately, each participant located
in the choreography fragment is traversed to identify and
reconnect disconnected components in the process model
graph (Algorithm 4).

Algorithm 2 summarizes the handleActivity sub-
procedure used by Algorithm 1 for handling activities. Other

Algorithm 1: extractChoreographyFragment
1 input : Choreography Model C
2 output : Choreography Fragment Fc
3 begin
4 S ,Fc ← ∅

5 Fc ← create choreography fragment
6 π1(Fc)← π1(C) + ”Fragment”
7 S ← getSelectedElements (C)
8 foreach s ∈ S do
9 if s is an activity then

10 handleActivity (C,Fc, s)
11 end
12 else if s is a control connector then
13 handleControlConnector (C,Fc, s)
14 end
15 else if s is a ... then
16 ...
17 end
18 foreach p f ∈ π2(Fc) ∪

⋃
Rcon(π3(Fc)) do

19 reconnectLinks (originP(p f ,C), p f )
20 end
21 return Fc
22 end
23 end

Algorithm 2: handleActivity
1 input : Choreography Model C, Choreography Fragment Fc,

Activity a
2 begin
3 Activity a f ← copyParents(C,Fc, a, a)
4 Participant p f ← parentOf(Fc, a f )
5 if @ i(a)c ∈ π2(p f .F) | originV (i(a)c,C) = i(a) then
6 π2(p f .F)← π2(p f .F) ∪ deepCopy(i(a))
7 end
8 if @ o(a)c ∈ π2(p f .F) | originV (o(a)c,C) = o(a) then
9 π2(p f .F)← π2(p f .F) ∪ deepCopy(i(a))

10 end
11 end

selected elements such as variables or message links are
handled in a similar way. Note that also the variables
the activity reads from and writes to are considered in
Algorithm 2. We use a origin function for finding the original
model element of a copy in the choreography fragment.
Since an activity can only be located inside a participant,
the parent participant of a selected activity also has to be
copied into the choreography fragment if not already there.
This is achieved by Algorithm 3 (copyParents). It requires
a choreography model C, a choreography fragment Fc, an
element curr, and a selected element initial as input. As long
as the current element has a parent element, i.e., a participant
or participant set, copyParents is invoked recursively. When
the highest level of the nesting hierarchy is reached, i.e., the
current element does not have a parent element, the recursion
stops and the fragment Fc is assigned to the parent element.
Subsequently, it is checked if the current element already has



Algorithm 3: copyParents
1 input : Choreography Model C, Choreography Fragment Fc,

Element initial, Element curr
2 output : Element element
3 begin
4 Element parent ← parentOf(C, curr)
5 if parent , ∅ then
6 parent ← copyParents(C,Fc, initial, parent)
7 end
8 else
9 parent ← Fc

10 end
11 if ∃ elemc | isPartOf(elemc, parent) = true ∧

origine(elemc,C) = curr then
12 return elemc
13 end
14 else
15 Element currc = ∅
16 if initial = curr then
17 currc ← deepCopy(curr)
18 end
19 else
20 currc ← shallowCopy(curr)
21 end
22 parent + currc
23 return currc
24 end
25 end

a copy in the parent element by using the isPartOf sub-
procedure. If so, the copy is returned, otherwise a copy has to
be created, added to the parent element, and returned. The +

operator is used to express the addition of a generic element
to its appropriate set inside its parent element. In case the
current element is identical with the initial element, a deep
(full) copy is made because the element has been selected
completely, otherwise a shallow copy is made containing no
nested elements.

With the help of Algorithm 4 (reconnectLinks) each
participant included in the choreography fragment is traversed
to find graph components that have become disconnected due
to the initial selection. The main idea of the algorithm is to
reconnect disconnected components with existing or newly
created control connectors and present the changes to the
human modeler for approval or manual repair, respectively.
The algorithm requires a choreography model C, an original
participant porig

1, and a copied participant p f as input.
The algorithms starts from the set of start activities (cf.
Definition 1) of porig and traverses its process model graph
G. The traversal is conducted in a DFS manner with the help
of a stack data structure. The stack stores pairs consisting of
an activity a and a predecessor activity apre which has been
selected in the graph G. When a pair is popped from the
stack, it is evaluated if the current activity a has been marked
as selected. If not, and additionally it has not been marked

1Which is determined using the origin function originP : P f × C→ P

Algorithm 4: reconnectLinks
1 input : Choreography Model C, Participant porig, Part. p f
2 output : Participant p f
3 begin
4 foreach astart ∈ π5(porig.G) | astart ∈ Astart do
5 Stack.push((astart,⊥))
6 while Stack , ∅ do
7 Pair x← Stack.pop()
8 a← π1(x)
9 apre ← π2(x)

10 if a is selected then
11 if apre ,⊥ ∧@l ∈ π6(p f .F) | l = (apre, a, t)

then
12 L1 ← ∀ l ∈ π6(p f ) | l = (apre,⊥, t) ∧

isReachable (apre, a, originL(l,C))
13 L2 ← ∀ l ∈ π6(p f .F) | l = (⊥, a, t) ∧

isBReachable (apre, a, originL(l,C))
14 if L1 , ∅ ∧ L2 = ∅ then
15 π2(l1 ∈ L1)← a
16 mark all l ∈ L1 as affected
17 end
18 else if L1 = ∅ ∧ L2 , ∅ then
19 π1(l1 ∈ L2)← apre
20 mark all l ∈ L2 as affected
21 end
22 else if L1 , ∅ ∧ L2 , ∅ then
23 π2(l1 ∈ L1)← a
24 mark all l ∈ L1 ∪ L2 as affected
25 end
26 else
27 create l = (apre, a, t)
28 π6(p f .F)← π6(p f .F) ∪ l
29 mark l as affected
30 end
31 end
32 apre ← a
33 end
34 if a is not marked as visited then
35 mark a as visited
36 E ← outgoingLinks (porig, a)
37 foreach l ∈ E do
38 Stack.push((π2(l), apre)
39 end
40 end
41 end
42 end
43 return p f
44 end

as visited, new pairs containing the target of the current
activity’s outgoing links and the current selected predecessor
activity are pushed on the stack. If, however, the current
activity is marked as selected, it is checked if there exists
a control flow link in the choreography fragment starting
from the selected predecessor activity to the current activity.
If not, the set of outgoing dangling control connectors (L1)
of the current predecessor and the set of incoming dangling
control connectors of the current activity (L2) are calculated
that can be used to repair the disconnection. The calculation
is conducted by evaluating if there exists a path between the
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predecessor and the current activity in the original model
via the dangling control connector at hand. For this, the sub-
procedure isReachable is used to evaluate the path between
the predecessor and the current selected activity, whereas
the sub-procedure isBReachable evaluates the path starting
from the current selected activity to the predecessor activity
following the dangling control connectors in a backwards
manner. If both sets are empty, a new control connector
is created, otherwise the first control connector found in
the corresponding non-empty set is used to reconnect the
predecessor activity apre to the current selected activity a.
Subsequently, activity a becomes the new predecessor activity
apre. When a dangling link is used to reconnect activities,
its transition condition is not considered. Thus, all links
that would have been candidates for the reconnection are
marked as affected, and the user has to check them after the
extraction in the Repair step. If the transition condition is not
appropriate, the user has to manually remove or change it.
We denote this with manual repair. The algorithm terminates
when all activities in the graph have been visited.

B. Insertion

Our proposal for semi-automatically inserting a choreog-
raphy fragment into a choreography model is summarized
by Fig. 3. With the help of a graphical modeling tool, a
modeler first selects a fragment from a palette containing a
list of previously extracted fragments (Fragment Selection
step). Subsequently, the user places the desired fragment
elements onto the choreography model (Fragment Placement
step) by means of a choreography editor. This triggers the
Insertion step. If choreography fragment elements are placed
on existing elements, the user should be guided through the
insertion of activities, control connectors, and variables by
e.g., a graphical wizard indicating conflicts between already
existing model elements. The user decides about keeping
or replacing (name) conflicting elements. Furthermore, the
wizard can help to connect dangling control connectors
to other model elements or delete them. The surrounding
participant structure is discarded when inserting into an
existing participant in the choreography model. If an existing
participant already contains activities, the user indicates
the place for insertion. In case a selected participant of
a choreography fragment has attached message links, the
message links become visible when the involved counterpart
participant is also inserted into the choreography model.
Dangling message links of a participant are immediately

visible and can be connected to other participants in the
choreography model. The Fragment Placement and Insertion
step are repeated until the choreography fragment is inte-
grated into the choreography model, however, the modeler
may decide that not all parts of the choreography fragment
have to be inserted. The last step is the Adaptation step. Here
the user can alter the inserted fragment and continue with
modeling the choreography. Insertion is therefore heavily
dependent on an appropriate choreography modeling tool, as
discussed in the following.

V. Evaluation

For purposes of evaluating our proposal, and in place of an
exhaustive field evaluation, we first simulate the use of our
choreography fragment extraction method by an unskilled
choreography modeler. Subsequently, the extraction and
repair algorithms performance is measured and analyzed. The
simulation of the fragment extraction method is conducted on
an Intel(R) Core(TM) i7-3520M @ 2.90GHz system equipped
with 16 GB RAM. The “Incident Management” choreography
model published in [11] is used as the basis of this procedure.
The choreography model consists of 5 participants and 23
activities. Fragments of size 2, 4, 8, and 16 (measured in
number of included activities) are selected randomly from the
activities of the participants of the choreography model. For
each size group, 10 choreography fragments are generated.
Additionally, control flow connectors are included into the
extracted fragments in the following manner. If a selected
activity is directly connected to one of the other (randomly)
selected activities in the fragment, the connecting control flow
link is also selected for inclusion in the fragment. Otherwise,
the outgoing control flow connectors of each activity are
included into the choreography fragment with a probability
of 0.5. The randomized inclusion of activities and control flow
connectors simulates a selection by an unskilled choreography
modeler who is not aware of the semantic relations of the
activities. Furthermore, the randomization procedure selects
choreography fragments where graph components inside the
choreography participants are disconnected and have to be
reconnected by Algorithm 4.

Figure 4a shows the properties of the evaluated fragments
grouped by fragment sizes. All 40 randomly extracted
fragments were found to be structurally valid. This means that
their nesting has been preserved and all disconnections of the
process graphs inside of choreography participants have been
repaired successfully. The number of initially disconnected
process fragments increases with the fragment size. In the
group of size 2, there were only 2 initially disconnected
fragments, in the group of size 4, 5 initially disconnected
fragments, and in the groups of size 8 and 16 all extracted
fragments were initially disconnected. The group of fragment
size 2 had no fragments that had to be manually repaired, in
the group of fragment size 4 and size 8, 2 fragments required
manual intervention, and in the group of fragment size 16,
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Figure 5. Extraction algorithm performance evaluation results

7 fragments had to be manually altered. The increase of
fragments to be repaired can be attributed to the increasing
number of activities in them, and especially to the number of
control flow connectors in each choreography fragment. This
becomes visible better when considering Fig. 4b showing the
average number of randomly selected control flow connectors
in each fragment size group and the average number of links
that had to be manually checked. In the group of size 16, an
average of 14.7 control flow connectors per fragment have
been selected. In this group, it is more likely that dangling
control flow connectors are part of the selection that are
connected to other selected activities to repair a disconnection.
Overall, roughly 25% of the randomly selected fragments
had to be manually repaired; however, only one link per
fragment on average was affected in each case.

Fig. 5 shows the performance evaluation of our extraction
algorithm in terms of execution time. The measurements
were conducted on the same system as described above.
Since the size of the previously used choreography model
is not big enough to meaningfully measure execution time,
we generated 7 choreography models (essentially, connected
graphs) consisting of one participant and a set of connected

activities, ranging from 1000 to 40000 activities. We mea-
sured the performance of our extraction algorithm in two
cases: a) the choreography participant is selected, and thus,
all of its nested activities and control flow connectors are
selected too, and b) a randomly chosen set of activities
in the four quantiles are selected. In the latter case no
control flow connectors are selected in order to enforce the
reconnection of activities by the algorithm. As it can be seen
from Fig. 5, the computational complexity of our algorithm
is quadratic, however, the number of disconnections increases
in the quantiles, and this in turn increases the execution time.

With respect to evaluating our insertion method, we
rely on a proof-of-concept implementation as part of a
choreography designer based on the Eclipse IDE. Fig. 6
shows the realization of our choreography modeling tool,
the ChorDesigner [12], and its support of the insertion
method. Extracted choreography fragments can be displayed
by clicking on the fragment entry in the palette. This causes
the ChorDesigner to open a new window (right-hand side).
The choreography fragment, or parts of it, can be selected
and placed into the left-hand side model. This provides
users already familiar with our choreography designer with
an intuitive and efficient way to use fragment insertion. A
thorough user-based evaluation of the enhanced ChorDesigner
functionality in conjunction with the incorporation of the
extraction algorithm is future work.

VI. RelatedWork
The concept of process fragments as an element of reuse

in developing process based applications has been covered
in several works [2], [4], [5], [13], [14], [15]. For example,
Markovic and Pereira [13] introduce an π-calculus based
approach for process fragments. Process fragments can be
semantically annotated for querying or autocompletion of
process models. In [16], the concept of process fragments
is used to describe change patterns and change reuse for
process-aware information systems. The authors provide the
adaptation pattern “Extract Process Fragment to Sub Process”



Figure 6. Fragment insertion example in the extended ChorDesigner

that describes the extraction and storing of process fragments
in sub processes. However, no details on the actual algorithms
for extraction are given. A similar approach is discussed
in [2] in the context of refactoring techniques for large
process model repositories. The “Extract Process Fragment”
pattern can be used to reduce the size of a process model
or remove redundant parts. Again, no specific details for
the implementation of this approach are given. In [14], a
signature tree based approach is used to query and reuse
process fragments. Yang et al. [15] want to achieve the same
goal by utilizing a context free grammar based approach.

The mentioned works lack a discussion of modeling
elements that only exist on the level of choreographies
such as participant sets or explicit message links connecting
participants and how to extract them from existing models and
insert them into new ones. This gap is closed with our notion
of choreography fragments and the supporting methods and
algorithms. Eberle et al. [5] introduce a formal model for
process fragments and corresponding composition operations.
We have adopted the formal model for process fragments
and extended it to also consider choreography fragments.
In [4], the authors propose the concept of a process fragment
choreography by using process fragments to describe a collab-
oration scenario. The WS-CDL choreography language [17]
has the Perform Activity construct that allows the recursive
composition of existing choreographies into more complex
choreographies. While the composition is also a method of
reuse, our definition of choreography fragments not only
comprises completely specified choreography models but
also parts of a choreography model such as a message link
connector to ease modeling for human users. Furthermore,

our concept of choreography fragments is not tied to a specific
choreography modeling language. Reuse of choreography
models is also proposed by [18], who introduce federated
choreographies, which are shared between different partners
and may support other choreographies. The choreographies
are realized by private orchestrations possibly contributing
to more than one choreography. The main difference to our
work is the specification of choreographies with interaction
models. Montesi and Yoshida [19] propose so-called partial
choreographies allowing the definition of choreographies
where the implementation of some roles can be left open
until run time. At run time, the partial choreographies
are composed. The authors aim for the programming of
choreographies using calculus, while we want to support
choreography modeling with reusable elements extracted
from choreography models.

VII. Conclusions And FutureWork

In this work, we have introduced the concept of choreogra-
phy fragments as elements of reuse in choreography modeling.
Based on a formal definition of process models and fragments
we have provided a formal model for choreography models
and fragments. Choreography fragments represent parts of
choreographies that can be reused across different choreogra-
phy models in different domains. In order to support human
choreography modelers with the (semi-)automatic extraction
of choreography fragments from choreography models, the
storing, and the insertion of choreography fragments into a
new or existing choreography model we proposed a method
and corresponding algorithms. Furthermore, we provided a
method for the insertion of choreography fragments. Our



approach was evaluated for its efficacy and performance in
an experimental manner (for fragment extraction), and by a
proof-of-concept implementation (supporting the insertion
method).

In future, we plan to further evaluate the usability of our
approach and of the implemented prototype by means of
user studies. Additionally, we will extend the choreogra-
phy fragment concept in order to not only provide reuse
during modeling time but also to enable flexibility during
choreography enactment. Choreography fragments are one
possibility to refine only partially specified choreographies
during run time. For example, abstract constructs [8] could be
replaced with choreography logic provided by choreography
fragments. In order to support multi-tenancy scenarios [20],
we plan to investigate how tenants and users can register
choreography fragments to configure a template choreography
model according to their requirements.
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[20] M. Hahn, S. Gómez Sáez, V. Andrikopoulos, D. Karastoy-
anova, and F. Leymann, “SCEMT: A Multi-tenant Service
Composition Engine,” in Proceedings of SOCA’14. IEEE,
2014, pp. 89–96.


