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Abstract—This work is motivated by the increasing impor-
tance and business value of data in the fields of business process
management, scientific workflows as a field in eScience, and
Internet of Things, all of which profiting from the recent
advances in data science and Big data. We introduce a
management life cycle that renders data as first-class citizen in
service choreographies and defines the functions and artifacts
necessary for enabling transparent and efficient data exchange
among choreography participants. The inherent goal of the life
cycle, functions and artifacts is to help decouple the data flow,
data exchange and management from the control flow in service
compositions and choreographies. This decoupling enables peer-
to-peer data exchange in choreographies and provides the
means for more sophisticated data management and exchange,
as well as data exchange and provisioning optimization.

Keywords-Service Choreographies; Choreography Manage-
ment Life Cycle; Data Flow Optimization; Transparent Data
Exchange

I. INTRODUCTION

Service-oriented architectures (SOA) have seen wide
spread adoption during the last decade. The concept of
composing small, self-contained units of functionality, so-
called services, over the network has found application in
many other research areas and application domains like
Business Process Management (BPM), Cloud Computing,
the Internet of Things (IoT), the emerging paradigm of
microservices, eScience and in particular scientific workflows.
The specification of service compositions can be realized
through various modeling notations following either the
service orchestrations or the service choreographies paradigm.
Service orchestrations are also known as workflows and are
modeled from the viewpoint of one party that acts as a
central coordinator [1]. In contrast, service choreographies
provide a global perspective of the potentially complex
conversations between multiple interacting services without
relying on a central coordinator. Each party that takes
part in the collaboration, a so-called participant, is able to
model its conversations with the other parties by specifying
corresponding message exchanges with the participants [2],
[3]. Participants in a choreography communicate in a direct,
peer-to-peer manner without requiring any central coordinator
that controls their interaction.

The business process technology has been successfully
applied in the field of eScience. Service choreographies are
successfully applied as a means to capture collaborations from

a global perspective in both the business domain [2], [4], [5]
and in eScience for automating computer-based experiments
and simulations [6]–[8]. With the advances in the fields
of Big Data and IoT the importance and value of data is
increasing significantly [9], [10], but the current state of
the art in service choreographies, despite some promissing
results showcasing performance benefits [11]–[14], fails to
provide an adequate solution that allows data to assume its
deserved primary role.

Therefore, in order to account for the crucial importance
of data in service choreographies, in this paper, we extend the
traditional BPM life cycle with data management capabilities
and thus provide an approach that allows treating data
exchange in choreographies and orchestrations as a first-
class citizen. Towards the same goal, we introduce the
Transparent Data Exchange (TraDE) middleware layer that
allows for efficient and transparent exchange of data between
the participants of service choreographies by decoupling their
data flow from the control flow.

The paper is structured as follows: Section II presents
the management life cycle of data-aware service choreogra-
phies based on the hybrid approach of controlling service
compositions through centralized workflow engines while
conducting the data flow in a distributed, peer-to-peer manner.
Based on the life cycle two approaches, top-down versus
bottom-up, for the modeling and execution of data-aware
service choreographies are discussed, with focus on the
TraDE methods and artifacts for data modeling, exchange
and optimization. Finally, the paper concludes with related
work in Section III, and a summary of our findings together
with an outlook on future work in Section IV.

II. DATA-AWARE SERVICE CHOREOGRAPHY
MANAGEMENT LIFE CYCLE

In Figure 1, based on the traditional BPM life cycle [15]
and its extensions for choreographies in [2], [16], we present
the life cycle of data-aware service choreographies (see
also [17]). Throughout the description of each of the life
cycle phases and their relationships in the scope of both a top-
down and a bottom-up approach, our major focus will be on
how the Transparent Data Exchange methods, we introduce
with this work, support data-awareness as a first class citizen.
The TraDE Methods bundle a set of data-related methods
and transformations to support data-awareness throughout
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Figure 1. Data-Aware Service Choreography Management Life Cycle [17]

the whole life cycle, as well as potential optimizations on
the data perspective of choreographies.

A more detailed view of the extended life cycle and the
artifacts each phase uses as input or produces as output,
the role of the TraDE Methods, as well as the compar-
ison between the bottom-up and top-down development
of choreographies is presented in Figure 2. In our work,
we abstract away from any specific terms or constructs
through formal models on both the choreography and the
process level, and thus maintain the independence of the
approach from the various existing modeling languages for
choreography and process model specification. This allows
us to apply our approach to any choreography and process
modeling notation by defining a mapping from the formal to
the concrete models. We use the concept of Choreography
Model Graphs (CM-Graphs) introduced in [18] and Process
Model Graphs (PM-Graphs) defined in [19] as underlying
formal notation (metamodel). PM-Graphs provide a formal
foundation and specify process models as directed acyclic
graphs, where the nodes represent activities and the edges
the control connectors (control flow) between the activities.
An activity expresses a task or piece of work to perform,
like invoking a service or manipulating data. CM-Graphs are
based on the PM-Graph definition and introduce the ability to
couple two or more existing PM-Graphs while obfuscating
all activities that are not involved in the interconnection
(coupling). We use the term communication activity to refer to
the remaining activities that are performing the conversations
between the participants, i. e., activities that are sending or
receiving messages. The coupling between the PM-Graphs
is specified through a set of directed edges where each edge
connects a communication activity from one PM-Graph with
a communication activity of another PM-Graph. These special
interconnection edges are called message links and represent
a conversation between two choreography participants. Since
the message links also carry the data to be exchanged between
choreography participants, the data flow and hence the data
exchange is tightly coupled to the control flow between

choreographies. Other constructs of the CM-Graph or PM-
Graph metamodel, required in the context of this work, are
introduced when necessary in the following sections.

Top-down Approach
We assume that during a life cycle loop, in each phase all

successor phases have access to the knowledge and artifacts
of the current and all predecessor phases, as well as the
history of previous life cycle loops. Following the top-down
approach means that a new choreography model is specified
first, based on which a collection of implementing process
models is generated and refined.

A. Modeling
In the Modeling phase the stakeholders, e. g., domain

experts of different fields in eScience or business specialists
from several companies in the business domain, define their
interactions by specifying corresponding participants and their
conversations (message exchanges) through a choreography
model. The choreography model can therefore be seen as
a collaboration contract on which all participants agree.
BPEL4Chor models [20], Business Process Model and
Notation (BPMN) collaboration models [21], Web Services
Choreography Description Language (WS-CDL) models1 or
Let’s Dance models [22] can be used, for example, as under-
lying modeling notation to represent choreography models.
Up till now, the data exchanged between the participants,
specified through the collaboration contract, is tightly coupled
to the specification of the conversations. In this work, we
introduce an explicit data model and data flow between the
participants in a choreography. The resulting Choreography
Data Model (CDM) provides the foundations for the data-
awareness of choreographies and supports (semi-)automated
phase transitions and model enhancements throughout the
life cycle.

The result of the Modeling phase, depicted in part A
of Figure 2, is a manually defined choreography model
that comprises two or more participants, their interaction
logic and a Choreography Data Model (CDM). The CDM
can be automatically generated based on the modeled
message exchanges or manually defined by the modeler.
The interaction logic is specified through corresponding
communication activities and message links between the
participants. The CDM consists of a set of Data Objects
that are explicitly connected with communication activities,
participants or associated to message links through so-called
data links. A Data Object has a unique identifier and contains
one or more Data Elements. A Data Element has a unique
name from the scope of its surrounding Data Object and
a reference to a definition of its data structure, e. g., using
XML Schema Definitions2. The Data Object can be seen as

1W3C, Web Services Choreography Description Language Version 1.0.
Online available: http://www.w3.org/TR/ws-cdl-10/

2W3C, XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
Online available: http://www.w3.org/TR/xmlschema11-1/

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/xmlschema11-1/
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Figure 2. Top-down vs. bottom-up approach for the modeling, enactment and optimization of data-aware service choreographies

a named envelope for a collection of typed containers (Data
Elements) that hold the corresponding data values during
run time. We distinguish between Data Objects that can be
instantiated only once (single-instance) and Data Objects that
hold a collection of values (multi-instance) during run time.
Multi-instance Data Objects are useful to hold a collection of
identically structured values that can be processed with the
same sequence of activities through a loop, while the loop
counter can be dynamically set to the number of elements
of the collection during run time.

At the end of the modeling phase, a Transformation
step takes place in which a high-level process model (also
known as abstract workflow model) is generated for each
of the specified choreography participants. The generated
process models together implement the globally agreed
collaboration behavior and are used as templates in the
Refinement phase. These processes are not directly executable
since they lack required details like the internal process
logic and the required run time environment configuration
data for successful deployment. BPMN process models [21]
or abstract Business Process Execution Language (BPEL)

process models [23] can be used to represent these high-level
processes. An example of how such a transformation may
look like is described in [24] where BPEL4Chor is used as
choreography notation and BPEL to express the generated
process models.

The transformation itself is performed in three steps.
In the first step the participants communication logic are
transformed from the choreography model into abstract
workflow models. From the perspective of our underlying
metamodel this means that the PM-Graphs contained in
the choreography model are split and stored as new inde-
pendent process models. In the second step the specified
data dependencies between Data Objects and participants
in the choreography model are analyzed using the TraDE
methods and the results are collected in a Choreography Data
Dependence Graph (CDDG). We rely on dependency analysis
concepts well known from the domain of programming
languages and compiler theory where the control and data
dependencies between the statements of a program are
identified and expressed in form of graphs to optimize the
scheduling and execution of a program [25], [26]. The CDDG



is a representation of the data dependencies between the
choreography participants and we will use it to enrich the
generated process models and to optimize the data placement
during deployment and the data staging and exchange during
later life cycle phases. A CDDG is a directed graph where
the nodes are choreography participants, activities and Data
Objects, and the edges the read and write dependencies
between them (see part A∗ of Figure 2).

During the last step, the data-specific transformations will
take place, i. e., the data dependencies collected in the CDDG
are incorporated into the abstract workflows or PM-Graphs,
respectively, in form of so-called Staging Elements, resulting
in the artifacts shown in part A∗ of Figure 2. We distinguish
between Pre- and Post-Staging Elements, where the former
are triggered before the activity implementation is executed
and the latter after the activity implementation is finished.
With Pre-Staging Elements data from a Data Object can be
written to the input container of an activity or the data from
the input container can be written to a Data Object. The
Post-Staging Elements define similarly the staging of data
between a Data Object and the output container of an activity.
For each data dependence edge in the CDDG one Staging
Element is generated in a workflow and is associated to the
activity or participant which is referenced by that edge.

The structure of Pre- and Post-Staging Elements is identical
and contains a Reference to a Data Object, a Map between
the Data Elements of the referenced Data Object and the
data elements of the activities’ input or output container, a
Staging Method (e. g., push, pull or transfer) that should be
invoked during run time, one or more Trigger Conditions that
specify under which conditions a Staging Element should be
activated and a set of Fault Handling Strategies. The staging
elements are used to enact the transparent data exchange in
choreographies.

B. Refinement

During the Refinement phase IT specialists refine the
generated high-level process models to make them executable.
The result is a collection of executable process models (also
known as workflow models) depicted in part B of Figure 2.
IT specialists of the different participants introduce new
activities and specify the control flow as well as the data
flow inside the workflows by connecting activities with so-
called data connectors. Data connectors are comprised by
data maps that define the explicit mapping between the data
elements of two containers. The data connectors and the
corresponding data maps provide important input for our
TraDE methods. After the manual refinement is completed
we are analyzing the workflow models to extract the new
information about the internal data dependencies and the
data flow. For each executable workflow model a so-called
Participant Data Dependence Graph (PDDG) is generated.
For this, the CDDG created during transformation is split
into subgraphs where each subgraph represents the data

dependencies of one participant (PDDG). All activities added
during refinement that read or write data from or to a Data
Object are added to the PDDG. The resulting initial PDDGs
are then refined and extended with the knowledge gained from
the analysis of the refined workflows. For example, activity
D shown in part B of Figure 2 is such an added activity
that reads data from the input container of the workflow
which depends on Data Object D. Furthermore, for each
data connector between the containers of two activities a
corresponding data dependence edge is added to the PDDG,
if at least one of the activities depends on a Data Object. The
specified data maps are used to detail the dependencies in the
PDDG on the level of the Data Elements, i. e., which parts
of the Data Object are read or written by an activity. For
example, in Figure 2 activity B depends on the data produced
by activity D represented by the data connector from the
output container of activity D and the input container of
activity B. In addition, the data map of activity D shows
that it only reads Data Element δ of Data Object D which is
also incorporated in the resulting PDDG model as a label on
the data dependence edge between the two nodes. After the
refined data flow on the level of the workflows is analyzed
and the PDDGs are updated, also the model element to which
a Staging Element is associated after transformation can be
potentially optimized. For example, the Pre-Staging Element
associated to Participant 1 which represents the dependence
edge from Participant 1 to Data Object D, can now moved to
activity D, as depicted in part B of Figure 2, since no other
activity of the participant depends on the data. In addition
to the described refinements, the IT specialists also specify
the required configuration data for the targeted run time
environment to enable the deployment of the workflows.

C. Deployment

In the Deployment phase the executable workflow models
are packaged in the required format and deployed to the
target workflow middleware. Depending on the requirements
of the collaborating parties the deployment distribution can
range from deploying all models to one central workflow
middleware, to deploying each model to a different mid-
dleware node. We distinguish between static and dynamic
strategies for the deployment of the workflows. Therefore, the
TraDE methods have to take into consideration all available
information, e. g., data dependence graphs, monitoring data
or manually defined deployment requirements, to find an
optimal deployment distribution. In the context of this work,
we are focusing only on the static strategies, whereas dynamic
scenarios will be investigated in future.

At the end of the Deployment phase the choreography is
deployed and prepared for execution (see part C of Figure 2),
i. e., all workflow models and PDDGs are deployed to
corresponding WfMS and their associated TraDE nodes,
respectively.



D. Execution

The deployed executable workflow models enter the Execu-
tion phase upon instantiation. With this the choreography that
these workflows realize is also being executed. In the follow-
ing, we use the term choreography instance introduced in [27]
to describe these groups of interrelated workflow instances,
without implying that there is a central entity coordinating
the workflow instances according to the choreography model.
During the execution of the choreography instance each
of the participating workflow instances produces a set of
events that provide information about executed activities,
control and data flow, occurred exceptions or faults. These
events are analyzed through the TraDE methods to detect
potential data flow optimizations during the choreography
instance execution, e. g., in terms of optimal data placement,
transferring data in advance based on predictions calculated
from monitoring information or optimal data life cycle
management, so that the data is only stored as long as required
and as short as possible. Therefore, the TraDE middleware
uses the information collected in the PDDGs and the CDDG
as well as the Staging Elements together with the event data
of previously executed choreography instances. Part D of
Figure 2 shows an example in which the PDDG is used to
find out which Data Elements of Data Object B have to be
exchanged between the TraDE nodes A and B, so that they
can be read by the workflow model executed by WfMSb.

E. Monitoring

In order to Monitor choreography instances the event data
of the involved workflow instances needs to be collected,
analyzed, combined and interpreted. For example, the status
of the choreography instance has to be calculated through
the combination of the status of all workflow instances. The
resulting data can be expressed again in form of higher-
level choreography events, so that the interpretation and
combination has to be done only once and other interested
parties are able to directly consume the choreography events
instead of interpreting the lower-level workflow events on
their own. An environment that enables the monitoring
of choreographies is introduced in [28]. For data-aware
choreographies the explicitly modeled data flow and the data
flow adaptations during run time triggered by optimization
have to be monitored, too.

For this reason, since the TraDE middleware helps decou-
ple the data and the control flow of choreographies, data-
related events that are emitted by the TraDE middleware
have to be defined to allow the monitoring of the data
staging, placement and exchange and thus to ensure that
the optimized data flow is still carried out according to the
choreography models. Correlation of data-related events is
an open issue that has to be addressed on the level of WfMS
and TraDE middleware. The data-related events are collected
per TraDE node in an event database. Since the event data
of a choreography is distributed over multiple databases

as shown in part E of Figure 2, an overall identifier is
required to correlate the events with each other. For example,
a choreography instance identifier can be introduced on the
level of the WfMS and TraDE middleware which can be
used to identify and correlate all events of one choreography
instance [28].

F. Analysis

The goal of the Analysis phase in conjunction with the
modeling phase is to produce choreography and process
models that are optimal with respect to a set of requirements.
Already existing models from earlier life cycle iterations
together with their monitoring data are therefore also taken
into account. Established techniques and methods to iden-
tify optimization possibilities are, for example, the use of
modeling best practices, the detection of so-called anti-
patterns [29] or the simulation of model alternatives based on
quantitative information (also known as instrumentation) [19].
The applied optimizations might have an impact on both
the level of the choreography and the process models
since the conversations specified in the choreographies are
implemented by the processes.

Bottom-up Approach

In contrast to the top-down approach, the goal of the
bottom-up approach is to produce a choreography model that
reflects the interactions of an already existing and executable
collection of interconnected workflow models. The main
reasons for using the approach are on the one hand to
create a global view of the collaboration behavior and the
conversations between the interconnected workflows that can
be analyzed and inspected and on the other hand to identify
global optimization potentials.

The sequence of abstraction steps to be performed starts
with grouping the workflow models into participants in the
Refinement phase (see part B of Figure 2). For each of the
participants a PDDG is generated by analyzing the executable
workflows: all their communication activites are identified and
added to the PDDG and for each of the messages referenced
by the identified communication activities a new Data Object
is generated, added to the PDDG and connected with the
activity through a data dependence edge. The structure of
the Data Objects and their Data Elements are derived from
the structure of the related messages. After the generation of
PDDGs is completed, IT specialists are allowed to manually
refine them, e. g., by adding (obfuscated representations
of) additional activites of the underlying workflow to the
PDDG and connecting them with the existing Data Objects.
Afterwards, each PDDG is used to generate and annotate a
collection of Staging Elements to the corresponding workflow
model. Again IT specialists are able to manually refine
and extend the automatically generated Staging Elements,
e. g., by specifying fault handling strategies. Since the
workflow models were already executed, we can incorporate



the available data and information from the Monitoring,
Execution and Deployment phases into the abstraction and
refine the generated PDDGs and the Staging Elements or
at least provide valuable supporting information to the IT
specialist during the manual refinement. Furthermore, the
event data of the Monitoring phase can be used, for example,
to annotate the control flow edges of the workflows with
corresponding probabilities to support predictive data staging
in future executions, as described in Section II, or to identify
data-related and control-related trigger conditions to enrich
the generated Staging Elements.

Following the bottom-up approach, the Transformation
step produces a set of abstract workflow models in which the
internal logic of the participants is abstracted away and only
the communication activities contributing to the conversations
between participants in the choreography are kept. As shown
in part A∗ of Figure 2, the Staging Elements are simply
copied and all parts of the executable workflow models
that are not required or should not be visible on the level
of the choreography are removed or at least obfuscated.
Furthermore, the PDDGs generated during the Refinement
phase are merged into one overarching CDDG that represents
the data dependencies of all choreography participants. The
last automatic abstraction step brings us to the choreography
Modeling phase where the abstract workflow models are
combined into an overall choreography model with corre-
sponding message links between the communication activities
of the participating workflows. Therefore, the CDDG is used
as input to generate the corresponding Choreography Data
Model and connect the Data Objects with the activities
as defined by the data dependence edges of the CDDG.
After the choreography model is generated, changes can
be applied and propagated to the lower layers following
the top-down approach again. The changes can therefore
be incorporated into the abstract and executable workflow
models by selectively updating and merging them. The
resulting choreography model can also be used as a template
and extended with other participants in different application
scenarios.

III. RELATED WORK

In this section, we will compare our approach with some
of the existing approaches that focus on decoupling the data
flow in service compositions and choreographies from the
control flow or ordered message exchange. None of the
approaches focuses explicitly on the management life cycle
of choreographies.

The model-driven approach presented in [30] supports the
modeling and enactment of data exchange in choreographies
using messages by extending the BPMN modeling language
and introducing annotations for BPMN data objects. The
annotations are then automatically transformed into SQL
queries to specify and enact message extraction from and

message storage into local databases. This enables the com-
plete automation of the data exchange between participants
and enables the enrichment of the model transformations
with data-related aspects from the global (choreography) to
the local (workflow) level. We support the authors arguments
that the collaborating partners should specify the exchanged
data and its structure in a commonly agreed global data
model. This indeed strengthens the collaboration contract
by ensuring correct data exchange in addition to correct
conversations, i. e., order of messages. Instead of directly
binding the data objects to databases on the level of the
models, our approach introduces the TraDE middleware as an
abstraction layer that provides capabilities to retrieve, cache
and store data from different participants and data sources.
This allows us to support other domains than the business
domain, for example, in eScience data is commonly stored
and exchanged through files in different formats. Moreover,
unlike the approach from [30], we want to decouple the
data flow from the message exchanges, without the need
to exchange data only through the conversation messages.
Our additional goal is to analyze and optimize the data
transfer between the participants or services, so that as soon
as the data are available and even before the (control flow)
message that normally transports the data is sent, the data are
transfered to the receiver’s side and can be directly read when
the corresponding message triggers the related operation of
the invoked participant or service.

Barker et al. [4] define a new language for executable
service choreographies called Multiagent Protocols (MAP)
and introduce an open source framework for the enactment
of MAP choreographies through the application of so-called
peers. A peer provides extra functionality through a choreog-
raphy interface that enables web services to participate in a
choreography without requiring to adapt the underlying ser-
vice implementations. One difference between the approaches
is the use of standard versus non-standard notations and
languages for choreography specifications which influences
the portability of the models across modeling and execution
environments. The same work presents an optimization of
the data transfer between services, which in our view is
a result of the paradigm shift between orchestration and
choreography. Consequently, the demonstrated improvement
results from the fact that the data is exchanged directly
between choreographed services instead of being transferred
through a centralized workflow engine. In our work, the
focus is on optimizing the direct data exchange between
the choreography participants during run time, no matter
if they are implemented through workflows or services,
by incorporating monitoring data and results from data
dependence analysis to identify if, when and where data
is actually required as described in Section II.

In [13], Barker et al. introduce the so-called Circulate
approach that combines the advantages of both paradigms:
orchestration and choreography. While the control flow



remains orchestration-based, the data flow is conducted in a
choreography-based manner. In order to enable services to
transfer data between each other, proxies are introduced to
provide the required functionality. Therefore, a proxy acts
as an intermediary between the workflow engine and the
actual services during service invocations. Consequently, the
workflow engine triggers the invocation of services and the
exchange of data between services through a proxy and the
actual service invocations are performed by the proxies. We
are following a similar approach by introducing the TraDE
middleware to decouple the control flow from the data flow.
In contrast to the Circulate approach where the data transfer
between the proxies is controlled by the workflow engine and
is therefore explicitly specified in the workflow models, we
propose to annotate the workflow models and use the annota-
tions in combination with the analyzed data dependencies to
express the overall choreography data flow model, which can
in turn be enacted by the TraDE middleware and serve as data
flow coordinator (see Section II). As a result, (a) the workflow
models are enriched instead of changed thus preserving the
portability of the models on run time environments without
TraDE support, and (b) outsourcing the control of the data
flow to the TraDE middleware instead of explicitly specifying
it through the workflow models provides more flexibility and
higher optimization potential during run time since the data
can flow independently of the control flow of the workflows
or the choreography. For example, data can be transfered
as soon as it is available to services invoked later while the
workflow engine can continue navigation. Furthermore, data
management tasks like data transformation, aggregation or
split can be incorporated into the optimization to address
different goals and requirements.

In [14], the authors introduce a Flow-based Infrastructure
for Composing Autonomous Services (FICAS) and the Com-
positional Language for Autonomous Services (CLAS) used
to express the relationships between collaborating services
in a service composition. The resulting CLAS programs
can then be executed by the FICAS runtime. Based on the
analysis of data dependencies between the services, a CLAS
program is decomposed into services and an execution plan
for their composition. A central coordinator carries out the
execution plan and thus controls the control and data flow
and sends the corresponding commands to the services. The
decoupling of control commands and data flow happens only
on the level of the invoked services through separate data and
control queues associated to each service for this purpose.
The approach allows for a decentralized data exchange among
services. The similarities to our approach are only in the
notion of decentralized data exchange among services in a
composition.

Binder et al. [11] introduce the concept of Service
Invocation Triggers in order to allow for conducting service
compositions in a decentralized manner. Such a trigger acts
as a proxy for a specific service and collects all input data,

invokes the service and routes the output data to successor
triggers. In sum, the triggers deal with the data exchange and
its ordering on behalf of the services in a service composition.
It is our understanding that there is no global workflow model
that is decomposed into triggers. The triggers themselves,
however, contain partial knowledge of the workflow logic
and the data dependencies among services to be invoked.

IV. CONCLUSION AND FUTURE WORK

The importance of data-awareness and its effect on the
BPM domain is increasing with the advances in the fields of
eScience, Big Data or IoT. A more prominent role of data in
service compositions is therefore a must in order to benefit
from these developments. Existing research showed that intro-
ducing data on the level of service choreographies, as a means
to specify a global collaboration contract between interacting
parties, provides valuable benefits for both modeling and
execution aspects. In this paper, we introduced a management
life cycle of service choreographies that natively supports
data-awareness through the so-called TraDE methods for data
flow analysis, optimization and transparent data exchange.
Since most of the existing approaches only concentrate on
modeling or execution aspects, our goal is to provide an
end-to-end approach for data-aware service choreographies
that support data-related aspects throughout all life cycle
phases. In particular, while in terms of modeling further
steps from the global (choreography) to the local (workflow)
models can be automated and enriched to reduce data-related
refinement efforts, in terms of execution the knowledge about
the data allows to decouple the data flow from the control
flow and handle it in a decentralized manner by exchanging
data directly between the composed services as well as further
optimizations of the data exchange during run time.

In our future work, we will define formal models for
the introduced data-related artifacts of the TraDE methods,
namely Choreography Data Model, Choreography Data
Dependence Graph and Participant Data Dependence Graph,
as a foundation for the definition of corresponding algorithms
that realize the required generation, analysis, transformation
and optimization functionality. The resulting algorithms and
formal models will be implemented and integrated into our
existing choreography and workflow modeling environment
to support the modeling, transformation and refinement of
data-aware service choreographies. We will also update our
prototypical realization and provide evaluation based on real
world scenarios.
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