
1 Institute of Architecture of Application Systems,
University of Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

² Institute for Parallel and Distributed Systems,
University of Stuttgart, Germany

lastname@ipvs.uni-stuttgart.de

Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications

Christian Endres1, Uwe Breitenbücher1, Michael Falkenthal1, Oliver Kopp²,
Frank Leymann1, and Johannes Wettinger1

The full version of this publication has been presented at
PATTERNS 2017.

https://www.iaria.org/conferences2017/PATTERNS17.html

© 2017 Xpert Publishing Services

@inproceedings{Endres2017,
author = {Endres, Christian AND Breitenb{\"u}cher, Uwe AND Falkenthal,

Michael AND Kopp, Oliver AND Leymann, Frank AND Wettinger,
Johannes},

title = {{Declarative vs. Imperative: Two Modeling Patterns for the
Automated Deployment of Applications}},

booktitle = {Proceedings of the 9th International
Conference on Pervasive Patterns and Applications},

year = {2017},
pages = {22-27},
publisher = {Xpert Publishing Services (XPS)}

}

:

Institute of Architecture of Application Systems

https://www.iaria.org/conferences2017/PATTERNS17.html

Declarative vs. Imperative:
Two Modeling Patterns for the Automated Deployment of Applications

Christian Endres1, Uwe Breitenbücher1, Michael Falkenthal1, Oliver Kopp2,
Frank Leymann1, and Johannes Wettinger1

1IAAS, 2IPVS, University of Stuttgart, Stuttgart, Germany
Email:{lastname}@iaas.uni-stuttgart.de

Abstract—In the field of cloud computing, the automated de-
ployment of applications is of vital importance and supported
by diverse management technologies. However, currently there is
no systematic knowledge collection that points out commonalities,
capabilities, and differences of these approaches. This paper aims
at identifying common modeling principles employed by tech-
nologies to create automatically executable models that describe
the deployment of applications. We discuss two fundamental
approaches for modeling the automated deployment of applica-
tions: imperative procedural models and declarative models. For
these two approaches, we identified (i) basic pattern primitives
and (ii) documented these approaches as patterns that point
out frequently occurring problems in certain contexts including
proven modeling solutions. The introduced patterns foster the
understanding of common application deployment concepts, are
validated regarding their occurrence in established state-of-the-
art technologies, and enable the transfer of that knowledge.

Keywords–Modeling Patterns; Application Deployment and
Management; Automation; Cloud Computing.

I. INTRODUCTION

Many cloud service offerings, for example, Infrastructure
as a Service (IaaS) and Platform as a Service (PaaS) of-
ferings, and established management technologies, such as
IBM Bluemix [1], Chef [2], and Juju [3], support the automated
deployment of applications. There are also standards, for
example, the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [4]. All promise high automa-
tion, reusability, and easy usage in order to operate business
functionality. Contrary, using the aforementioned technologies
requires that the customer describes the deployment of the
application according to the languages, capabilities, and re-
quirements of the used technology. But, all have in common
that they support the same deployment automation principles
that can be divided into two major modeling approaches: the
declarative and the imperative deployment modeling approach.

The declarative approach uses structural models that de-
scribe the desired application structure and state, which are
interpreted by a deployment engine to enforce this state. The
imperative approach uses procedural models that explicitly
specify a process to be executed [5][6]. These imperative
process models define explicitly all activities that have to be
executed, their execution order, and the data flow between
these activities. Such imperative process models are executed
in an automated manner by a process engine. Using the im-
perative approach, the customer can customize arbitrarily the
deployment but typically requires considerably more expertise,
for example, if multiple different cloud provider application
programming interfaces (APIs) have to be invoked [5][7].

However, technologies following these approaches sig-
nificantly differ in the employed domain-specific modeling
languages and concepts. Whilst all technologies advertise the
revolution of deploying and managing business functionality
in the Cloud, up to now, there is no systematic knowledge
collection that guides in choosing the right technology. As a
result, for evaluating which technology fits best the customer’s
needs, at the moment, one has to be an expert of each
considered technology for choosing the most appropriate one.

In this paper, we tackle these issues by investigating the
capabilities of established deployment technologies in order
to document their commonalities in the form of patterns.
In particular, we investigate (i) the Cloud standard TOSCA,
(ii) the technologies IBM Bluemix, (iii) Chef, (iv) Juju, and
(v) OpenTOSCA [8], (vi) the implementations of the most
downloaded artifacts in the official repositories of Chef [9] and
Juju [10], and (vii) scientific publications. The chosen tech-
nologies are among the most utilized and established ones that
enable application deployment in modern cloud environments
that inherently require a high degree of automation. However,
we do not claim that this list of analyzed technologies is
complete, but nevertheless, it provides an appropriate starting
point for finding new patterns that possibly occur within other
approaches, standards, and technologies as well.

To overcome the problem of modeling application deploy-
ment and evaluating the best fitting technology at the same
time, we first introduce pattern primitives to establish a com-
mon wording. Then, we describe the underlying deployment
modeling concepts supported by the analyzed artifacts, man-
agement technologies, and scientific publications in form of
the Imperative Deployment Model pattern and the Declarative
Deployment Model pattern. To validate our findings, we apply
Coplien’s Rule of Three that dictates a pattern to exist in at
least “three insightfully different implementations” [11]. Thus,
we state how and where to find the pattern’s implementation to
prove the “Rule of Three”. Using these patterns, the knowledge
about application deployment principles can be transferred,
e.g., , for choosing the most appropriate technology.

The remainder of this paper is structured as follows: In
Section II, we define pattern primitives with which we establish
a common wording for describing application deployment
technologies. In Section III, we introduce the Imperative
Deployment Model pattern and the Declarative Deployment
Model pattern and point to their occurrences. In Section IV,
we discuss the background of the paper and the related work
of the pattern community and cloud computing community. In
Section V, we validate our patterns. Finally, in Section VI, we
conclude the results of this paper and outline future work.

II. PATTERN PRIMITIVES

In this section, we define pattern primitives that are identi-
fied as atomic parts in the domain of application deployment.
Similar to Zdun et al. [12] and Fehling et al. [13], we use
the concept of pattern primitives to describe certain elements
inside patterns that have specific names and characteristics.
These elements are known to domain experts and may exist in
other domains under different names. Thus, this section aims
to establish a common wording for a precise communication
and to describe the patterns we introduce in the next section.

Application: An application comprises software that im-
plements a certain business functionality. Applications typi-
cally consist of multiple software components that are working
together to realize the desired functionality. The interplay of
the components may be locally or realized via network, i.e.,
the collaboration of components can be arbitrarily complex.

Software component: A software component is a part of
an application that may be reused within the same application,
other applications, or other companies. Components can be
divided into either application-specific software components
and general-purpose software components, see next.

Application-specific software component: An
application-specific software component is a piece of software
that implements a certain piece of the business functionality
of an application. Such a component is highly adapted for
and integrated into a certain application and implements
specific functionality. Thus, application-specific components
often cannot be reused within other applications due to
their specialization. One example for such components are
customized enterprise resource planning software components.

General-purpose software component: A general-
purpose software component is a piece of software that im-
plements a functionality that can be reused by many different
applications for general purposes. Thus, they are explicitly
made for reuse and provide common functionality that is
independent of a certain business logic. Examples for such
components are web servers or database management systems.

Application environment: The term application environ-
ment comprises all running software and hardware components
of one concrete deployment of the application on all layers, i.e.,
physical servers, virtual machines running on these servers,
operating systems, installed web servers, etc. Thus, if a certain
application is deployed multiple times in different clouds, each
of these deployments forms one application environment.

Management environment: In contrast to the application
environment, in which an application is running in, the term
management environment comprises all physical components,
such as servers and software components, that are employed
for running deployment & management systems, see next.

Deployment & management system: A deployment &
management system provides the functionality for deploying,
operating, and managing applications in an automated fashion,
e.g., to install, configure, or terminate applications or an appli-
cation’s components. Deployment & management systems are
running in management environments and, therefore, are typ-
ically running and operated independently from applications.
There are many different flavors of deployment & management

systems: Some interpret declarative models that define the
structure of the desired application deployment, others are
based on imperative process models that define each step that
has to be executed to realize a certain deployment task, e.g.,
to install the entire application. We detail these two flavors in
the following sections in the form of the patterns we present.

Deployment logic: The deployment logic describes all
steps that have to be executed to deploy all components of
an application. To implement the deployment logic, different
levels of abstractions can be differentiated depending on the
chosen form of implementation. For example, a workflow may
be created that specifies a set of deployment tasks and their
execution order while deployment operations implement these
deployment tasks. We detail this in the following primitives.

Deployment task: A deployment task denotes the task
of deploying a certain software component, for example,
installing and configuring an Apache web server on a running
Ubuntu virtual machine. To implement a deployment task in
a way that enables its automated execution, typically multiple
deployment operations have to be executed, see next.

Deployment operation: A deployment operation is an
automatically executable piece of software that implements
a certain deployment functionality, for example, to install a
software package on an operating system or to configure the
HTTP-port. Thus, typically multiple deployment operations are
required to execute a deployment task. Deployment operations
can be implemented using various kinds of technologies, for
example, in the form of scripts that are executed in the
application environment to install a web server on a running
virtual machine or as Java programs that are executed in the
management environment to orchestrate a set of API calls.

III. PATTERNS FOR MODELING THE AUTOMATED
DEPLOYMENT OF APPLICATIONS

In this section, we introduce the Imperative Deployment
Model pattern and the Declarative Deployment Model pattern
that describe two different flavors for modeling the deployment
of applications. The main purpose of applying these modeling
patterns is to create models that can be executed automatically
to deploy a certain application. Thus, the introduced patterns
help to avoid manual steps executed by humans, which is
mandatorily required in the domain of cloud computing, where
rapid application deployment is of vital importance.

The patterns are structured to comprise information that
are derived from best practices in the pattern commu-
nity [11][14]-[19]: Each pattern has a name and a catchy
icon to foster memorability. The problem statement defines the
obstacle to overcome. The context describes the circumstances
under which the problem occurs. Subsequent, the forces de-
scribe why the problem is not trivial to solve and why basic
approaches might fail. The solution describes the approach of
how to solve the problem. The solution is accompanied by a
solution sketch that depicts the solution. The results outline
the outcomes of applying an implementation of the pattern.
Proven occurrences of the pattern are referenced in the know
uses. Therefore, we show that the patterns presented in this
section satisfy the Rule of Three [11] that instructs that at least
three independent implementations of the concepts described
by the pattern have to be found, cf. Section VI.

Deployment &
Management

System

Declarative Model

2

3

4

1

Virtual MachineVirtual Machine

Software Database

Amazon

FIGURE 1. SOLUTION SKETCH FOR THE DECLARATIVE DEPLOYMENT MODEL PATTERN: A DECLARATIVE MODEL IS INTERPRETED FOR DEPLOYING A
SOFTWARE IN THE AMAZON CLOUD, I.E., PROVISIONING A VM, INSTALLING SOFTWARE, AND WIRING THAT SOFTWARE WITH A RUNNING DATABASE.

A. Declarative Deployment Model Pattern

Problem: How to model the deployment
of a simple application that requires only
few or no individual customization in a way
that enables its automated execution?

Context: Automate the deployment of an application.

Forces: Typically, applications comprise well-known,
general-purpose software components, e.g., virtual machines
running a Ubuntu, a Tomcat application server, or a MySQL
server, for realizing common functionality. Such components
are heavily used in industry, so they are often integrated and,
as a result, it is well-known how to use them. However,
a manual installation and configuration of such components
is error-prone, time-consuming, and costly [7]. Thus, this is
not appropriate in scenarios requiring the rapid deployment
of applications and their components—especially if multiple
instances of the application need to be deployed, which is a
common requirement in the domain of cloud computing.

To automate this, imperative process execution technolo-
gies, such as scripts or the workflow technology [20], can be
used. However, manually creating executable process models
that automatically deploy the entire application is also complex
and time-consuming [5]. Thus, for simple scenarios that em-
ploy common, reusable components, such as a Linux; Apache
web server; MySQL database management server; or PHP, and
that follow well-known application structures, spending this
effort is very hard to argue and should be avoided.

Solution: Create a declarative deployment model that
describes the structure of the application that shall be de-
ployed, i.e., all the components as well as their dependencies
and interplay. Subsequent, use a deployment & management
system that understands this model and that automatically
executes all required steps to deploy the application as de-
scribed by the model. Declarative deployment models also
specify necessary software implementations, e.g., the user
interface implementation of a web application to be deployed.
By modeling the deployment this way, the desired state of
the application is defined, which provides the basis for the
deployment & management system to automatically derive the
necessary deployment tasks and operations to be executed.
Thus, the system derives and executes the deployment logic
automatically from the declarative model without involving the
user. Systems that support this pattern are, e.g., Chef and Juju.

Figure 1 depicts the pattern’s solution sketch. The declar-
ative deployment model specifies the application structure, its
components, and their interplay. The model (1) is passed to the
deployment & management system that derives the required
deployment logic from this model and executes all required
tasks and operations. In this example, it (2) invokes the API
of Amazon to create a virtual machine (VM), (3) accesses the
VM to install required software packages, and (4) configures
the software to connect to the installed database. Thus, the
system creates the prescriptively modeled application in reality.

Results: Applying the pattern eases application deploy-
ment as no manual deployment steps are required and only
a model has to be created. Moreover, the required technical
skills are limited to the modeling of the declarative model.
Since the pattern is primarily applicable to deployments that
mainly comprise general-purpose components, which are well-
known to deployment & management systems, the usage of
these components is efficient and not costly as they only must
be specified in the model. Moreover, by providing implementa-
tions for interfaces defined by the deployment & management
system, also application-specific software components can be
deployed automatically, for example, by referencing an script
that installs a custom application-specific software component.

Known Uses: In Bluemix, an App can be described declar-
atively in the manifest.yml file containing information about
the used build pack, amount of the App instances, and with
which other services the App shall be bound [21]. Bluemix
boilerplates are predefined application containers that consist
of runtime environments and predefined services for a distinct
purpose that can be adapted with various options, e.g., the
database size [22]. Chef enables to model declaratively cook-
books, defining the structure by importing other cookbooks,
adapting by specifying attributes, letting chef-client compile
the run-list—the sequences of operations to execute—, and
gather further requirements, e.g., other cookbooks, files, or
attributes. Subsequent, the chef-client configures the virtual
machine according the run-list [23]. Juju supports bundles
describing services, their interplay, and configuration that can
be provisioned without defining the distinct provisioning [24].
TOSCA enables modeling declaratively the application’s struc-
ture with Topology Templates [4], [6]. Out of these declarative
models, the imperative provisioning logic is generated [5].
The scientific deployment prototype Engage also enables to
describe application structures for automated deployment [25].

Process Engine

Process Model

1

2

3
Parameters:
DB Endpoint,
…

Parameters:
Packages to
install,
… Parameters:

Credentials,
…

Virtual MachineVirtual Machine

Software Database

Amazon

FIGURE 2. SOLUTION SKETCH FOR THE IMPERATIVE DEPLOYMENT MODEL PATTERN: A PROCESS MODEL IS EXECUTED FOR DEPLOYING A SOFTWARE IN
THE AMAZON CLOUD, I.E., PROVISIONING A VM, INSTALLING SOFTWARE, AND WIRING THAT SOFTWARE WITH A RUNNING DATABASE.

B. Imperative Deployment Model Pattern

Problem: How to model the deploy-
ment of a complex application that re-
quires application-specific customization
in a way that enables its automated execution?

Context: Automate the deployment of an application.

Forces: The deployment of complex business applications
that consist of various application-specific software compo-
nents with complex dependencies and configurations is a
serious challenge: Multiple experts have to cooperate as a sig-
nificant amount of technical expertise is required and typically
multiple different deployment & management systems need to
be combined [7]. Thus, if an application needs to be deployed
multiple times, a manual process is not possible.

Using the Declarative Deployment Model pattern is ap-
propriate for modeling the deployment of simple applications
that mainly employ general-purpose components. However, for
such complex applications as described above, this pattern
cannot be applied as the interpretation of declarative models in
deployment & management systems cannot be influenced and
customized arbitrarily [5]. Especially, when multiple deploy-
ment & management systems need to be combined, a single
declarative deployment model is not possible.

Solution: Create an imperative deployment model that
describes (i) all activities to be executed, (ii) the control flow,
i.e., their execution order, and (iii) the data flow between
them. Each activity implements a certain deployment task or
invokes a deployment operation, e.g., an activity invokes the
API of a cloud provider to provision a new virtual machine
and subsequent activities copy and execute installation scripts
onto this VM. Afterwards, use a process engine to execute the
model automatically without involving the user. One robust
technology for creating and executing processes is, e.g., the
workflow technology [20] and standards, such as BPEL [26].

Figure 2 depicts the pattern’s solution sketch. The process
model is deployed on an appropriate process engine and
(1) invokes the API of Amazon to create a virtual machine,
(2) accesses it, e.g., via SSH, to install software packages, and
(3) configures the installed software to connect to a running
database that is also hosted on Amazon. Thus, if customization
is required, any activity can be arbitrarily customized to invoke
suitable deployment operations or other implementations.

Results: By using imperative deployment models, i.e., pro-
cess models, the deployment can be modeled arbitrarily as each
step to execute is specified explicitly. Thus, the model is not
interpreted as in the Declarative Deployment Model pattern but
executed following the model. This enables deploying general-
purpose components as well as arbitrary application-specific
components that require complex configurations and wirings
with other components. Thus, this approach is capable of
handling the complexity of arbitrary application deployments.
Contrary, the deployment of such complex applications often
cannot be modeled declaratively at all due to application-
specific details that cannot be reflected in declarative models.

Especially the workflow technology is suited for creating
complex process models as also the modeling of compensation
logic is possible [27], [20]. For example, if a deployment
process provisions multiple virtual machines and a failure
occurs, simply stopping the process requires a manual dele-
tion of the created VMs. By using compensation and failure
handling, such cases can be explicitly considered in the process
model. However, the modeling of imperative deployment logic
is typically more complex for the user: With the Imperative
Deployment Model pattern, a process model has to be cre-
ated that explicitly defines each deployment operation to be
invoked and, thus, required deep technical knowledge about the
invocation and orchestration of management technologies [7].
However, this is addressed by approaches for generating such
process models [5][7][28]-[31]. Moreover, there are workflow
languages, such as BPMN4TOSCA [32][33], that were de-
veloped explicitly for modeling such processes.

Known Uses: For provisioning a service with Bluemix,
imperative scripts can invoke depoyment tasks using the com-
mand line interface cf [34]. Chef-client executes the imperative
run-list that, usually, is generated [35]. But if necessary, the
run-list can be customized, e.g., by adding additional recipes
whose actions implement deployment tasks [36]. Juju imple-
ments hooks that represent executable deployment tasks and
are invoked in case of events [37]. For more direct interaction,
Actions can be invoked with parameters to execute deploy-
ment operations [38]. TOSCA enables explicitly imperative
provisioning: workflow models can be attached to services that
implement the provisioning imperatively [4], [6]. The TOSCA
runtime environment OpenTOSCA contains a generator for
BPEL workflows that allows to generate provisioning plans
that can be customized individually for certain needs [5][39].

IV. RELATED WORK AND MANAGEMENT TECHNOLOGIES

In 1979, Alexander et al. started to publish their idea to
describe solutions for reoccurring problems in the domain
of building architecture as patterns [15][40]. Since then, this
approach has been heavily used, refined, and also been applied
to the domain of IT. For example, for software developers, the
principles of good object-oriented software design is captured
as the patterns of the Gang of Four [16]. To foster the pattern
paradigm for computer science, Buschmann et al. advanced
patterns by finding patterns in the domain of IT as well as
publishing their lessons learned about patterns and pattern
languages [14][17]. Coplien contributed by delimiting patterns
from mere copies. His Rule of Three states that a solution has
to be implemented independently at least three times for being
able to provide a base for a pattern [11].

To establish a better association between the abstract
patterns and concrete pattern implementations, Falkenthal et
al. introduces Solution Implementations that help to aggregate
pattern appliances for problems that need applying multiple
patterns [41][42]. Thus, these works can be used to efficiently
reuse proven (declarative or imperative) deployment models as
Solution Implementations of the introduced patterns.

Fehling et al. introduced patterns about how to automate
certain deployment tasks in cloud computing, e.g., how to
realize an elastic application [43]. Also, Fehling et al. cap-
tured reoccurring problems of migrating services to the cloud
as patterns the same way [44]. The patterns’ solutions are
documented in the form of abstract process models that can be
refined for concrete use cases. Using this approach, also proven
deployment processes could be documented in an abstract
manner as patterns, which are then instances of the Imperative
Deployment Model pattern presented in this paper.

The methods used for findings the patterns introduced in
this paper are based on the iterative approaches of how to find
and author concrete patterns, introduced by Fehling et al. [13]
and Reiners [18]. Wellhausen et al. introduced a concrete
pattern structure, described in detail the interrelation of the
pattern structure’s distinct sections, and provided a step-by-step
guide for improving the formulation of patterns and helping
first-time authors to concisely express their patterns [19].

In 2013, the Topology and Orchestration Specification
for Cloud Applications (TOSCA) was published in version
1.0 [4]. TOSCA explicitly supports both deployment flavors
by allowing modeling application topologies and specifying
workflow models for deployment. Thus, the academic open-
source prototype OpenTOSCA implements the TOSCA stan-
dard and, therefore, supports both patterns [39][8]. Since years,
there are established technologies as well as recently emerging
ones that help putting business functionality into the cloud. For
example, there are IBM Bluemix [1], Chef [2], and Juju [3]
that all support declarative as well as imperative mechanisms
at different points in application deployment.

V. VALIDATION

In this paper, we discussed pattern primitives in the domain
of cloud application deployment and introduced two patterns
describing fundamental principles of modeling the automated
deployment of applications. In this section, we discuss the
process of how we found the patterns and their validity.

TABLE I. OCCURRENCE OF THE PATTERNS IN THE TECHNOLOGIES [45]

Occurrence Imperative Deployment Model Declarative Deployment Model
Bluemix 3 3
Chef 3 3
Juju 3 3
OpenTOSCA 3 3
Others 3 3

Usually in the pattern community, experts of a domain
search for pattern candidates, discuss, and dismiss and refine
them until only patterns are left. This process is very costly
in time and effort. Therefore, an alternative approach distills
pattern candidates and patterns from artifacts, e.g., documenta-
tion [13]. These resources can be treated as the documentation
of expertise of developers and scientists. Thus, we selected a
variety of application deployment approaches and technologies
that are omnipresent in industry and science, their documen-
tations, implementations of the most downloaded artifacts in
their official repositories, and scientific publications as a basis
for our knowledge collection. Based on the found commonal-
ities, we elaborated the patterns iteratively according to [13].
The proposed patterns are validated regarding their occurrence.
In Table I, we marked found evidences for each pattern with
a 3symbol. The row Others encompasses scientific publica-
tions and their prototypes. The enumeration of evidences bases
partly on [45]. The concrete references to the evidences can be
found in the known uses paragraph of the respective pattern.
The Rule of Three states the condition of three independent
occurrences of the pattern in the real world [11]. Both the
Declarative Deployment Model pattern and the Imperative
Deployment Model pattern fulfill this condition.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented two modeling patterns that
describe principles of modeling the deployment of applications
and provide a deeper understanding of the declarative and
imperative approaches. By stating details of the analyzed
technologies, the patterns also foster the understanding of
the analyzed standard and technologies. We proved that the
documented patterns occur in many state-of-the-art deploy-
ment technologies, especially, the TOSCA standard explicitly
supports both patterns. We validated the patterns by stating
(i) in which artifact, documentation, standard, and technology
an individual implementation of the pattern can be found and
(ii) that the common pattern metric Rule of Three [11] is met.
Thus, the defined pattern primitives and found patterns provide
a means for communicating the principles in general.

The proposed Declarative Deployment Model pattern and
Imperative Deployment Model pattern are the beginning of
a catalog of patterns. Thus, more patterns in the domain
of application deployment can be found, for example, to
document proven solutions for creating imperative deployment
process models. Further, the catalog can be elaborated to a
full pattern language that will be addressed in our upcoming
research steps. We also plan to author another kind of related
patterns for the domain of application management.

ACKNOWLEDGMENTS

This work is partially funded by the BMWi projects NE-
MAR (03ET4018B) and SePiA.Pro (01MD16013F).

REFERENCES

[1] “IBM Bluemix – Cloud infrastructure, platform services, Watson,
& more PaaS solutions,” 2017, URL: https://www.ibm.com/cloud-
computing/bluemix/ [accessed: 2017-02-02].

[2] “Chef – Embrace DevOps | Chef,” 2017, URL: https://www.chef.io/
[accessed: 2017-02-02].

[3] “Jujucharms | Juju,” 2017, URL: https://jujucharms.com/ [accessed:
2017-02-02].

[4] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[5] U. Breitenbücher et al., “Combining Declarative and Imperative Cloud
Application Provisioning based on TOSCA,” in International Confer-
ence on Cloud Engineering (IC2E 2014). IEEE, 2014, pp. 87–96.

[6] OASIS, Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Primer Version 1.0, Organization for the Advancement
of Structured Information Standards (OASIS), 2013.

[7] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies,” in On the Move
to Meaningful Internet Systems: OTM 2013 Conferences (CoopIS
2013). Springer, 2013, pp. 130–148.

[8] “OpenTOSCA Ecosystem,” 2017, URL: http://www.opentosca.org/ [ac-
cessed: 2017-02-02].

[9] “Welcome – The resource for Chef cookbooks – Chef Supermarket,”
2017, URL: https://supermarket.chef.io/ [accessed: 2017-02-02].

[10] “Store | Juju,” 2017, URL: https://jujucharms.com/store/ [accessed:
2017-02-02].

[11] J. O. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.
[12] U. Zdun and P. Avgeriou, “A catalog of architectural primitives for

modeling architectural patterns,” Information and Software Technology,
vol. 50, no. 9, 2008, pp. 1003–1034.

[13] C. Fehling, J. Barzen, U. Breitenbücher, and F. Leymann, “A Process
for Pattern Identification, Authoring, and Application,” in Proceedings
of the 19th European Conference on Pattern Languages of Programs
(EuroPLoP 2014). ACM, 2014.

[14] F. Buschmann, K. Henney, and D. Schimdt, Pattern-Oriented Software
Architecture, Volume 5: On Patterns and Pattern Languages. Wiley,
2007.

[15] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language:
Towns, Buildings, Construction. Oxford University Press, 1977.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley,
1994.

[17] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture, Volume 1: A System of Pat-
terns. Wiley, 1996.

[18] R. Reiners, “An Evolving Pattern Library for Collaborative Project
Documentation,” Ph.D. dissertation, RWTH Aachen University, 2013.

[19] T. Wellhausen and A. Fiesser, “How to Write a Pattern?: A Rough
Guide for First-time Pattern Authors,” in Proceedings of the 16th

European Conference on Pattern Languages of Programs (EuroPLoP
2011). ACM, 2012.

[20] F. Leymann and D. Roller, Production Workflow: Concepts and Tech-
niques. Prentice Hall PTR, 2000.

[21] “Deploying apps,” 2017, URL: https://www.ng.bluemix.net/docs/
manageapps/depapps.html [accessed: 2017-02-02].

[22] “Boilerplates,” 2017, URL: https://www.ng.bluemix.net/docs/cfapps/
boilerplates.html [accessed: 2017-02-02].

[23] “About Nodes – Chef Docs,” 2017, URL: https://docs.chef.io/nodes.
html [accessed: 2017-02-02].

[24] “Using and Creating Bundles | Documentation | Juju,” 2017, URL:
https://jujucharms.com/docs/stable/charms-bundles [accessed: 2017-02-
02].

[25] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, “Engage: A Deploy-
ment Management System,” in ACM SIGPLAN Notices. ACM, 2012,
pp. 263–274.

[26] OASIS, Web Services Business Process Execution Language (WS-
BPEL) Version 2.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2007.

[27] F. Leymann and D. Roller, “Building A Robust Workflow Management
System With Persistent Queues and Stored Procedures,” in Proceedings
of the Fourteenth International Conference on Data Engineering (ICDE).
IEEE, 1998, pp. 254–258.

[28] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Pattern-based
Runtime Management of Composite Cloud Applications,” in Proceed-
ings of the 3rd International Conference on Cloud Computing and
Services Science (CLOSER 2013). SciTePress, 2013, pp. 475–482.

[29] T. Eilam, M. Elder, A. V. Konstantinou, and E. Snible, “Pattern-
based Composite Application Deployment,” in Proceedings of the 12th

IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM 2011). IEEE, 2011, pp. 217–224.

[30] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar, and A. Kon-
stantinou, “Model Driven Provisioning: Bridging the Gap Between
Declarative Object Models and Procedural Provisioning Tools,” in Pro-
ceedings of the 7th International Middleware Conference (Middleware
2006). Springer, 2006, pp. 404–423.

[31] R. Mietzner, “A Method and Implementation to Define and Provision
Variable Composite Applications, and its Usage in Cloud Computing,”
Ph.D. dissertation, Universitt Stuttgart, Fakultät Informatik, Elektrotech-
nik und Informationstechnik, 2010.

[32] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “BPMN4TOSCA:
A Domain-Specific Language to Model Management Plans for Com-
posite Applications,” in Proceedings of the 4th International Workshop
on the Business Process Model and Notation. Springer, 2012, pp.
38–52.

[33] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and T. Michelbach,
“A Domain-Specific Modeling Tool to Model Management Plans for
Composite Applications,” in Proceedings of the 7th Central European
Workshop on Services and their Composition, ZEUS 2015. CEUR
Workshop Proceedings, 2015, pp. 51–54.

[34] “CLI- und Dev-Tools,” 2017, URL: https://console.ng.bluemix.net/docs/
cli/index.html#cli [accessed: 2017-02-02].

[35] “About Run-lists – Chef Docs,” 2017, URL: https://docs.chef.io/run
lists.html [accessed: 2017-02-02].

[36] “About Recipes – Chef Docs,” 2017, URL: https://docs.chef.io/recipes.
html [accessed: 2017-02-02].

[37] “Charm hooks | Documentation | Juju,” 2017, URL: https://jujucharms.
com/docs/stable/authors-charm-hooks [accessed: 2017-02-02].

[38] “Implementing actions in Juju charms | Documentation | Juju,”
2017, URL: https://jujucharms.com/docs/stable/authors-charm-actions
[accessed: 2017-02-02].

[39] T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, 2013, pp. 692–
695.

[40] C. Alexander, The Timeless Way of Building. Oxford University Press,
1979.

[41] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and F. Leymann,
“From Pattern Languages to Solution Implementations,” in Proceedings
of the Sixth International Conferences on Pervasive Patterns and Ap-
plications (PATTERNS 2014). Xpert Publishing Services, 2014, pp.
710–726.

[42] ——, “Efficient Pattern Application: Validating the Concept of Solu-
tion Implementations in Different Domains,” International Journal On
Advances in Software, vol. 7, no. 3&4, 2014, pp. 710–726.

[43] C. Fehling, F. Leymann, J. Rütschlin, and D. Schumm, “Pattern-Based
Development and Management of Cloud Applications,” Future Internet,
vol. 4, no. 1, 2012, pp. 110–141.

[44] C. Fehling, F. Leymann, S. T. Ruehl, M. Rudek, and S. Verclas,
“Service Migration Patterns – Decision Support and Best Practices
for the Migration of Existing Service-based Applications to Cloud
Environments,” in Proceedings of the 6th IEEE International Conference
on Service Oriented Computing and Applications (SOCA 2013). IEEE,
2013, pp. 9–16.

[45] C. Endres, “A Pattern Language for Modelling the Provisioning of
Applications,” Master’s thesis, University of Stuttgart, 2015.

https://www.ibm.com/cloud-computing/bluemix/
https://www.ibm.com/cloud-computing/bluemix/
https://www.chef.io/
https://jujucharms.com/
http://www.opentosca.org/
https://supermarket.chef.io/
https://jujucharms.com/store/
https://www.ng.bluemix.net/docs/manageapps/depapps.html
https://www.ng.bluemix.net/docs/manageapps/depapps.html
https://www.ng.bluemix.net/docs/cfapps/boilerplates.html
https://www.ng.bluemix.net/docs/cfapps/boilerplates.html
https://docs.chef.io/nodes.html
https://docs.chef.io/nodes.html
https://jujucharms.com/docs/stable/charms-bundles
https://console.ng.bluemix.net/docs/cli/index.html#cli
https://console.ng.bluemix.net/docs/cli/index.html#cli
https://docs.chef.io/run_lists.html
https://docs.chef.io/run_lists.html
https://docs.chef.io/recipes.html
https://docs.chef.io/recipes.html
https://jujucharms.com/docs/stable/authors-charm-hooks
https://jujucharms.com/docs/stable/authors-charm-hooks
https://jujucharms.com/docs/stable/authors-charm-actions

