
Published under CreativeCommonsLicence CC-BY-ND
creativecommons.org/licenses/by-nd/4.0

@inproceedings{Fehling2014,
author = {Christoph Fehling and Johanna Barzen and

Michael Falkenthal and Frank Leymann},
title = {PatternPedia – Collabroative Pattern Identification

and Authoring},
booktitle = {Proceedings of the International Conference on Pursuit

of Pattern Languages for Societal Change (PURPLSOC)},
publisher = {epubli GmbH},
year = {2015},
month = {June}

}

:

Institute of Architecture of Application Systems,
University of Stuttgart, Germany
<lastname>@iaas.uni-stuttgart.de

PatternPedia – Collaborative Pattern
Identification and Authoring

Christoph Fehling, Johanna Barzen, Michael Falkenthal, Frank Leymann

Institute of Architecture of Application Systems

Page 1 of 26

PatternPedia – Collaborative Pattern
Identification and Authoring

Fehling, Christoph, Institute of Architecture of Application Systems (IAAS), University of
Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany, Fehling@iaas.uni-stuttgart.de

Barzen, Johanna, Institute of Architecture of Application Systems (IAAS), University of
Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany, Barzen@iaas.uni-stuttgart.de

Falkenthal, Michael, Institute of Architecture of Application Systems (IAAS), University of
Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany, Falkenthal @iaas.uni-stuttgart.de

Leymann, Frank, Institute of Architecture of Application Systems (IAAS), University of
Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany, Leymann@iaas.uni-stuttgart.de

Abstract:

The process to identify and author patterns often involves multiple domain experts. This
paper introduces PatternPedia – a collaborative tool chain to document existing solutions
and manage patterns abstracted from them. We present an extensible pattern metamodel
specified in UML to enable this tool support. Sample metamodel extensions are covered for
the domain of cloud computing and costumes in films to capture concrete existing solutions
and patterns in these domains. Respective solution repositories and pattern repositories
have been implemented based on these metamodel extensions. Support for pattern
document display, pattern reference visualization, as well as queries on the costume solution
repository are presented.

Keywords: Pattern Repository; Solution Repository; Pattern Authoring; Wiki; Collaboration

ISSN (tba)
www.purplsoc.org
Creative Commons Licence CC-BY-ND

Page 2 of 26

1. Introduction
Patterns are human-readable documents that describe proven solutions in a certain domain,
such as building architecture, IT applications, or education. Patterns reference each other, to
express common combinations, alternatives etc. The set of patterns and their interrelations
are often referred to as a pattern language for the considered domain. In Barzen &
Leymann (2014), we covered the identification of patterns in the domain of costumes in films:
by documenting and analyzing costumes in different movies, the identification of patterns is
systemized. The description format of existing solutions (costumes) is formalized, existing
solutions are captured, and patterns are identified in the set of solutions. Following such an
approach, the origin of a pattern becomes clearly visible and traceable to ensure pattern
provenance. Such a systematic approach to pattern discovery often involves many
participants, for example, to review films and capture costumes scene-by-scene. In other
domains, where we conducted pattern research, such as cloud computing, collection and
classification of information sources was also handled by many parties (Fehling, Ewald,
Leymann, Pauly, Rütschlin & Schumm, 2012). These collaborative tasks for information
collection, pattern identification, and pattern authoring should, therefore, be supported by a
collaborative tool chain. While Barzen & Leymann (2014) introduced a formal model for
costumes and costume patterns, this paper provides (i) an extendable pattern metamodel for
the formal model and (ii) a tool chain (PatternPedia - http://www.patternpedia.net) for the
collaborative documentation of solutions and identification of patterns. Both, the extendable
pattern metamodel and tool chain are used in the domain of cloud computing (IT
applications) and costumes in films.

We first cover the relevant related work on wiki-based pattern management and pattern
authoring in Section 2. We introduce the pattern research methodology supported by
PatternPedia, cover its abstract system architecture, and its usage by pattern researches
(Section 3). The remaining sections describe the formal basis of the PatternPedia data
structure and the technical implementation of PatternPedia:

The pattern metamodel and its extensions for the domains of cloud computing and costumes
is expressed by the Unified Modeling Languge (UML) (Object Management Group, 2011)
(Section 4). This modeling language is commonly used for IT applications to describe the
abstract structure of data elements and their instances. The metamodel, therefore, specifies
a data structure that can be instantiated multiple times to represent multiple instances of the
described entity. The description of IT systems using such modeling activities is described as
Model Driven Design (Raistrick, Francis, Wright, Carter & Wilkie, 2004). Therefore, the
pattern metamodel describes the reoccurring data structure of patterns and solutions as they
become manifested in the supporting tool chain. It coordinates the collaborative word of
participating researchers. The concrete implementation of PatternPedia is governed models
(Section 5) and based on MediaWiki1, the wiki software that supports WikiPedia2, and
semantic extensions provided by SemanticMediawiki3. We chose to use and extend this
well-established wiki software to benefit from existing collaboration functionality that can
support the pattern research domain without adaptation. The paper is concluded by a
summary and outlook in Section 6.

1 http://www.mediawiki.org
2 http://www.wikiepedia.org
3 http://semantic-mediawiki.org/

Page 3 of 26

2. Related Work
Existing pattern language formalizations and pattern repositories have been considered as
the foundational work for PatternPedia. Wikis have been used early on in the pattern
research domain to coordinate the work of multiple pattern authors. Existing pattern
repositories, however, are often not been available as open source and often did not support
types for the references among patterns. Through reference typing, the tool chain explicitly
supports different links between patterns, to express that two patterns are related, are often
combined with each other etc. While reference typing seems to be a small detail, the
magnitude of references within a pattern catalog can quickly become unmanageable if
reference types are omitted. Some existing pattern repositories support this typing and their
functionality has been investigated especially to deduct requirements on the PatternPedia
tool chain. Existing methodologies to author and improve patterns without any tool support
have also been considered, especially, how they can be integrated with the PatternPedia tool
chain.

2.1. Existing Pattern Languages and Pattern Language Formalizations
The pattern metamodel describes the structure of the pattern documents and references
among them. To find an adequate extendable metamodel, the format of existing patterns and
pattern languages has been investigated especially how they reference other patterns.

Zdun (2007) formalized pattern descriptions and the use of formal grammars describing the
selection of patterns. Pattern primitives are covered in Zdun & Avgeriou (2005) as a means
to capture domain-specific concepts that are not patterns themselves, but smaller artifacts
forming larger patterns. In the domain of costumes, such primitives are the pieces of clothing
comprising a costume (Schumm, Barzen, Leymann & Ellrich, 2012). In general, when
authoring patterns domain-specific primitives should be defined to be used in solution
descriptions and pattern descriptions. Hanmer (2012) covers the structure of a pattern
catalog in the domain of IT applications. He describes a means for pattern users to collect
their individual set of patterns and interconnect these patterns based on their own experience
and development processes. The pattern language of Alexander, Ishikawa &
Silverstein (1977) was considered as the most influential source of patterns for the domain of
building architecture. These patterns describe the design of cities, neighborhoods, houses,
individual rooms etc. A clear order of consideration and refinement of details is visible in this
pattern language. Even though the pattern format used by Alexander et al. (1977) does not
use section headings and does not label references, a clear semantic is visible in the
separate sections of each pattern describing the problem, context, solution etc. Regarding
reference types the order of consideration and the use of alternatives are visible.

Regarding the domain of IT applications, the patterns of Hohpe & Woolf (2004), Gamma,
Helm, Johnson & Vlissides (1994), Buschmann, Meunier, Rohnert, & Stal (1996),
Fowler (2002), and Hanmer (2013) have been reviewed. Hohpe and Woolf describe patterns
for enterprise application integration. Their format highly influenced the cloud computing
patterns developed by us (Fehling, Leymann, Retter, Schupeck & Arbitter, 2014). Gamma et
al. and Buschman et al. describe patterns in the domain of object-oriented application
design. Fowler covers patterns for enterprise applications that incorporate the business case,
its domain model, and how it is refined to application architectures. Hanmer covers patterns
in the domain of fault-tolerant distributed applications. All of these pattern catalogs have

Page 4 of 26

been analyzed with respect to their individual pattern formats and references among
patterns. The pattern metamodel introduced in this work aims to support all of these formats
through extension.

2.2. Existing Pattern Repositories
The need for a central pattern repository and, especially, the use of wiki software for pattern
management has long been identified as promising (Leuf & Cunningham, 2001). Pattern
repositories have since been established for many different topics. In many cases, the
motivation for these repositories is publishing the contained patterns and not the reuse of the
software for other patterns, which may have different formats. Many consider collaboration
aspects, such as rating or recommending patterns. Table 1 summarizes the aspects
analyzed for some of these pattern repositories. It shows the name and internet address of
the repository and gives the main topic considered by contained patterns if applicable. While
this list may not be exhaustive, we argue that it represents a significant portion of the pattern
repositories available today. A more detailed evaluation of existing pattern repositories can
be found in Fürst (2013) and Willig (2014).

Table 1: Overview of considered Pattern Repositories
The pattern library for interaction design covers user interaction patterns and mainly focuses
on the presentation of these patterns. The BRIDGE pattern library was developed in a
European research project. It mainly focuses on the collaborative authoring of patterns.
Requirements for a collaborative pattern repository that are implemented in the BRIDGE
pattern library are published in Reiners, Falkenthal, Jugel & Zimmermann (2013). The open
pattern repository is a customized wiki implementation for pattern management. Especially,
the addition of existing pattern documents is well supported by the user interface. Links in
this pattern repository are similarly typed as those of PatternPedia. The Portland pattern
repository is possibly the oldest pattern repository and also based on wiki software:
WikiWiki4. The Yahoo design pattern library again focuses on user interface design and its
main purpose is providing these patterns to the public. Conceptually, the pattern format and
reference types of these existing pattern repositories have been considered during the
design of the extensible pattern metamodel.

The BRIDGE pattern library and open pattern repository seemed most accessible regarding
their existing source code implementations. The implementation of PatternPedia described in
Section 5, nevertheless, was realized using MediaWiki as a basis for two main reasons. First,
this open source wiki software addresses most of the desired collaborating features directly.
Second, the semantic extensions enable the desired reference typing and queries based on

4 http://c2.com/cgi/wiki?WikiWikiClones

Name% Address% Topic%

So
0w

ar
e%
Av

ai
la
bl
e%

Li
ce
ns
e%

Ad
ju
st
ab

le
%

Co
m
m
en

ts
%

Ra
<n

g%

Au
th
or
in
g%

A"Pa%ern"Library"for"Interac2on"Design" h%p://www.welie.com/" User"Interface"Design" No" N/A" N/A" Yes" No" No"
BRIDGE"Pa%ern"Library" h%p://pa%ernElibrary."

secEbridge.eu/pa%ernElibrary/"
Various" No" N/A" N/A" Yes" Yes" Yes"

Open"Pa%ern"Repository" h%ps://code.google.com/p/"
openpa%ernrepository/"

Various" Yes" GPL"" Yes" Yes" Yes" Yes"

Portland"Pa%ern"Repository" h%p://c2.com/ppr/" Various" Yes" Various" Yes" Yes" No" Yes"
Yahoo"Design"Pa%ern"Library" h%ps://developer.yahoo.com/

ypa%erns/"
User"Interface"Design" No" N/A" N/A" No" No" No"

Page 5 of 26

these reference types. By relying on such an existing code base combined with some
extensions, the need for custom implementations and future maintenance effort could be
reduced. Again, refer to Fürst (2013) and Willig (2014) for a detailed evaluation of wiki
software and available extensions relevant to pattern research.

2.3. Existing Best Practices for Pattern Authoring
Existing methodologies to identify, author, and improve patterns still have to be considered
regardless whether or not a tool chain is used to support pattern researchers. Wellhauser &
Fießler (2011) cover how pattern documents should be designed to be accessible to readers.
Meszaros (1997) covers patterns to be considered during pattern writing. These best
practices again describe the structure of pattern documents and good writing practices.
Harrison (1999) provides patterns for the following review cycle of initially written pattern
documents. Lucrédio, de Almeida, Alvaro, Garcia & Piveta (2004) describe how to review
and improve patterns during research conferences. Iba & Isaku (2012) present patterns on
how to conduct interactive workshops in order to find and author patterns collaboratively.
PatternPedia does not aim to replace these methods and techniques. Collaboration during
pattern identification shall be supported during the times when face-to-face interaction is
impossible. Also, the traceability of patterns shall be increased by documenting existing
solutions in the same tooling environment. This also enables pattern users to learn from
existing solutions to a higher degree. However, using PatternPedia will not alleviate the need
to conduct face-to-face discussions and interactive workshops to identify and author
patterns.

3. Pattern Research Methodology and Architecture of PatternPedia
To describe how PatternPedia is used and which functional components it is comprised of,
we now cover the research methodology that is supported by the PatternPedia tool chain.
Then the abstract functional components are described to give an overview of the
architecture of PatternPedia. A central artifact governing the use of this tool chain is the
pattern metamodel, which homogenizes the data created by different users. The structure
and adaptation of this metamodel to the domains of cloud computing and costumes in films is
covered separately in Section 4.

3.1. Pattern Research Methodology supported by PatternPedia
The tasks to identify, abstract, and apply patterns depicted in Figure 2 are supported by the
PatternPedia tool chain. The figure furthermore shows the data generated by these tasks as
well as the involved user roles. Each role can be fulfilled by one or more users of
PatternPedia. One user or user group can also fulfill multiple roles.

The initial activity is to document solutions in the domain considered for pattern research,
i.e., to capture how existing IT applications work, how costumes look like etc. This activity
collects such information from various sources, such as written documents, mindmaps,
spreadsheets etc. and homogenizes this format as well as abstracts the content to describe
concrete solutions. A domain expert, who has created the existing solutions and a solution
collector, who is familiar with the abstraction of required information, collaborate on this task.

Page 6 of 26

Figure 1 – Pattern Research Methodology

As a second step, solutions are analyzed for similarities by the pattern author to identify
pattern candidates. A pattern candidate proposes a pattern, which is then reviewed by a
larger group of pattern authors as part of the author patterns task. Especially, the best
practices for pattern writing and improvement (see Section 2.3) shall be used here. Of
course, there may be existing patterns in the considered domain. In parallel to the author
patterns task, such patterns are imported to PatternPedia in order to be interconnected with
newly found patterns. A content manager handles this task of transforming exiting patterns
from books, conference proceedings etc. into the same format as the newly created patterns.

After patterns have been found in the researched domain, a solution architect can use this
set of patterns to create new solutions. This could be a new IT application, a costume etc. In
scope of PatternPedia, such a concrete solution is considered the description of the solution
that shall be managed by PatternPedia. Thus, this is a written document following the format
specified by the pattern metamodel that describes the solution. The solution itself, i.e., the
code of an application or the tangible costume is not managed by PatternPedia. A solution
architect starts to create such new solutions by identifying patterns that are applicable to his
or her problem. This identification is part of the find patterns tasks.

Applicable patterns are then refined by the solution architect as part of two parallel activities.
The solution design is created, thus, details are added with respect to the abstract pattern
description and multiple patterns are combined into a new solution design. During this task,
the solution architect may also analyze existing solutions to not only learn from the pattern
itself but also from all of its previous applications. As a result, new concrete solutions are
created that may again be analyzed to identify new patterns. This research methodology,
therefore, describes a continuous process that is followed iteratively.

3.2. Functional Architecture and Use of PatternPedia
In every domain where patterns shall be researched, the information is commonly available
in a much unstructured format. As shown on the left of Figure 2, such information sources
may subsume movies, documents, mindmaps etc. These information sources are provided
by the role of a domain expert, who is familiar with the currently existing solutions and best-
practices. These information sources are not managed by the PatternPedia tool chain whose
components are depicted in the center of Figure 2.

Document))
Solu,ons)

Analyze)
Solu,ons)

Author))
Pa5erns)

Import)Exis,ng)
Pa5erns)

Find)
Pa5erns)

Domain Expert Solution Collector Pattern Author Solution Architect Content Manager

Design)
Solu,ons)

Find))
Solu,ons)

Described by the
Pattern Metamodel Solution Documentation,

Mindmaps,
Spreadsheets,

etc.
Concrete
Solutions

Pattern
Candidates Patterns Patterns

Existing
Patterns

Concrete
Solutions

Page 7 of 26

Figure 2 - Abstract Architecture of PatternPedia
The solution input component is used by the solution collector to enter information about
existing solutions obtained from the domain expert and information sources into the solution
repository. The pattern metamodel ensures that such information contained in the solution
repository follows a homogenous data format. Solutions may then be browsed freely, but
more analysis functionality may also be offered to query solutions. While the solution
repository can be supported by the wiki-based implementation covered in Section 5, it is
often realized as a separate custom tool. This is due to the fact that domains differ greatly
regarding the aspects of solutions that shall be captured to support pattern identification. For
example, in the domain of cloud computing, architectural goals, such as availability or
performance have been used to categorize the documented solutions. In the domain of
costumes, detailed ontologies and taxonomies have been used to describe garments of
clothes, their colors, structure etc. in order to homogenize the solution format (Barzen &
Leymann, 2014). Section 4 covers the concrete metamodel extensions used in these
domains. A custom tool can better support such extensions, especially, regarding the
enforcement of the desired solution format and queries to the solutions in order to find
patterns. Such queries are especially helpful to the pattern author who accesses the solution
repository to query and analyze solutions in order to identify new patterns.

Patterns are documented in the pattern repository. Multiple pattern authors may work on a
pattern simultaneously during its authoring. Again, functionality is provided to input and
browse these patterns. The pattern metamodel describes the format of the pattern document,
i.e., its sections and their semantic, as well as the types of references between multiple
patterns. Such pattern references are used by pattern authors to express that patterns form
alternatives, are often used together, should be considered in a certain order etc. The
component for solution and pattern referencing shown in Figure 2 supports the creation of
such pattern references: as the number of patterns increases, those patterns written later
tend to have fewer incoming references. By the time other patterns have been written, newer
patterns did not exist for referencing. Such conditions may be identified automatically by the
tool to suggest references that should be added.

The pattern references are fundamental to browse and find applicable patterns. The solution
architect uses the references among patterns to navigate the catalog of patterns as part of
the functionality provided by the pattern search component. The references provide the order

PatternPedia Pattern)
Import)
Format

import/export

Conference
Papers

Pattern
Books

Pattern)Metamodel
describes

Existing)
Information)for)

Pattern)
Abstraction

Movies

PDF)
Documents

Taxonomies

MindMaps

Spreadsheets

Solution)
Descriptions

import/export

Domain)Expert Solution)Collector Pattern)Author Solution)Architect Content)Manager

Solution)Repository Pattern)Repository

Pattern)Input)

Pattern)Browser

Pattern)Search

Solution)and)Pattern)Referencer

Solution)Input)

Solution)Browser)

Solution)Analyzer)

Page 8 of 26

of pattern consideration, related patterns, alternatives etc. as the solution architect traverses
the catalog. Furthermore, the references between solutions and the patterns identified from
them are also maintained. Such references between patterns and solutions enable the
solution architect to access information about existing solutions to refine his or her design.
He or she may learn from the existing solutions while the pattern provides the abstract best
practices. After design and implementation of a new solution, the solution architect
documents his or her design in the solution repository. A reference to the implemented
pattern ensures that this new solution may also be accessed in all future applications of the
pattern. In order to integrate existing patterns published in books, conference proceedings
etc. into the pattern repository, the content manager converts existing pattern documents into
an import format that can be understood by the pattern repository. We use the Extensible
Markup Language (XML) (World Wide Web Consortium, 2008) for this purpose as described
in Fehling & Leymann (2014).

4. Formalizing the Pattern Metamodel
Patterns and solutions are documented in a well-defined data model in PatternPedia. This
ensures format homogenization if multiple authors participate in the documentation process
of identifying and authoring patterns (Section 3). Also, it enables a later querying of solutions
and pattern documents. The metamodel seen in Figure 3 is described in the Unified
Modeling Language (UML) (Object Management Group, 2011). The central entity in this
model is an abstract Referenceable Document, which is associated with a Category. Such
Categories can be used to organize the referenceable documents managed in PatternPedia.
A referenceable document manifests either in form of a Solution or a Pattern. Solutions are
the documents from which patterns are abstracted. The pattern language metamodel does
not enforce a solution to be structured, thus, it is constituted by arbitrary ImageElements and
TextualElements. These two entities are also used in patterns, but patterns are structured
additionally. In the pattern metamodel, patterns are constituted by Intro entities and Section
entities. Sections describe the patterns format and, thus, have a distinct name – their
heading. Intro entities are used for textual or graphical elements that are included in a more
loosely fashion, often in the beginning of pattern documents. For example, a picture or icon
that readers shall associate with the pattern. Two different reference entities can be used
between referenceable documents. Textual References are used in pattern sections or
intros. The reference itself is then displayed as the textual element in the pattern documents.
Global References are not displayed in pattern documents as discrete textual elements.
Instead, they are often used for visualization purposes outside of pattern documents, for
example, to render a graph indicating the order in which patterns should be considered.

In the generic pattern language metamodel two Reference Types are included. The
RelatedTo reference type is used to point to patterns that are relevant in context of the
described pattern, that are often used together with the described pattern etc. In itself, the
RelatedTo reference type is, thus, very generic. The InContextOf reference type is used to
point to patterns forming the setting in which another pattern can be applied. These two
reference types are the intersection of the sets of reference types used in pattern languages
considered as related work in Section 2. Commonly, this set is extended for a pattern
language, for example, to denote alternatives and compositions between patterns or to point
to solutions via a known use reference. The concrete extensions for the cloud computing
patterns and costume patterns are described in the following sections.

Page 9 of 26

Figure 3 - Pattern Metamodel in UML

4.1. Extending the Pattern Metamodel for Cloud Computing Patterns
Given the architectural goals of cloud computing applications, information sources have been
analyzed to identify and extract cloud computing patterns (Fehling et al., 2014). Therefore, it
was documented how existing applications achieve the architectural goals. For provider
documentations, guidelines to achieve the goals were documented. The extracted pattern
documents use the pattern metamodel with the following extensions. It has been extended at
four locations as shown in Figure 4. Extension points one and two describe a more specific
pattern format. Extension point three introduces additional reference types that are used to
interconnect the patterns of the cloud computing pattern language. Extension point four
refines the information captured about solutions in order to identify patterns. The specific
model extensions are detailed in the following.

Figure 4 - Overview of Extension Points for Cloud Computing Patterns
4.1.1. Extension of the Pattern Format

The pattern format extension describes (i) the used pattern introduction at the beginning of
each pattern document and (ii) the specific names of pattern sections to be used. Figure 5
displays the extension of the pattern metamodel with specific intro elements. These are used
in the beginning of each document without individual section headings.

Referenceable*
Document*

Name*:*String*

Solu5on* Pa7ern*

ImageElement*

Content*:*IMG*

TextualElement*

Content*:*String*

Sec5on*

Name*:*String*

Textual*
Reference*

Type:*RefType*

Global*
Reference*

Type:*RefType*

Intro*

RefType*

RelatedTo* InContextOf*

reference_to

reference_to
reference_from

displayed_as 1

0…1

0…* 0…* 0…*

1
1

1

0…1

0…1

0…1

0…1

0…1 0…1

0…1

0…1

Category*
0…* *
categorized_by
*

0…* parent

Referenceable*
Document*

Name*:*String*

Solu5on* Pa7ern*

ImageElement*

Content*:*IMG*

TextualElement*

Content*:*String*

Sec5on*

Name*:*String*

Textual*
Reference*

Type:*RefType*

Global*
Reference*

Type:*RefType*

Intro*

RefType*

RelatedTo* InContextOf*

reference_to

reference_to
reference_from

displayed_as 1

0…1

0…* 0…* 0…*

1
1

1

0…1

0…1

0…1

0…1

0…1 0…1

0…1

0…1

Category*
0…* *
categorized_by
*

0…* parent

2*

1*

3*

4*

Page 10 of 26

Figure 5 - Extension for specific Introduction Content of Cloud Computing Patterns
The Intend of each cloud computing pattern summarizes the complete pattern very briefly. It,
therefore, gives readers a very quick overview. The Icon of each cloud computing pattern is
its graphical representation. It, especially, is intended to be used in architectural diagrams of
(i) other architectural patterns composing the pattern and of (ii) architectural diagrams using
the cloud computing patterns. The Driving Question finally gives the questions to be
answered by the pattern. Thus, it allows the reader to identify the applicability of the pattern
to his or her own architectural questions in a given use case. Figure 6 shows an intro format
refinement of the public cloud pattern from the website http://cloudcomputingpatterns.org.

Figure 6 - Refinement of the Intro in the Pattern Format for Cloud Computing Patterns
After the introduction elements, the cloud computing patterns use a specific set of sections.
The corresponding metamodel extension is shown in Figure 7.

Figure 7 - Extension for specific Sections of Cloud Computing Patterns
The Context section describes the conditions under which the problem solved by a pattern
arises. Especially, other patterns may be referenced here that form the environment in which
the pattern is applied. Other influencing factors that lead to the problem - so called forces -
are also listed here, so that the reader may compare them to the real life problem he or she
is trying to solve. The Solution section then briefly states how the pattern solves the problem.
This statement is given in an imperative form to quickly tell the reader what has to be done
when applying the pattern. Each solution section contains one or more images – the Sketch
of the pattern. This sketch is a graphical representation of the solution. It shows the reader
abstract components to be implemented, other patterns to be composed, an abstract process
that the implementation has to realize etc. Following the solution section, the Result section
describes the outcome of the pattern application in greater detail. Especially, it may describe
additional problems that may arise after the application of a pattern. The Variations section
describes alternative applications of the pattern. If these variations are not significant enough

Intro&

Intend& Icon& Driving&
Ques1on&

Intro&

Name

Intend

Icon

Driving
Question

Sec$on'

Context' Solu$on' Result' Related'
Pa2erns'

Known'
Uses'

Page 11 of 26

to justify their description as separate patterns, they are listed in this section. The Related
Patterns section lists other patterns that may be relevant for consideration if the pattern is
applied. These may be alternative patterns following a different approach or patterns that are
often used together with the pattern etc. Finally, the Known Uses section closes the pattern.
In this section, all information sources are summarized from which the pattern has been
abstracted, especially, if they were existing applications. Remember that the pattern
metamodel allows the capturing of known uses as separate documents – the solutions. Thus,
they may be referenced by patterns just like other patterns, but they do not follow the same
document structure.

4.1.2. Extension of the Pattern References

In scope of the cloud computing patterns, both reference types in the pattern metamodel may
be used. Furthermore, additional types have been defined as shown in Figure 8.

Figure 8 - Extension for specific Reference Types of Cloud Computing Patterns
The ConsiderAfter reference type is used to describe an order of pattern consideration for
the cloud computing patterns language. For example, these references are used to suggest
that readers shall first consider cloud offerings, then application component patterns building
applications on top of such offerings. More specifically, if a reader considers to use a blob
storage offering5 to store data, the ConsiderAfter reference may point to strict consistency6
and eventual consistency7 as patterns that describe the offering behavior in greater detail.
Also, the data access component8 pattern may be referenced, because after the reader has
chosen a storage offering, he or she should consider how to build an application component
that interacts with the storage offerings and provides data accessibility to other application
components. The Alternative reference type connects patterns that cannot be combined but
form different approaches to solve a similar problem. This way, if a reader finds a pattern
relevant to his or her problem, but the solution is unsuitable, the alternative references may
point to similar patterns that may be applicable instead. The Composition reference is used
to point to other patterns that are used in the solution of the described pattern. More complex
patterns may, thus, combine other patterns to form more complex solutions. The KnownUse
reference type is the only one that does not connect two patterns. Instead, it connects
patterns with solutions documented during the information collection phase. Readers may
use these references to learn how the described pattern may be applied from existing
solutions. While most of these reference types are special forms of the generic RelatedTo
relationship type, modeling them explicitly enables a better interpretation by supporting tool
chains to ensure a higher level of usability to users.

5 http://www.cloudcomputingpatterns.org/Blob_Storage
6 http://www.cloudcomputingpatterns.org/Strict_Consistency
7 http://www.cloudcomputingpatterns.org/Eventual_Consistency
8 http://www.cloudcomputingpatterns.org/Data_Access_Component

RefType'

ConsiderA0er' Alterna4ve' Composi4on' Known'
Use'

Page 12 of 26

4.1.3. Extension of the Solution Format

The cloud computing patterns (Fehling et al., 2014) have been extracted from information
sources, such as cloud provider documentation or documentation about existing applications.
See Fehling et al. (2012) for a detailed list. These information sources are captured as
solutions in scope of the pattern metamodel. For every information source, the following
aspects have been collected. The metamodel has been extended respectively as shown in
Figure 9.

Figure 9 - Extension for specific Solution Format of Cloud Computing Patterns
Author, Source Name, Address, and Data capture general information about the information
source. Summary is a Textual Element that briefly captures the essence of the solution. The
domain is used to classify information sources. A large set of Architectural Domains has
been identified that is relevant for cloud applications (Fehling et al., 2012). Similarly,
challenges, such as scalability, performance etc. are used to group information sources.
Finally, the summary is abstracted to provider-independent statements. These abstractions
were identified in multiple information sources to find patterns. Exemplary information source
for cloud computing patterns:

Author: Jinesh Varia
Source Name: Cloud Architectures
Address: http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
Date: 01. Jun 08
Summary: Cloud resources should be started and stopped automatically.
Domain: Cloud Application Management
Challenge: Scalability
Abstraction: Cloud resource management has to be automated.
Please download the pattern authoring toolkit9 (Fehling et al., 2012) for a complete list of
information sources from which a pattern has been abstracted.

4.2. Extending the Pattern Metamodel for Costume Patterns
Patterns in the domain of costumes in films require analogous extensions of the pattern
metamodel as explained for cloud computing patterns above. Although, the explained

9 http://cloudcomputingpatterns.org/authoringtoolkit.zip

Solution

Author+/+
Institution

Source+Name

Address+/+
Location

Date

Summary+:+
TextualElement

Domain+:+
Arch.+Domain
Challenges+:+
Challenge

Abstraction+:+
TextualElement

Challenge

Availability …

Abstract+:+
Architectural+

Domain

Fundamentals …

1

1

*

*
Information

Source

Page 13 of 26

extensions are not considered to be final at the moment due to ongoing research in the field
of costume patterns it is worth to introduce the current structure of costume patterns at this
point. As with cloud computing patterns, there are also specific extensions in order to
incorporate special needs for costume patterns, which are explained in the following. The
general metamodel is extended at three locations depicted in Figure 10. The extension
points one and two detail Intro and Sections according to costume patterns, while extension
point three details the format solutions are captured into.

Figure 10 - Overview of Extension Points for Costume Patterns
4.2.1. Extension of the Pattern Format

The costume pattern format likewise extends the metamodel by costume specific intro
elements as well as sections. Figure 11 lists the two intro elements Purpose and Icon used in
costume patterns to specify the extension point one. A costume pattern contains an icon that
illustrates the patterns quintessence similarly to cloud computing patterns. Also, it
additionally contains a brief textual description of its purpose – similar to the intent of cloud
computing patterns. Thus, a reader can realize the effect of a costume without studying the
pattern as a whole.

Figure 11 – Extension for specific Intro Elements for Costume Patterns
The second extension point deals with specific sections of a costume pattern as illustrated in
Figure 12. While Context and Related Patterns are similar to the corresponding sections of
the cloud computing patterns, there are differences in the presentation of the result and
respectively the purpose. Description details the Purpose section of the intro by means of
textual explanations.

Figure 12 - Extension for specific Sections of Costume Patterns

Referenceable*
Document*

Name*:*String*

Solu5on* Pa7ern*

ImageElement*

Content*:*IMG*

TextualElement*

Content*:*String*

Sec5on*

Name*:*String*

Textual*
Reference*

Type:*RefType*

Global*
Reference*

Type:*RefType*

Intro*

RefType*

RelatedTo* InContextOf*

reference_to

reference_to
reference_from

displayed_as 1

0…1

0…* 0…* 0…*

1
1

1

0…1

0…1

0…1

0…1

0…1 0…1

0…1

0…1

Category*
0…* *
categorized_by
*

0…* parent

2*

1*

3*

Intro&

Purpose& Icon&

Sec$on'

Composi$on' Applica$on' Context' Descrip$on' Related'
Pa7erns' Known'Uses'

Page 14 of 26

The solution of a costume pattern is provided by a composition graph of all parts of a
costume within the Composition section. The formal language of a costume’s composition
graph is described in Barzen & Leymann (2014). Thus, composition captures all parts a
costume is made of, the so-called base elements and how they are worn layer by layer. The
composition graph is represented graphically as exemplarily depicted in the excerpt of the
“High-School-Queen” pattern shown on the left of Figure 13. Besides the graph structure, all
base elements are textually listed as well, what is omitted in the figure for the sake of brevity.

Figure 13 - Composition and Application of the exemplarily
High School-Queen Pattern

Further, the section Application additionally provides graphical instructions about how to
dress an actor step by step in the costume as depicted on the right of Figure 13. Finally, the
Known Uses section covers a list of concrete solutions captured by the costume solution
repository in order to establish a clear pattern provenance. Thus, costume patterns are linked
to entries of the solution repository. This allows navigation from generic solution knowledge
within a costume pattern to detailed concrete solution knowledge in the form of captured
costumes of films.

4.2.2. Extension to the Solution Format

The extension of the solution element of the generic pattern metamodel shown at point three
in Figure 10 is based on the technical report (Barzen, 2013) where a set of descriptive
costume properties are introduced and discussed. Solutions in the domain of costumes in
films are documented costumes. Thus, solutions are gathered by investigating clothes worn
by roles in specific film scenes. Since costumes vary extremely in their appearance it is
necessary to define a common structure to achieve comparable descriptions of costumes
captured by different solution collectors. So, in contrast to text-based descriptions as
presented in the solution format of cloud computing patterns, costumes are described by
assigning categorical properties to costume entities. This assures that the same properties
are considered and predefined categorical values are assigned for each costume. Hence, a
fundus of solutions is gathered, while the solutions’ properties enable to query and analyze
solutions in order to identify patterns. Since a costume consists of all clothes worn by an
actor in a scene it is also important to capture which items of clothing are part of the
costume. The items a costume is made up are called base elements. Base elements are
composed to a costume, so the composition structure has to be captured (Barzen &
Leymann, 2014). Finally, base elements are comprised of primitives, which are the atomic
elements of investigation in the context of costumes in films. In the following, those
circumstances are put into an extension of the solution metamodel for costumes in films. The
general metamodel adaption is depicted in Figure 14.

Composition Application

Page 15 of 26

Figure 14 - General extension of the solution metamodel for costumes
The extended solution metamodel introduces the entities Costume, Base Element and
Primitive as the conceptual parts a concrete costume solution consists of. While Costume
captures all holistic properties valid for a costume in whole, Base Element captures
properties specific to components (e.g., a jacket or a shirt etc.) of the costume. Since each
base element in turn is made of several parts, properties to describe those parts are
captured by Primitive. Composition indicates the composability of base elements in order to
describe how parts of a costume are precisely worn together (e.g., shirt is worn on body,
jacket is worn above shirt). For each relation between base elements of a costume,
composition information is stored to finally represent a composition graph of all base
elements of a costume. Consequently, a composition relates a subject base element via an
Operator to an object base element. The semantics of a relation between two base elements
are captured by the Operator as shown in Figure 15. For the sake of brevity the illustrated
operators are just a subset of all available types, which can be studied particularly in Barzen
& Leymann (2014) and Schumm et al. (2012).

Figure 15 - Composition Types
Further, the class Property shows the generic and structured manner of the description of
costumes in the way, that predefined properties are assigned to costumes, base elements as
well as primitives in order to provide descriptive categorical information about them.

Before the refinement of properties is detailed for costumes the general principles valid for all
properties is explained in detail. Properties are the means to define a set of characteristics,
which are investigated in order to describe a costume, its base elements as well as their
primitives. For instance, if we investigate how to describe the color of a base element in
detail, we encounter that there is a multitude of different colors to just describe a plain yellow
shirt, since there are so many nuances of the color yellow: yellow, translucent yellow, maize,
bright yellow, dark yellow, brazen yellow etc. So, to handle the vast number of different
possible values for properties it is inevitable to predefine a subset of values presenting the
granularity needed to capture the details relevant for the specific domain. For this purpose,
sets of categorical descriptive values for properties are defined by means of taxonomies to
formulate a valid domain model in order to describe costumes in films (Barzen & Leymann,
2014). Figure 16 exemplarily shows branches from the taxonomy of valid values for the
property color (Barzen, 2013). The depicted taxonomy limits the number of valid yellow tones

Solu%on'

Costume' Base'Element' Primi%ve'

Property'

Typ:'String'
Value'

subject object

Composi%on'

Type:'Operator'

Operator(

WornOn(WornAbove(A.ached(Superimposed(…

Page 16 of 26

to exactly four – vanilla, lemon, postal-yellow and amber. Thus, it shows the principle to limit
valid values through means of taxonomies by example. In total, the taxonomy contains
38 colors, although not all of them are depicted in the figure since the branches of
achromatic, secondary, tertiary and glossy colors are not extended.

Figure 16 - Taxonomy of valid values for the property color
This way, a predefined set of properties limits the number of characteristics to describe a
costume on the one hand and reduces the vast quantity of possible values for each property
on the other hand. The set of values that are sufficient to detail each property is defined by
domain experts.

4.2.3. Costume Properties

The detailed extension of the solution metamodel is exemplarily shown below in Figure 17 by
the entity Costume. Properties assigned to a costume provide information about the
characteristics of a costume as an complete outfit, i.e., details about the parts of a costume
are not covered. Valid properties are depicted in Figure 17 as attributes of the entity
Costume. ShortText and SceneDescription are used to provide a rough textual description of
the costume and the scene, in which it occurs. In order to understand how often and how
long a costume can be seen during a film, all occurrences are captured by means of
Timecodes. Therefore, a Timecode captures the starting time and the end time of each
occurrence of a costume. DestinationOccurrence determines if the scene is played indoors,
outdoors or both, indoors and outdoors. RelevantForStereotype indicates if a costume has to
be considered to describe the stereotype (see next section) of the role wearing the costume
or not. DominantColor is used to define the main color of a costume that dominates, although
baseelements and primitives can have additional colors to this. Same applies to
DominantFunction and DominantStatus, while they define the main purpose, like if the
costume contains the function of being business clothes, sport clothes or rain protection
clothes etc., respectively if it is clean, damaged, wet or ironed etc. CharacterTraits lists all
traits the role shows in the scenes while wearing the costume. This shall support to
understand how costumes facilitate specific character traits of roles. A list of specific
modifications of the role, such like if he or she is without make-up or if he or she is blond with
curly hair etc. is provided by ModificationsOfBody. Since a costume often occurs several
times during a film, and because the interaction of the scenery and a costume has an effect
on what a costume “tells” us, also the places, where the scenes play are stored in a list of
Venues. Each Venue captures the concrete venue like United States of America or Germany
etc. as well as a textual description like “restaurant” or “office” etc. for that reason. Further,
the impressions of age as well as optionally the known age of the character during the

Page 17 of 26

scenes where the costume is worn are captured into ImpressionsOfAge. To understand a
costume’s communicative effect in relation to the period respectively to the concrete time the
costume is played in a film, a list of Seasons is provided. Therefore each Season is detailed
by a categorical placement in time, e.g, “Baroque” if the scene plays at that time as well as
the concrete time period by use of year dates if the information is available. Finally, the
daytimes a costume occurs during a film is captured in TimesOfDay.

Figure 17 - Valid properties to describe a costume
All properties respectively the complex types of the properties are populated by categorical
textual information predefined in (Barzen, 2013), numerals or boolean values that indicate
either yes or no. The entities Base Element and Primitive likewise provide a predefined set of
properties specific for base elements and primitives, in the manner of the explained entity
Costume. For the sake of brevity, Base Element and Primitive are not described in detail at
this point because the principle of predefined description categories in the form of properties
is applied to all parts of a costume, thus, also to Base Element and Primitive. So, the method
of extending the general metamodel to be suitable for all parts of a costume is applied
accordingly to Costume.

4.2.4. Categorization of costume solutions by roles and films

In order to bring costume solutions in line with a corpus of films, which means a
representative set of movies of a selected genre, they are related to characters as well as
concrete films (Barzen & Leymann 2014). Therefore, the solution metamodel for costumes is
extended by the entities Role and Film as depicted in Figure 18. They provide information to
categorize costumes into genres or even the costume fundus of a specific costume designer
by properties assigned to Film. Further, Role holds additional information about the generic
character of a role, due to the assignment of the property Stereotype to each role.
Stereotypes are manually assigned categories, which describe a role’s behavior and thus
provide a means to specify candidates for patterns. So, if several roles are annotated to be a
“Sheriff” or a “Saloon-Lady” the related costume solutions provide properties that have to be
queried and analyzed in order to find commonalities that make up corresponding patterns.

Costume(
ShortText(:(String(
SceneDescrip5on(:(String(
Timecodes(:(List<Timecode>(
Des5na5onOccurrence(:(String(
RelevantForStereotype(:(boolean(
DominantColor(:(String(
DominantFunc5on(:(String(
DominantStatus(:(String(
CharacterTraits(:(List<String>(
Modifica5onsOfBody(:(List<String>(
Venues(:(List<Venue>(
ImpressionsOfAge(:(List<ImpressionOfAge>(
Seasons(:(List<Season>(
TimesOfDay(:(List<String>(
(

ImpressionOfAge(
ImpressionOfAge(:(String(
Age(:(int(

Venue(
Venue:(String(
VenueFreeText:(String(

Season(
Season:(String(
From(:(int(
To(:(int(

Timecode(
start:(Time(
end:(Time(

Page 18 of 26

Figure 18 - The classes Film and Role provide means to categorize costume solutions
The introduced extension of the generic PatternPedia solution metamodel is due to the very
domain specific character of solutions. In contrast to the solution format of cloud patterns that
can be handled in the MediaWiki, the much more complex structure of solutions in the
domain of costumes in films is supported by a custom solution repository for costumes. The
extension of the generic metamodel for solutions to a very fine-grained structure of properties
to enable detailed querying of the data by means of data mining and analytics methods is
explained in the next section.

5. Implementation of the PatternPedia Tool Chain
The extensible pattern metamodel forms the basis for a web-based patterns and solutions
management tool. This PatternPedia tool chain can be extended just like the metamodel to
support different pattern formats, pattern reference types etc. The solution repository covered
in this section is specific to the costume domain to respect the intensive metamodel
adjustments covered in Section 4.2. Figure 19 displays the software stack of pattern
repository on the left and the software stack of the solution repository for costumes on the
right. Both stacks are based on Linux, Apache, MySQL and PHP (LAMP), while the solution
analyzer component of the solution repository is additionally based on Microsoft Windows
Server. As mentioned before, PatternPedia is then based on MediaWiki and its semantic
extensions. Since capturing of costumes requires a very detailed data structure as
mentioned in Section 4.2.2, a separate front- and backend was developed by means of
Angular.js10 and Node.js11, to implement an optimized environment to document costumes.
While Angular.js is used to provide a convenient web-based user interface the backend is
realized by Representational State Transfer (REST) web services implemented in Node.js.
Further, the solution analyzer is implemented upon the Microsoft business intelligence stack
using Microsoft SQL Server and Microsoft Analysis Services. In the following the user
interfaces shown on top of the software stacks in Figure 19 are covered in detail.

10 https://angularjs.org/
11 http://nodejs.org/

Solu%on'

Costume'Role'Film'
Genre':'String'
Designer':'String'
…'

Stereotypes':'List<String>'
…'

Page 19 of 26

Figure 19 - Software Stack of PatternPedia and the costume repository

5.1. Pattern Browser and Pattern Search
PatternPedia visualizes pattern documents as wiki articles. The pattern name, intent, icon,
and driving question are visualized similar to the book Fehling et al. (2014) to increase
accessibility of the content. In the left of the screenshot shown in Figure 20, the
categorization of the cloud computing patterns can be seen. The reference box seen on the
upper right part of the pattern visualization is automatically generated from references
contained in the textual elements of the pattern sections. Any typed references to other
pattern documents are shown here grouped by their type to enable quick navigation among
patterns. Search is currently based on the standard full text search functionality provided by
MediaWiki. The respective search field can be seen in the upper right part of Figure 20. In
Fürst (2013) additional functionality has been described to support the search of patterns
based on questionnaires and pattern references. This functionality will be integrated into the
PatternPedia tool chain in the future.

Figure 20 - Screenshot of the Public Cloud Pattern in PatternPedia

5.2. Pattern Input
Above the reference box seen in Figure 20, a link can be followed to edit a pattern document
using a pattern format-specific input form. This form is shown in Figure 21. It is comprised of
input fields according to the pattern format that has been specified using the pattern
metamodel. References to other patterns can be added anywhere in the textual elements of
these form fields.

LAMP

MediaWiki
Semantic
Extensions

Pattern
Input

Pattern
Browser

Pattern
Search

LAMP

Angular.js
Node.js

RESTB
Backend

Referencer Solution
Input

Solution
Browser

Solution
Analyzer

Page 20 of 26

Figure 21 - Editing the Public Cloud Pattern

5.3. Pattern Referencer
The pattern references box of the pattern browser is generated based on the typed
references among patterns, but other graphical visualizations may also be used. Figure 22
shows an interactive graph of the references among cloud computing patterns of the cloud
fundamentals category. Pattern names are arranged in a circle with links among them as
seen on the left of the figure. Whenever a user hovers one of these pattern names with the
cursor all incoming and outgoing references to and from this pattern are highlighted for
easier navigation.

Figure 22 - References of Patterns in the Cloud Fundamentals Category – without
highlighting (left) and highlighted incoming and outgoing references of the

“Infrastructure as a Service pattern” (right)

Page 21 of 26

5.4. Costume Browser and Costume Input
The solution repository for costumes displays costumes in a custom developed user
interface. The user interface is implemented using Angular.js and, therefore, is provided by a
web server as a single site web application. The website is delivered at the first request just
one time from the web server to the browser and interacts afterwards only by asynchronous
calls to the REST backend to load, manipulate or delete data. The display logic is handled by
Angular.js in the local browser, thus, the web server is not responsible to render web sites
dynamically.

The current entry point of the repository is a view containing a list of films of all captured
costumes. So, a user can navigate from a film to the roles that fall under the film. Based on
the roles of a film, he or she can navigate to the costumes of the roles. Therefore, in order to
enter a costume to the solution repository the corresponding film and role has to be entered
initially.

Angular.js is used in combination with the CSS framework Twitter Bootstrap12 to support fast
interactions with the data pool, while all control elements of the web site are especially
tailored to the entry process of new costumes. This is due to the time consuming effort that
has to be spend to capture costumes because of the input of many properties. Therefore, the
web front end of the solution repository is optimized to allow user inputs as efficient as
possible. This shows up in several specific implementations of control elements of the user
interface, e.g., a special tree selector that allows browsing the taxonomies of valid values for
properties. It is provided for cases when a user does not feel certain which of the values of a
taxonomy to key in. So, in this case a user can expand the several branches of a taxonomy
in order to navigate to the desired entry. The control element combines this with search
functionality that enables to directly enter values, if the user already knows them. Further, it
is often the case that multiple values have to be entered for a property. Therefore, special
control elements enable to efficiently enter many values for properties. All that is exemplarily
shown by an excerpt of the view to display, input and edit a costume in Figure 23 by the
property character traits at the bottom.

Further, the formally described composition of base elements in Barzen & Leymann (2014) is
supported by another control element depicted in Figure 24. A user can define the relation
between two base elements due to the selection of a subject base element and an object
base element and a specific operator that defines the semantic of the relation. By clicking the
blue plus button in the upper right corner two base elements are composed with specific
semantics. So, the shirt of the high school queen depicted in Figure 13 could be selected and
connected with the bra using the worn above relationship.

12 http://getbootstrap.com

Page 22 of 26

Figure 23 - User Interface to Enter, View and Maintain a Costume

Figure 24 - Control Element to Compose Base Elements

5.5. Costume Query
In order to derive patterns from concrete solutions an equivalence function has to be applied
on the fundus of solutions to indicate the similarity of several solutions (Barzen & Leymann,
2014). The extended metamodel for costumes enables to compare different solutions by
means of assigned categorical properties. Thus, solutions can be investigated based on their
properties to find similarities. In a current project, we investigate how to apply methods from
data mining and analytics to implement the equivalence function for costumes. The current
approach is to use data cubes, which are multidimensional data structures, to compare
costumes. Each property of a costume is handled as a dimension of a data cube. Since the
values provided by the taxonomies are of hierarchical manner, it is possible to implement

Page 23 of 26

aggregation functions that allow analyzing the data pool from different aggregation levels
within a data cube.

For example, to analyze the colors of costumes of a specific genre, the properties color and
genre are the dimensions of a data cube. Selecting one specific genre removes all costumes
from the analysis that do not belong to a role of a film of that genre. So, the complete fundus
of costumes can be limited in order to analyze specific questions. Further, an aggregation
function can be defined that counts all occurrences of a color in costumes. Each hierarchy
level in the taxonomy is, therefore, an aggregation level within a data cube. For instance,
since all specific variants of blue are hierarchically beneath blue tones, the taxonomy of
colors enable to role up and drill down along its branches as illustrated in Figure 25. There,
only results for the genre high school comedy are shown due to a filter applied to the genres
property. Further, a list of films and costumes to those films is indicated on the left. The
dimension of colors is drilled down to the most detailed level for the blue tones (rectangle
one), while yellow and red tones are not expanded (rectangle two). Therefore, the number of
occurrences of the color blue in costumes is shown for every fine-grained tone of blue, but is
also summed up for all blue tones. Since yellow tones and red tones are not expanded, only
the values of the aggregation level of the respective tones are shown. This demonstrates that
the aggregation function calculates the number of occurrences for all hierarchical levels. The
analysis is also supported by means of graphical representations of the data, as also
depicted by the bar chart in Figure 25 at the bottom area. This enables to analyze how often
several colors are used in costumes of a specific film genre and may lead to general
statements about the colors of costumes for a genre.

If this approach is generalized to cover all properties of costumes, base elements, primitives,
roles and films, it is possible to detect commonalities of costumes in order to abstract the
essence into patterns. Thus, data cubes can be used to create implementations of the
formally described equivalence function in Barzen & Leymann (2014).

Figure 25 - Analysis of Costume Properties by Means of a Data Cube

Page 24 of 26

6. Summary and Outlook
In this article, we introduced PatternPedia as a tool chain to support the capturing of existing
solutions as well as the identification and authoring of patterns. An extensible pattern
metamodel was used to describe the data structure supported by this tool chain to capture
solutions, patterns and references among them. The tool chain was used in the domains of
cloud computing and costumes with respective metamodel extensions. As the extensions for
solution documents in the domain of costumes were very significant, a custom tool for the
capturing of costumes has been presented.

In the future, the applicability of PatternPedia for the management of additional pattern
catalogs is planned. The functional overlap with other existing pattern repositories (see
Section 2) is currently being investigated aiming at the integration of complementary
functionality. Especially, rating and recommendation of patterns will be considered. Another
important functional aspect is the accessibility of managed patterns while the catalog grows
in size. In Fehling et al. (2012), Davidkov (2014) and Strauch, Andrikopoulos, Thomas,
Karastoyanova, Passow & Vukojevic-Haupt (2013) decision support methods and
functionality are covered to find applicable patterns easily, for example, using questionnaires.
Such functionality should be integrated with PatternPedia as well to help users find patterns
applicable in their use case more quickly. Additionally, analysis functionality for the costume
solution repository is going to be further developed in order to support abstraction and
generalization of concrete solution knowledge into patterns.

7. Acknowledgements
The work published in this article was (partially) funded by the Co.M.B. project of the
Deutsche Forschungsgemeinschaft (DFG) under the promotional references SP 448/27-1,
LE 2275/5-1.

8. References
Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language – Towns Buildings

Construction. Oxford: Oxford University Press.

Barzen, J. (2013). Taxonomien kostümrelevanter Parameter: Annäherung an eine
Ontologisierung der Domäne des Filmkostüms. Technischer Bericht Nr. 2013/04,
Universität Stuttgart. Retrieved from http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=TR-2013-04&mod=0&engl=0&inst=FAK.

Barzen, J., & Leymann, F. (2014). Costume Languages as Pattern Languages.

Buschmann, F., Meunier, R., Rohnert, H., & Stal, M. (1995). Pattern-Oriented Software
Architecture – A Pattern System. New York: Wileys and Sons.

Davidkov, L. (2014). Pattern-basierte Optimierung des Umwelteinflusses von
Geschäftsprozessen Diploma Thesis Nr. 3591, University of Stuttgart.

Fehling, C., Ewald, T., Leymann, F., Pauly, M., Rütschlin, J., & Schumm, D. (2012).
Capturing Cloud Computing Knowledge and Experience in Patterns. Proceedings of
the IEEE International Conference on Cloud Computing (CLOUD).

Page 25 of 26

Fehling, C., & Leymann, F. (2014). PatternPedia: a Wiki for Patterns. Technical Report No.
2014/03, University of Stuttgart.

Fehling, C., Leymann, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud Computing
Patterns. Wien: Springer.

Fowler, M. (2002). Patterns of enterprise application architecture. Boston: Addison-Wesley.

Fürst, N. (2013). Semantisches Wiki zur Erfassung von Design-Patterns Diploma Thesis No.
3527, University of Stuttgart.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: elements of
reusable object-oriented software. Boston: Addison-Wesley.

Hanmer, R. (2012). Pattern-oriented software architecture for dummies. Chichester: John
Wiley & Sons.

Hanmer, R. (2013). Patterns for fault tolerant software. Chichester: John Wiley & Sons.

Harrison, N. (1999). Language of Shepherding. Proceedings of the Conference on Pattern
Languages of Programs (PLoP).

Hohpe, G., & Woolf, B. (2004). Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Boston: Addison-Wesley.

Iba, T., & Isaku, T. (2012). Holistic Pattern Mining Patterns. Proceedings of the Conference
on Pattern Languages of Programs (PLoP).

Object Management Group (2011). Unified Modeling Language (UML). Available at:
http://www.omg.org/spec/UML/.

Leuf, B., & Cunningham, W. (2001). The Wiki way: quick collaboration on the Web. Boston:
Addison-Wesley.

Lucrédio, D., de Almeida, E. S., Alvaro, A., Garcia, V. C., Piveta, E. K. (2004). Student’s
PLoP Guide: A Pattern Family to Guide Computer Science Students during PLoP
Conferences. Proceedings of the Latin American Conference on Pattern Languages
of Programs (SugarLoafPLoP).

Meszaros, G. (1997). Pattern Language for Pattern Writing. Pattern languages of program
design 3, 529-574.

Raistrick, C., Francis, P., Wright, J., Carter, C., & Wilkie, I. (2004). Model driven architecture
with executable UML (Vol 1). Cambridge : Cambridge University Press.

Reiners, R., Falkenthal, M., Jugel, D., & Zimmermann, A. (2013). Requirements for a
Collaborative Formulation Process of Evolutionary Patterns to Support Knowledge
Management. Proceedings of the European Conference on Pattern Languages of
Programs (EuroPLoP).

Schumm, D., Barzen, J., Leymann, F., & Ellrich, L. (2012). A Pattern Language for Costumes
in Films. Proceedings of the 17th European Conference on Pattern Languages of
Programs (EuroPLoP).

Strauch, S., Andrikopoulos, V., Thomas, B., Karastoyanova, D., Passow, S., & Vukojevic-
Haupt, K. (2013). Decision Support for the Migration of the Application Database

Page 26 of 26

Layer to the Cloud. Proceedings of the IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), 639-646.

Wellhausen, T., & Fießer, A. (2011). How to write a pattern?. Proceedings of the European
Conference on Pattern Languages (EuroPLoP).

Willig, D. (2014). Kollaborative Musteridentifikation basierend auf WIKI-Technologien
Diploma Thesis No. 3533, University of Stuttgart.

World Wide Web Consortium (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition).
Available at: http://www.w3.org/TR/REC-xml/

Zdun, U. (2007). Systematic Pattern Selection Using Pattern Language Grammars and
Design Space Analysis. Software: Practice & Experience, 37 (9), 983-1016.

Zdun, U., & Avgeriou, P. (2005). Modeling architectural patterns using architectural
primitives. Proceedings of the 20th ACM Conference on Object-Oriented
Programming, Systems, Languages & Applications (OOPSLA), 133-146.

All links were last followed on 08th January 2015.

9. About the author/s:
Christoph FEHLING is a research associate and Ph.D. student at the Institute of Architecture
of Application Systems (IAAS) at the University of Stuttgart, Germany. His research interests
include IT architecture patterns focused especially on cloud computing. Christoph received a
Dipl.-Inf. in computer science from the University of Stuttgart. He is a member of the Hillside
Group and author of the book "Cloud Computing Patterns" (Springer, 2014).

Johanna BARZEN studied media science, musicology and phonetics at the University of
Cologne and gained first practical experience while working for some major television
channels like WDR and RTL. Next to this she studied costume design at the ifs (international
film school Cologne) and worked in several film productions in the costume department in
different roles. Currently she is Ph.D. student at the University of Cologne and research staff
member at the Institute of Architecture of Application Systems (IAAS) at the University
Stuttgart doing research on vestimentary communication in film.

Michael FALKENTHAL is research associate and Ph.D. student at the Institute of
Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany. He
studied business information technology at the Universities of Applied Sciences in Esslingen
and Reutlingen focussing on business process management, services computing and
enterprise architecture management. Michael gained experience in several IT transformation
and migration projects of small-, medium- and big-sized companies. His current research
interests are fundamentals on pattern language theory as well as cloud computing.

Frank LEYMANN is a full professor of computer science and director of the Institute of
Architecture of Application Systems (IAAS) at the University of Stuttgart, Germany. His
research interests include service-oriented architectures and associated middleware,
workflow- and business process management, cloud computing and associated systems
management aspects, and patterns. Frank is co-author of more than 300 peer-reviewed
papers, more than 40 patents, and several industry standards. He is on the Palsberg list of
Computer Scientists with highest h-index.

