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Abstract. Scientists that use the workflow paradigm for the enactment
of scientific experiments need support for trial-and-error modeling, as well
as flexibility mechanisms that enable the ad hoc repetition of workflow
logic for the convergence of results or error handling. Towards this goal,
in this paper we introduce the facilities to repeat partially or completely
running choreographies on demand. Choreographies are interesting for the
scientific workflow community because so-called multi-scale/field (multi-*)
experiments can be modeled and enacted as choreographies of scientific
workflows. A prerequisite for choreography repetition is the rewinding of
the involved participant instances to a previous state. For this purpose,
we define a formal model representing choreography models and their
instances as well as a concept to repeat choreography logic. Furthermore,
we provide an algorithm for determining the rewinding points in each
involved participant instance.

Keywords: Ad Hoc Changes, Choreography, Workflow, Flexibility

1 Introduction

The goal of eScience is to provide generic approaches and tools for scientific
exploration and discovery [6]. The workflow technology, in this context known
as scientific workflows, is one approach for supporting data processing and
analysis. However, scientists have different requirements on workflow modeling and
enactment than users in the business domain. eScience experiments often demand
a trial-and-error based modeling [2] that allows the extension of incomplete
models after they have already been instantiated, or their partial repetition
with different sets of parameters for the convergence of results. In this context,
scientists are both the designers and users of a workflow model. To support these
requirements the Model-as-you-go approach has been introduced in [13]. The
approach uses workflow technology from the business domain and adapts it for
the requirements of scientists while keeping the technology’s benefits such as
standardization and automated error handling. One aspect of the approach is
the definition of two operations allowing scientists to influence the execution
of a workflow in an ad hoc manner without relying on pre-specified facilities
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in the workflow model [14]. The iterate operation allows repeating workflow
logic without undoing previously completed work. This is helpful for scientists
to enforce the convergence of results by repeating some steps such as building a
Finite Element Method grid with a different set of parameters. The re-execute
operation also allows repeating parts of already executed workflow logic, however,
completed work is compensated (undone) beforehand. This allows scientists to
reset the execution environment e.g. in case of detected errors.

A limitation of the Model-as-you-go approach is the lack of support for
multi-scale (e.g. space or time scales) and multi-field (e.g. physics and biology
or chemistry), so-called multi-*, experiments in cases where the experiment’s
mathematical models have not been merged. Such merging typically approximates
descriptions of one or more scales/fields onto another scale/field, while sacrific-
ing accuracy of the simulation results. In order to support the modeling and
execution of multi-* experiments, in previous work [17] we proposed the use of
choreographies and introduced the notion of Model-as-you-go for Choreographies.
Choreographies are a concept known from the business domain. They provide
a global view on the interconnection of collaborating parties such as business
organizations. Unlike service orchestrations, choreographies do not have a cen-
tralized coordinator but represent the peer-to-peer-like interconnection between
services or orchestrations of services [3]. However, flexibility features as provided
for single scientific workflows are still missing. Scientists should be able to select
a point in the choreography up to which the execution of the simulations has to
be rewound before applying any desired changes and repeating the execution of
the experiment. Repeating the execution instead of discarding all intermediate
results saves a lot of time especially in case of long running scientific experiments.

Towards this goal, this work supports the notion of Model-as-you-go for
Choreographies by providing the following contributions: based on the work of [7]
and [14], we provide a formal description of choreography models and instances
(Sec. 2). Subsequently in Sec. 3, we discuss the concept of repeating the execution
of choreography instances and the rewinding of choreography instances to a
previous state as preparatory step, and introduce an algorithm to determine
the rewinding points. Sec. 4 compares our approach to related ones and Sec. 5
concludes the paper with an outlook on future work.

2 Formal Model

In this section, we define the underlying formal model for our approach correspond-
ing to the life cycle phases modeling and execution of scientific choreographies [16].

2.1 Modeling Phase

A choreography model consists of at least two participants, which are represented
by service orchestrations/process models. A process model is a directed, acyclic
graph whose nodes represent activities. Control flow is explicitly modeled by con-
trol flow connectors linking activities. Data flow is implicitly described through the
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manipulation of variable values as input and output of activities. The participants
communicate with each other via message links. For the purposes of this work
we do not consider loops inside the process models. Formally speaking, a process
model is a DAG G = (m,V, i, o, A, L), where m ∈M is the name of the process
model (M is the set of all names), V is the set of variables, i is the map of input
variables, o is the map of output variables, A is the set of activities, and L is the
set of control flow connectors (control flow links). A control flow connector l ∈ L
is a triple l = (asource, atarget, t | asource, atarget ∈ A, t ∈ C ∧ asource 6= atarget)
connecting a source and a target activity, while its transition condition (where C
is the set of all conditions) is evaluated during run time [7, 14]. Based on that,
we define:

Definition 1 (Choreography Model C). A choreography model is a directed,
acyclic graph denoted by the triple C = (m,P,ML), where m ∈M is the name
of the choreography model, P is the set of choreography participants, ML is the
set of message links between the choreography participants.

A choreography participant p ∈ P is a triple p = (m, type,G), where m ∈M
is the name of the participant, type ∈ T is the type of the participant (T is
the set of types), and G ∈ Gall (Gall is the set of all process models) is a
process model graph. A message link is a tuple ml ∈ ML = (ps, pr, as, ar, t),
where ps, pr ∈ P are the sending and receiving participants. For the sending
and receiving participants the following holds: ps 6= pr, i.e., the sender and the
receiver must not be identical; as ∈ π5(ps.G) and ar ∈ π5(pr.G), where πi is the
projection operation on the i-th element of a tuple, are the sending and receiving
activities for which holds: as 6= ar. The transition condition t ∈ C is evaluated
during run time.

2.2 Execution Phase

Choreography models are typically not directly instantiable [3]. Instead, the
process/workflow models implementing the choreography participants are instan-
tiated. Together they form an overall virtual choreography instance. The virtual
choreography instance at a given point in time can be created by reading monitor-
ing information. We use the definitions of activity and process instances from [14]
and extend them for choreography instances. Note that we describe states with the
following abbreviations: (S=scheduled, E=executing, C=completed, F=faulted,
T=terminated, Cmp=compensated, D=dead, Sus=suspended). Formally, a pro-
cess instance is a tuple pg = (V I , AA, AF , LE , sg), where V I is the set of variable
instances, AA ⊆ AI is the set of active activity instances, AF ⊆ AI is the set of
finished activity instances, LE is the set of evaluated links, and sg is the state
of the process instance. In general, the set of activity instances is defined as
AI = {(id, a, s, t) | id ∈ ID, a ∈ A, s ∈ S, t ∈ N}. During execution, an activity
instance is identified by its id. The set S = {S,E,C, F, T, Cmp,D} contains the
execution states an activity instance can take at any point in time t. The state of an
activity instance ai ∈ AI can be determined by the function state(ai), whereas its
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model element is retrieved by the function model(ai). For the set of evaluated con-
trol flow links the following holds: LE = {(l, c, t) | l ∈ L, c ∈ {true, false}, t ∈ N}.
Evaluated links are the links that already have a truth value c assigned at an
execution time t. The truth value determines if the link is followed during exe-
cution. The process instance as a whole may be in one of the following states:
sg ∈ {E,C, Sus, T, F}. It then follows:

Definition 2 (Choreography Instance ci). A choreography instance is the
triple ci = (P I ,MLE , sc), where P I is the set of participant instances, MLE the
set of evaluated message links, and sc the state of the choreography instance.

The set of participant instances P I contains pairs of the form pi = (m, pg),
where m is the name of the participant instance and pg ∈ P all

g (P all
g is the set

of all process instances) is a process instance. For MLE the following holds:
MLE = {(ml, c, t) | ml ∈ ML, c ∈ {true, false}, t ∈ N}, i.e., MLE contains
the instantiated message links having a truth value c indicating the outcome of
the transition condition evaluation and an execution time t. The choreography
instance may be in one of the following states: sc ∈ {E,C, Sus, T, F}.

3 Repetition of Choreographies

In this section we discuss our approach for rewinding a choreography instance to
a previous state and we introduce an algorithm for identifying rewinding points.

3.1 Concept

A basic assumption for the Model-as-you-go for Choreographies approach is
the existence of a monitoring infrastructure as introduced in [18] capturing the
execution events, providing information about instance states of the process
models distributed across different execution engines, and correlating these
states with the corresponding choreography model (in the graphical modeling
environment a scientist uses). For our purposes, it is sufficient that only the events
related to elements already described in the choreography model are published.
Figure 1 shows an example of a choreography instance in which a part of its
logic is to be repeated, and summarizes the relevant terms that are used in the
following. Repeating parts of the logic of choreography instances is triggered
by manually choosing a start activity instance in a start participant instance
(activity instance c1 of Participant 1 in the example) during run time via a
graphical modeling tool. The choreography wavefront contains all currently active
or scheduled activity instances, control flow connector instances, and message
link instances. The execution must be suspended before starting the rewinding
and the repetition of logic in order to avoid race conditions [14].

An important concept is the notion of the iteration body. In [14], the iteration
body is defined as the activity and evaluated link instances reachable from a
user-selected start activity of an individual process instance. Activities that are
not yet scheduled, i.e., that are located in the future of the process instance, are
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Fig. 1: Example of a choreography instance

not contained in the iteration body. In Fig. 1, the iteration body of Participant 1
are the activities c1, d1, e1,f1, g1, h1, i1, and the control flow connectors between
them. Note that the path c1 → d1 has not been chosen during execution and
is marked as dead. However, it may be chosen after starting a repetition from
activity c1. We extend the notion of iteration body for choreography instances.
Here, the iteration body spans across process instances and includes message
links between them. In Fig. 1, additionally to the already enumerated ones, the
activities a2, b2, c2, the control flow links between them, the control flow link
c2 → d2, and the message link h1 → a2 are part of the choreography iteration
body. The repetition of logic starting in one particular participant instance affects
at least all participant instances that are part of the choreography iteration
body. Already finished activities in the choreography iteration body must be
rewound, i.e., either be reset (for iteration purposes), or compensated (to enable
re-execution). Iteration in a choreography instance is the repetition of logic in
the enacting workflow instances without undoing already completed work. The
workflow instances participating in the choreography instance are collectively
reset as described for individual workflow instances in [14]. Re-execution in
choreography instances is the repeat of choreography logic after compensating
already completed work.

In general, two cases can be distinguished. In the first case, the start partici-
pant instance is connected to other participant instances, which are reachable
from the manually selected start activity instance (c1 in Fig. 1). The start par-
ticipant instance at this point contains completed sending activities that have
sent messages to other participant instances. While the activity instance iden-
tified by the user is the rewinding point in the start participant instance, the
rewinding points in the connected instances have to be identified separately (cf.
Sec. 3.2). In the example, activity a2 is the rewinding point of the Participant 2
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instance. Rewinding points can also be found in participants that are transitively
connected and reachable from the start activity instance. Each rewinding point
indicates where the resetting or compensation of activities has to stop, i.e., how
the choreography wavefront has to be moved to the past of the choreography
instance. In the second case, participants that are not reachable from the start
activity instance may still be affected by the repetition of logic in other par-
ticipant instances. Messages that are not the reply of previous requests and
transmitted over incoming message links to the affected participant instances
must be available again in the case of repetition. This can either be done by also
determining rewinding points in the sending participant instances and rewinding
and repeating logic, or by storing and replaying previously sent messages by
the workflow engine responsible for the respective participant instance. The
determined rewinding points are sent to the involved workflow engines to trigger
the iteration or re-execution of choreography logic using a transactional protocol.
This is not presented here due to space constraints.

3.2 Determining the Rewinding Points

In the following an algorithm is presented to determine the rewinding points in a
choreography iteration body. Therefore, a set of auxiliary functions is defined.

Definition 3 (Function succ). The successor function succ is defined as succ :
AI ×AI → B, where AI is the set of activity instances and B is the set of boolean
values B = {true, false}.

The function determines if the second activity instance is reachable from the
first activity instance, i.e., a successor in the process instance graph. Definition 4
describes the function for finding the set of rewinding points.

Definition 4 (Function ρ). The Determine Rewinding Points function ρ is
defined as ρ : CI ×AI × P I ×RP all

C → RP all
C , where CI is the set of choreography

instances, AI is the set of activity instances, P I is the set of participant instances,
and RP all

C is the set that contains all RPC sets.

RPC ⊆ P I × P(AI) is a set of pairs {(pi, AI
rp) | pi ∈ P I , ai1, ..., a

i
k ∈ AI

rp ⊆ AI}
consisting of a participant instance and a set of rewinding point activity instances.
The reason that a participant instance can have more than one rewinding point
is the existence of parallel paths in the process model graph. A participant may
receive messages in parallel that result in independent rewinding points.

Definition 5 (Function χ). The Handle Sending Activities function χ is de-
fined as χ : CI × AI × RP all

C → RP all
C , where CI is the set of choreography

instances, AI is the set of activity instances, and RP all
C is the set of pairs con-

taining the assignment of participant instances to their rewinding points.

Algorithm 1 and the sub-routine described in Algorithm 2 show the realization
of functions ρ (Definition 4) and χ (Definition 5), respectively. The main idea of
the algorithm is the following: Beginning from the user-selected start activity
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Algorithm 1: determineRewindingPoints, ρ

1 input : Choreography instance ci, activity instance aistart, participant instance

pi, set of pairs RPC = (pi, AI
rp)

2 output :RPC

3 begin
4 if RPC = ∅ then
5 RPC ← RPC ∪ (pi, {aistart})
6 end
7 Stack S ← ∅
8 S.push(aistart)
9 while S 6= ∅ do

10 Activity Instance ai ← S.pop()

11 if ai is not marked as visited ∧ state(ai) = completed then
12 mark ai as visited

13 if model(ai) is sending activity then
14 RPC ← handleSendingActivities (ci, ai, RPC)
15 end
16 foreach

li = (lx, cx, tx) ∈ π4(pi.pg) | lx.axsource = ai ∧ state(cx) = true do
17 S.push(lx.axtarget)
18 end

19 end

20 end
21 return RPC

22 end

instance, the start participant instance graph is traversed in a depth-first manner.
Every activity instance with the state completed is marked as visited and its
outgoing links, provided they have been evaluated to true, are followed. For each
completed activity instance it is checked if it is a sending activity. If so, the
sub-routine handleSendingActivities (χ) as defined in Definition 5 is invoked.
The attached message link instance mlitraversed of the sending activity instance
ai is retrieved by evaluating the following conditions: (i) it has been evaluated to
true and (ii) there exists a receiving activity instance air in the completed state,
i.e., a message has been sent and consumed. If mlitraversed exists, the algorithm
retrieves its receiving participant instance. For the receiving participant instance
it is checked if it has already been (partly) traversed by the algorithm and
a (preliminary) rewinding point has been found. If this is not the case, ρ is
invoked recursively with the current receiving participant. If there exists already
a rewinding point, it is checked if (i) the old rewinding point would be a successor
of the new one or if (ii) both are in parallel branches. In case (i) the old rewinding
point activity instance is removed before the new rewinding point is added and
in case (ii) both are kept. In both cases, ρ is invoked recursively afterwards. The
recursion in one participant instance stops when all reachable completed activity
instances have been marked as visited.
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Algorithm 2: handleSendingActivities, χ

1 input : Chor. instance ci, activity instance ai, set of pairs RPC = (pi, AI
rp)

2 output :RPC

3 begin
4 Message Link Instance mlitraversed ← (mlx, cx, tx) | (mlx, cx, tx) ∈MLE ∧

mlx = (pis, p
i
r, a

i
s, a

i
r, c) ∧ ai = ais ∧ state(cx) = true ∧ state(air) = completed

5 if mlitraversed 6=⊥ then
6 Participant Instance pir ← mlitraversed.p

i
r

7 if @(px, Ax
rp) ∈ RPC | px = pir then

8 RPC ← RPC ∪ (pir, {air})
9 RPC ← ρ (ci, air, p

i
r, RPC)

10 end

11 else if ∃(px, Ax
rp) ∈ RPC | px = pir then

12 Boolean recursion← false
13 foreach ax ∈ Ax

rp do
14 if succ(air, a

x) then
15 Ax

rp ← Ax
rp \ ax

16 recursion← true

17 end

18 else if ¬succ(ax, air) ∧ ¬succ(air, ax) then
19 recursion← true

20 end

21 end
22 if recursion then
23 Ax

rp ← Ax
rp ∪ air

24 RPC ← ρ (ci, air, p
i
r, RPC)

25 end

26 end

27 end
28 return RPC

29 end

4 Related Work

There are several areas related to our work, such as ad hoc repetition in process
instances and adaptation of choreographies during modeling and run time. In
literature, the concept of ad-hoc repetition in process instances is well studied.
For example, in [10] concepts and algorithms for pre-modeled or ad hoc back-
ward jumps, which enable the repeat of logic in process instances enacted by
the ADEPT Workflow Management System are presented. The Kepler system
supports the concept of smart reruns [1] enabling scientists to repeat parts of a
scientific workflow with a different set of parameters. Previously stored prove-
nance information is used to avoid the repetition of parts of the workflow that
do not change the overall outcome of the scientific experiment. Similarly, in [8] a
system is proposed that supports scientific workflows as well as the concept of
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reruns of workflow logic for the validation of scientific results but not for enabling
an explorative modeling approach as in our work. In [12], process flexibility types
are classified. Our concept for rewinding and repeating choreography instances
could be classified as Flexibility by Deviation – deviating from the specified
control flow in the model. Similarly, our repetition is one form of the Support for
Instance-Specific Changes as described in [15] for individual process instances.
However, none of these works consider choreography instances.

Several works exist on the adaptation of choreography models. For example,
in [11] the propagation of changes appearing in the private process of one
choreography participant to the affected business partners is enabled without
considering already running choreographed workflow instances. Formal methods
are used to calculate the necessary changes and if the new message interchange
is deadlock free. In [4], a generic approach for propagation of local changes to
directly as well as transitively dependent business partners is shown. Reichert
and Bauer [9] introduce a variant of the ADEPT system that combines the
distributed execution of a partitioned workflow model with ad hoc modifications
of the workflow instances. Changes on the model are efficiently transmitted to
the involved execution engines. In [5], a concept for the evolution of distributed
process fragments during run time is proposed identifying change regions and
applying changes to the process fragment instances. The major difference of these
works to our approach is that we do not start with changes on the level of the
model but change running instances in an ad hoc manner.

5 Conclusions and Future Work

In this paper, we motivated the need for the capability to repeat partially or
completely the logic in a choreography with a clear focus on the eScience commu-
nity. Toward this goal, we presented a formal model for describing choreography
models and instances. Based on the formal model, we introduced the concept of
repeating logic in choreography instances, which involves the rewinding of pro-
cess instances as a preparatory step. We distinguished between iteration, which
executes logic again without undoing already completed work, and re-execution,
which aims at the compensation of already completed work before executing it
again. We proposed an algorithm that is able to identify the rewinding points for
each involved participant instance.

In future, we plan to extend our formal model and proposed algorithm to also
consider loop constructs and variable values. The integration of our proposal into
the scientific Workflow Management System (sWfMS) [17] is ongoing work. While
we currently do support the identification of rewinding points in the graphical
environment of our sWfMS in an automated manner, the capability to rewind
enacted choreographies through the environment is work in progress. As part of
this effort, we also plan to evaluate our proposed algorithm in combination with
monitoring data collected from executing simulation workflows in the context of
the SimTech project.
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