
© ACM 2016
This is the author's version of the work. It is posted here by permission of ACM for your personal use.

Not for redistribution. The definitive version is available at ACM:
http://dx.doi.org/10.1145/2991561.2998464

:

Full ACM reference as provided by ACM : Ana Cristina Franco da Silva, Uwe

Breitenbücher, Kálmán Képes, Oliver Kopp, Frank Leymann. 2016. OpenTOSCA for

IoT: Automating the Deployment of IoT Applications based on the Mosquitto

Message Broker. In Proceedings of the 6th International Conference on the Internet

of Things (IoT '16). ACM, New York, NY, USA, 181-182.

DOI= 10.1145/2991561.2998464 http://dx.doi.org/10.1145/2991561.2998464

1Institute for Parallel and Distributed Systems,
2Institute of Architecture of Application Systems,

University of Stuttgart, Germany
{franco-da-silva,breitenbuecher,kepes,kopp,leymann}@informatik.uni-stuttgart.de

OpenTOSCA for IoT: Automating the
Deployment of IoT Applications based on the

Mosquitto Message Broker

Ana C. Franco da Silva1, Uwe Breitenbücher2, Kálmán Képes2,
Oliver Kopp1, Frank Leymann2

Institute of Architecture of Application Systems

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Institute for Parallel and Distributed Systems

@inproceedings {INPROC-2016-39,
author = {Ana Cristina Franco da Silva and Uwe Breitenb\"{u}cher and

K\'{a}lm\'{a}n K\'{e}pes and Oliver Kopp and Frank Leymann},
title = {{OpenTOSCA} for {IoT}: Automating the Deployment of {IoT}

Applications based on the {Mosquitto} Message Broker},
booktitle = {Proceedings of the 6th International Conference on the

Internet of Things},
publisher = {ACM},
pages = {181--182},
mon = nov,
year = {2016},
isbn = {978-1-4503-4814-0/16/11},
doi = {10.1145/2991561.2998464},
}

http://dx.doi.org/10.1145/2991561.2998464

OpenTOSCA for IoT: Automating the Deployment of IoT
Applications based on the Mosquitto Message Broker

Ana C. Franco da Silva1, Uwe Breitenbücher2, Kálmán Képes2, Oliver Kopp1, Frank Leymann2

1Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
2Institute of Architecture of Application Systems, University of Stuttgart, Germany
{franco-da-silva,breitenbuecher,kepes,kopp,leymann}@informatik.uni-stuttgart.de

ABSTRACT
Automating the deployment of IoT applications is a complex
challenge, especially if multiple heterogeneous sensors, actu-
ators, and business components have to be integrated. This
demonstration paper presents a generic, standards-based sys-
tem that is able to fully automatically deploy IoT applications
based on the TOSCA standard, the standardized MQTT mes-
saging protocol, the Mosquitto message broker, and the run-
time environment OpenTOSCA. We describe a demonstration
scenario and explain in detail how this scenario can be de-
ployed fully automatically using the mentioned technologies.

ACM Classification Keywords
K.6 Management of Computing and Information Systems;
D.2.12 Software Engineering: Interoperability

Author Keywords
Internet of Things; Cyber-Physical Systems; Sensor
Integration; Message Broker; Mosquitto; MQTT; TOSCA.

INTRODUCTION & BACKGROUND
The Internet of Things (IoT) paradigm relies on the combi-
nation of the physical and virtual world, i. e., on so-called
cyber-physical systems. The physical part of such systems is
implemented by physical devices that typically provide sen-
sors and/or actuators affecting the physical environment. The
cyber part consists of software responsible for extracting and
processing sensor data in order to react to changes in the real
world. To enable IoT applications realizing tasks such as mon-
itoring and reconfiguring physical devices, sensor data needs
to be accessible to these applications for further processing. A
common approach for this is the use of messaging systems that
support the publish/subscribe interaction model. Using this in-
teraction model, subscribers register their interest in a certain
kind of messages by subscribing to specific topics in order to
get asynchronously notified when publishers send messages
to these topics. A message broker is responsible for managing
subscriptions and delivering messages to subscribers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

IoT’16 November 07-09, 2016, Stuttgart, Germany

© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4814-0/16/11.

DOI: http://dx.doi.org/10.1145/2991561.2998464

Eclipse Mosquitto1 is an open-source message broker that
implements the MQTT standard2, which is a lightweight pub-
lish/subscribe messaging protocol. In IoT environments, phys-
ical devices can be easily integrated with IoT applications
using message brokers such as Mosquitto: Devices publish
sensor data to Mosquitto, while IoT applications can act as
subscribers and receive these sensor data for further process-
ing. Publishers, e. g., devices with sensors, and subscribers,
e. g., IoT applications or devices with actuators, interact with
Mosquitto using MQTT clients, which are available in different
languages, e. g., for Python, Java, and C (cf. Eclipse Paho3).

This demonstration paper shows how the deployment of such
IoT applications can be automated using OpenTOSCA [1], a
runtime environment for automatically deploying and manag-
ing applications based on the TOSCA standard [4].

IOT MOTIVATION SCENARIO
To explain our deployment approach, we first describe an
IoT scenario that is based on Mosquitto and two Raspberry
Pis: One Raspberry Pi reads temperature sensor values and
the other turns a ventilator on/off depending on these values.
Mosquitto is installed on a virtual machine hosted on Open-
stack4. Python scripts are employed (i) to read sensor data,
(ii) to control the ventilator, and (iii) to communicate with
Mosquitto via MQTT. To deploy this scenario, the virtual ma-
chine must be provisioned, Mosquitto must be installed, the
Raspberry Pis must be configured using SSH connections, and
the Python scripts must be copied to the Raspberry Pis and
started using SSH connections as well. However, deploying
this scenario is not trivial since it requires expert knowledge
about the OpenStack API, SSH connections, MQTT and its
client and server APIs, and shell scripting. Thus, manually
executing these tasks is time-consuming and error-prone.

OVERVIEW ON TOSCA
The IoT deployment automation approach we present in this
demonstration is based on the TOSCA standard [4]. We first
explain the TOSCA concepts required for understanding this
paper and show afterwards how the demonstration scenario
can be modeled using TOSCA. TOSCA enables describing
the structure of an application to be deployed in the form of a
topology model, which is a graph of typed nodes and directed,
typed edges. Nodes are called node templates and correspond
to the components of the application while edges are called
1 https://www.mosquitto.org/ 2 http://www.mqtt.org/
3 http://www.eclipse.org/paho/ 4 http://www.openstack.org/

http://www.openstack.org/
https://www.mosquitto.org/
http://dx.doi.org/10.1145/2991561.2998464
http://www.eclipse.org/paho/
http://www.mqtt.org/

OSDevice2
(RaspbianJessie)

TempPublisher
(PythonApp)

Python2
(Python_2.7)

Device2
(RaspberryPi3)

OSDevice1
(RaspbianJessie)

TempSubscriber
(PythonApp)

Python1
(Python_2.7)

Device1
(RaspberryPi3)

OSBroker
(Ubuntu14.04VM)

TempTopic
(Topic)

Hypervisor
(OpenStack)

MessageBroker
(Mosquitto_3.1)

= hostedOn = dependsOn = MQTTConnection

DA

DA

Figure 1. TOSCA topology model of the IoT demonstration scenario

relationship templates and describe the dependencies between
the components. TOSCA is a generic language that enables
defining arbitrary types of components and dependencies by
node types and relationship types. Business logic implementa-
tions of components can be attached to node templates using
so-called deployment artifacts, which are, for example, bina-
ries or Java Web Archives (WARs). To install or manage a
component, management operations can be defined for types.
The implementations of these operations can be provided us-
ing implementation artifacts, which are, for example, shell
scripts to install a component. TOSCA defines a packaging
format called Cloud Service Archive (CSAR), which enables
bundling all the described entities in a self-contained manner.

AUTOMATED DEPLOYMENT DEMONSTRATION
Figure 1 depicts the TOSCA topology model of our scenario.
The stack in the middle provides the infrastructure for the
Mosquitto message broker, which hosts a special topic, to
which applications publish and subscribe. The broker and the
topic node types provide implementation artifacts in the form
of shell scripts that can be executed on Linux systems to install
the respective components. The right stack is composed of a
Raspberry Pi and its operation system hosting a Python-based
publisher application, whose implementation is attached as
deployment artifact (DA) containing the respective Python
script. The publisher application periodically reads temper-
ature sensor data and sends it to the topic. Finally, the left
stack consists of a Raspberry Pi, its operation system, and a
Python-based subscriber application, which receives messages
from the topic and generates a RF-signal to turn on the venti-
lator when the temperature passes a threshold value. Also this
Python application node provides a deployment artifact that
references the actual implementation, i.e., the Python script.

To automatically deploy this TOSCA topology model, we
employ the OpenTOSCA runtime environment [1], which is
a standards-based open-source management automation sys-
tem developed at the University of Stuttgart. OpenTOSCA
implements the TOSCA standard and, thereby, enables the
automated deployment and management of applications. To

deploy our demonstration scenario, we developed new node
types for Raspberry Pis, RaspbianJessie, Python, Mosquitto,
and topics. Our initial setup consists of two physical Rasp-
berry Pis having only the RaspbianJessie image installed. The
Raspberry Pis are connected to a physical LAN having static
IP-addresses. The IP-addresses and SSH credentials of the
Raspberry Pis are also specified in the topology model (not
shown in Fig. 1). Moreover, the OpenStack cloud management
system is installed and running. Also the user credentials are
contained in the topology model. Based on these information,
OpenTOSCA is able to automatically deploy and connect the
remaining nodes: First, the topology model is processed by
OpenTOSCA’s plan generator [2], which generates a BPEL
workflow model. This model specifies all tasks to be executed
to deploy the application and is executed fully automatically
by a workflow engine (WSO2 BPS5) in OpenTOSCA [1, 2].

Thus, to deploy our IoT demonstration scenario, the plan gen-
erator needs to know how to deploy these new node types.
We achieved this without changing the plan generator’s im-
plementation that we have developed originally for Cloud
applications [2]: TOSCA defines a so-called lifecycle inter-
face [3], which specifies lifecycle operations for managing
a component, e. g., install, start, stop. The plan generator is
aware of this interface and knows which operations have to
be executed in which order to deploy a certain component [2].
Therefore, to add the new node types to our ecosystem, we
implemented the TOSCA lifecycle interface for all new node
types using SH-scripts, which are supported by the current
plan generator implementation. During the plan generation,
the generator generates activities that copy these SH-scripts
onto the virtual machine or Raspberry Pi, respectively, using
SSH and executes them. Thus, the plan generation, which
corresponds to the actual deployment, remains completely
generic and did not have to be adapted for this demonstra-
tion. As a result, by simply replacing the Python deployment
artifacts, other business logic, sensors, and actuators can be
automatically deployed and connected using this topology tem-
plate. All files, OpenTOSCA, and the topology model of this
demonstration are available as open-source implementation6.

ACKNOWLEDGMENTS
This work is funded by the BMWi project SmartOrchestra
(01MD16001F).

REFERENCES
1. Tobias Binz and others. 2013. OpenTOSCA - A Runtime

for TOSCA-based Cloud Applications. In ICSOC.
Springer, 692–695.

2. Uwe Breitenbücher and others. 2014. Combining
Declarative and Imperative Cloud Application
Provisioning based on TOSCA. In IC2E. IEEE, 87–96.

3. OASIS. 2013a. Topology and Orchestration Specification
for Cloud Applications (TOSCA) Primer Version 1.0.

4. OASIS. 2013b. Topology and Orchestration Specification
for Cloud Applications (TOSCA) Version 1.0.

5 http://wso2.com/products/business-process-server/
6 http://www.opentosca.org/demos/opentosca_for_iot_mosquitto/

http://www.opentosca.org/demos/opentosca_for_iot_mosquitto/
http://wso2.com/products/business-process-server/

	Introduction & Background
	IoT Motivation Scenario
	Overview on TOSCA
	Automated Deployment Demonstration
	Acknowledgments
	References

