
Institute of Architecture of Application Systems,
University of Stuttgart, Germany,

lastname@iaas.uni-stuttgart.de

Towards an Approach for Automatically Checking
Compliance Rules in Deployment Models

Markus Philipp Fischer, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann

The full version of this publication has been presented at
SECURWARE 2017.

http://www.iaria.org/conferences2017/SECURWARE17.html

© 2017 IARIA. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works must be obtained from the IARIA.

@inproceedings{Fischer2017,
author = {Markus Philipp Fischer and Uwe Breitenb\"{u}cher and

K\'{a}lm\'{a}n K\'{e}pes and Frank Leymann},
title = {Towards an Approach for Automatically Checking Compliance Rules

in Deployment Models},
booktitle = {Proceedings of The Eleventh International Conference on Emerging

Security Information, Systems and Technologies (SECURWARE)},
year = {2017},
pages = {150-153},
isbn = {978-1-61208-582-1},
publisher = {Xpert Publishing Services (XPS)}

}

:

Institute of Architecture of Application Systems

http://www.iaria.org/conferences2017/SECURWARE17.html

Towards an Approach for Automatically
Checking Compliance Rules in Deployment Models

Markus Philipp Fischer, Uwe Breitenbücher, Kálmán Képes, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, 70569 Stuttgart, Germany
Email: {fischer, breitenbuecher, kepes, leymann}@iaas.uni-stuttgart.de

Abstract—An enterprise’s information technology environment is
often composed of various complex and heterogeneous systems
and is subject to many requirements, regulations, and laws.
This leads to the issue that technical experts should also have
a firm knowledge about a company’s compliance requirements
on information technology. This paper presents an approach
to ensure compliance of application deployment models during
their design time. We introduce a concept that is able to locate
compliance relevant areas in deployment models while also
specifying how these areas have to be modeled to fulfill the
compliance requirements.

Keywords–Cloud Computing; Compliance; Security; Policies;

I. INTRODUCTION

An enterprise’s information technology (IT) is subject to
many regulations and laws, such as the German Federal Data
Protection Act [1] or the ISO 27018 standard [2], which is
especially concerned with data protection for cloud services
(i.e. the privacy of personal data). Modern applications are
often composed of various different and heterogeneous systems
and form complex composite applications [3]. To avoid failures
that are most often caused by human operators [4], there
are efforts to automate the deployment and provisioning of
applications [5] while also considering non-functional security
requirements [6]–[10]. These approaches are implemented in
various deployment technologies that consume deployment
models to automatically deploy the described application.
These models typically describe the structure of the deploy-
ment and the desired configuration, for example that an Java-
based web application shall be hosted on an Apache Tomcat
that has to be installed on a new virtual machine of a certain
type. Unfortunately, companies are subject to a variety of
requirements, therefore, it is difficult to ensure that modelers
of deployment models are aware of all requirements that must
be considered in these models to follow the company’s compli-
ance. Moreover, even modelers that are aware of compliance
aspects can make mistakes that lead to deployments that are
not conformant to the compliance regulations of the company.
However, violations of compliance, in turn, can quickly result
in serious consequences for the company’s business.

In this paper, we present our work in progress about au-
tomating compliance ensurance for deployment models based
on the Topology and Orchestration Specification for Cloud
Applications (TOSCA) [11], a standard that allows the de-
scription of Cloud applications and their deployment. We
introduce a concept for specifying Deployment Compliance
Rules for TOSCA models that enable compliance experts to
define reusable rules that can be used to ensure the compliance
of deployment models. The approach enables the automation of

compliance checking for deployment models during their de-
sign time. As a work in progress, the concept is not yet detailed
completely and not implemented but will be integrated into the
open source TOSCA modeling tool Eclipse Winery [12].

The remainder of this short paper is structured as follows:
Section II describes the motivation and presents the concepts of
TOSCA. Section III introduces the concept for our approach,
followed by Section IV, which introduces selected works that
are related. Finally, Section V draws a conclusion on the work
in progress and gives an outlook on future work.

II. MOTIVATION

In this section, we describe a scenario to motivate our
concept. The described scenario will be used throughout the
paper to describe our approach. We also present the fun-
damentals of TOSCA, the basis of our prototype, in which
the presented concept will be realized. Everything needed to
understand our approach is described in this section, however,
we refer interested readers to the TOSCA Specification [11],
the TOSCA Primer [13], and the TOSCA Simple Profile [14] to
provide more detailed information about the OASIS standard.
TOSCA is a technology-agnostic approach that can be used
to orchestrate other deployment technologies, such as Chef or
Cloud provider APIs. Therefore, it is a suitable basis for a
technology-independent compliance checking approach.

The basic structure of an application modeled in TOSCA
consists of a Topology Template, which is a directed multi-
graph. The nodes of the graph represent software or infras-
tructure components such as a virtual machine, an Apache
PHP Server, or an operating system. These components are
represented in TOSCA as Node Templates. Node Templates
can be connected via directed edges that describe the relation-
ship between two adjacent nodes, such as a “hostedOn” or a
“connectsTo” relationship. These edges are called Relationship
Templates. Node Types and Relationship Types provide the
semantics for nodes and edges in the Topology Template. Both
are reusable classes that also allow the definition of properties,
such as username and password for a virtual machine or a
server. Figure 1 depicts our motivation scenario. The scenario
consists of a PHP Application that is connected to a MySQL
database. In this example, the PHP Application could be a
website where users can register themselves with their personal
data to receive regular newsletters from the company. The
MySQL database is modeled as a Node Template with, for
example, a property that semantically defines the type of data
that is stored in the database. Both the application stack on
the left side (PHP App, Apache PHP Server, Ubuntu 14.04
VM) and the application stack on the right (MySQL DB,

HUsername: MyAccount
HPassword: UZav0s2n56
[…]

(OpenStack)

MySQLPort: 3306
DBMSUsername: MySQLAdmin
DBMSPassword: DCulUaJOL4
[…]

(MySQLDBMS5.7)

RAM: 8GB
IP:
[…]

(Ubuntu14.04VM)

Datatype: PersonalData
Table: subscriber
[…]

(MySQLDB)

[…]

(PHP App)

RAM: 4GB
IP:
[…]

(Ubuntu14.04VM)

Port: 80

(ApachePHPServer)

= hostedOn

= Private Cloud Policy

 = On-Premise Policy

= connectsTo

Legend

Figure 1. Motivating Scenario with two stacks modeled using the visual
TOSCA notation Vino4TOSCA [15].

MySQL DBMS 5.7, Ubuntu 14.04 VM) are hosted on a Node
Template of Node Type “OpenStack”. The Relationship Type
“hostedOn” means that the component where the Relationship
Template originates, is installed on the target component, while
“connectsTo” specifies that the PHP application connects to the
MySQL database to store data [13]. The property Datatype
with value “PersonalData”, set in the MySQL database, in-
dicates that the data stored in the database is personal data.
If a company using this scenario is located in Germany,
it falls under the German Federal Data Protection Act [1],
which requires that the data is stored securely and access of
third parties to the data is prevented. Another requirement
is the adherence to the ISO 27018 standard [2], which is
used to certify companies in the area of privacy of personal
data in clouds. In our scenario, the company tries to enforce
strict data security rules to avoid losing any personal data,
to avoid coming in conflict with any law, and also they
place importance to discretion. Thus, when personal data is
involved, the company’s compliance requirement is that it
is to be ensured that the data is hosted On Premise and
in a Private Cloud. Deployment models such as depicted in
Figure 1 can be automatically executed with TOSCA Runtime
Environments, such as OpenTOSCA [5]. Additionally, TOSCA
not only allows the specification of application topologies and
their orchestration but also enables modeling non-functional
requirements using policies, e.g., concerning security or qual-
ity of service (QoS). For reusability, TOSCA provides Pol-
icy Types, which are classes of policies that can also have
properties. The actual values of the properties are specified
within the Policy Templates (Policy Definitions in the Simple
Profile [14]). A Policy Template is associated with a Policy
Type that can be associated with a set of Node Templates the
policy can be applied to. The TOSCA Specification does not

require a specific format for the policies, so any language is
usable. Example policies used in our approach are the On-
Premise Policy and the Private Cloud Policy. The On-Premise
Policy is intended to restrict the deployment of components
to pre-defined locations that are “On-Premise”. This means
that the associated components have to be hosted physically
on infrastructure that is on the site of a company. This is
often practiced with applications that process sensitive data,
for example in international customs. With a Private Cloud
Policy, a modeler can enforce that any Node Template the
Policy is applied to, is hosted in a company-internal data
center. This policy is related to the Cloud Computing Pattern
“Private Cloud” by Fehling et al. [16]. Thus, policies are
an instrument to address non-functional concerns such as
security and quality of service requirements. However, the
knowledge about compliance requirements is often held by
compliance experts. Therefore, modelers can be unaware of
the requirements, leading to non-compliant applications. It
is desired that application models, which are ready to be
provisioned, are compliant to the company’s requirements.
Therefore, each model has to be checked for compliance
by experts, which is a time-consuming and error-prone task
when done manually, especially for large and complex models.
Thus, the issue of compliance checking for deployment models
should be automated. In this paper, we present an approach for
compliance checking in deployment models on the basis of the
TOSCA standard.

III. TOWARDS AN APPROACH FOR AUTOMATICALLY
CHECKING COMPLIANCE RULES IN DEPLOYMENT MODELS

This section introduces our concept for automated compli-
ance checking of deployment models. We introduce Deploy-
ment Compliance Rules that can be modeled by compliance
experts, which enable to automatically ensure that a certain
compliance requirement is satisfied by a deployment model.
Deployment Compliance Rules allow compliance experts to
model allowed deployment structures, which are compliant to
a company’s compliance requirements, such as enforcing non-
functional security requirements on customer data. Figure 2
shows an example of such a rule. A Deployment Compliance

Required Structure

Identifier

Datatype: PersonalData

(Database)

(OpenStack)

(MySQLDBMS5.7)

(VirtualMachine)

Datatype: PersonalData

(MySQLDB)

Personal Data Deployment Compliance Rule

Figure 2. Example for a Compliance Rule.

Required Structure

Identifier

(OpenStack)

(MySQLDBMS5.7)

(Ubuntu14.04VM)

Datatype: PersonalData

(MySQLDB) (PHP App)

(Ubuntu14.04VM)

(ApachePHPServer)

Datatype: PersonalData

(Database)

(OpenStack)

(MySQLDBMS5.7)

(VirtualMachine)

Datatype: PersonalData

(MySQLDB) match

match

match

match

match

Personal Data Deployment Compliance Rule

Figure 3. This figure shows how the Identifier and Required Structure of the Personal Data Deployment Compliance Rule is matched to the motivation scenario.

Rule consists of two directed, typed, and attributed multi-
graphs, one being the Identifier graph (see left-hand side in
Figure 2), the other being the Required Structure graph (see
right-hand side in Figure 2). The basic idea is to use the
Identifier to find compliance-relevant areas in the deployment
model and to compare them to the defined Required Structure,
which defines allowed structures for this Identifier. To find
relevant areas and to compare them to the Required Structure,
we reduce the problem to a subgraph matching problem [17].
The Identifier is used to define compliance-relevant areas of
a deployment model as abstract as possible. TOSCA enables
this by allowing to specify Node Types that are abstract. Each
Node Type inherits the properties of Node Types it is derived
from. We explain this matching concept on the basis of the
Personal Data Deployment Compliance Rule scenario shown
in Figure 2. The intention of this rule is to ensure that all
databases of applications that store personal data have to be
deployed on the local OpenStack of the company. Therefore,
the Identifier graph depicted in Figure 2 on the left-hand
side consists of a single abstract “Database” Node Template
with the property “Datatype” and value “PersonalData”. With
this construct we ensure that all Node Templates that are
derived from the “Database” Node Template are matched
to this Identifier. The goal is to identify all areas of the
deployment model where the Deployment Compliance Rule
has to be applied. The Required Structure graph is used
to define the proper structure and semantics of the area of
the deployment model the Identifier matches, i.e., how the
Deployment Compliance Rule must be fulfilled. In Figure 2
on the right side, the Required Structure specifies that all
matching databases storing personal data must follow the struc-
ture of a “MySQLDB” NodeTemplate that is connected via
“hostedOn” Relationship Templates to “MySQLDBMS5.7”,
“VirtualMachine”, and “OpenStack” Node Templates. Similar
to the “Database” Node Template in the Identifier graph, the
“VirtualMachine” Node Template is abstract and, thus, allows
any kind of virtual machines to be used as operating system for
the database. The Policy Templates “Private Cloud’ and “On-
Premise“ are attached to the Node Templates of the Required
Structure to specify that the matched parts of the deployment
model must be hosted on a private cloud and on premise.

A. Algorithm Sketch

Figure 3 shows the basic idea of the approach. The deploy-
ment model is tested for each defined Deployment Compliance
Rule separately. In the following, we describe the algorithm
for one exemplary rule namely the Personal Data Deployment
Compliance Rule introduced in the previous section. The first
step is to identify all areas where the rule has to be applied, i.e.,
all areas of the model that match the Identifier of the rule. In
Figure 3, the Identifier consists of a single “Database” Node
Template that has “PersonalData” as a “Datatype” property.
Via subgraph isomorphism the Identifier can be matched to the
“MySQLDB” Node Template, which has the same property.
The match is indicated by the dashed double arrow between
the Identifier and the deployment model. In a second step
the Identifier’s match has to be checked against the Required
Structure. The deployment model is searched for subgraphs
that contain the identified subgraph as well as the Required
Structure. In Figure 3, the Required Structure consists of a
“MySQLDB” Node Template with an “On-Premise” Policy at-
tached and the specified Property and value. The “MySQLDB”
Node Template has to be hosted on a Node Template of the
specific type “MySQLDBMS5.7”, which has to be hosted on
a Node Template derived from the abstract Node Template
“VirtualMachine”. The last Node Template in the Required
Structure is an “OpenStack” Node Template that has a “Private
Cloud” Policy attached. As indicated by the dashed double
arrows in Figure 3 there is a subgraph that matches to the
Required Structure. Because the “MySQLDB” Node Template
matched to the Identifier is also a part of the subgraph matched
to the Required Structure, the Deployment Compliance Rule
is fulfilled. The subgraph isomorphism problem is an NP-
complete problem, therefore, its execution time has to be
discussed. The Deployment Compliance Rule example shown
in Figure 2 is defined by two graphs that have to be matched to
the overall deployment model and represents a typical use case
for the Deployment Compliance Rules defined in this paper.
As the two graphs are very small graphs the execution time
should be reasonable. However, if the rules become larger,
the execution time will also increase. Therefore, the approach
is suited for Compliance Rules of a small size to check the
compliance of deployment models.

IV. RELATED WORK

In this section, we present works that are related to our
approach for compliance checking during design time. Martens
et al. [18] propose a Reference Model that allows to capture
several aspects of risk and compliance management in Cloud
Computing. They use the Unified Modeling Language (UML)
as modeling language and define their model as class diagrams.
The model provides four different prospectives on risk and
compliance management as they separate it by concerns. They
provide constructs to characterize a Cloud computing service
that also includes concepts such as private cloud or the location
of a data center. The reference model also provides language
constructs to associate a service with business processes,
service level agreements, key performance indicators, risk
factors, and compliance regulations. Schleicher et al. [19]
introduce Compliance Domains to model data-restrictions in
Cloud environments. Their focus is on the compliant execution
of business processes in Cloud environments. Their approach
allows to define certain areas of business processes, expressed
in the Business Process Model and Notation (BPMN) [20], as
Compliance Domains to be annotated by compliance experts
with service level agreements and compliance rules, which
are written in XPath and are intended to validate, if the data
that is entering a Compliance Domain fulfills the compliance
requirements. Schleicher et al. use a blood donation process
as an example, where the name of a donor is not allowed to
be associated with the donation within a certain Compliance
Domain. The validation of a modeled business process is done
during the design time of the process and the modeler is
notified if any rules have been violated, to be corrected. The
approach’s method is similar to ours since compliance experts
are required to specify the rules for compliance checking.
They also introduce an algorithm that identifies Compliance
Domains in existing business processes based on compliance
rules and data flow in the processes. The method is similar to
ours with the exception that we integrate locating compliance
relevant areas in our Deployment Compliance Rules.

V. CONCLUSION

In this paper, we presented our work in progress to prevent
modelers of deployment models from bothering with com-
pliance requirements. We introduced Deployment Compliance
Rules that can validate a deployment model during the design
time. We separated the concerns of technical expertise and
knowledge of a company’s compliance requirements. Com-
pliance experts are enabled to create such rules that can
identify compliance relevant areas in deployment models while
also providing the modeler with allowed structures that fulfill
compliance requirements. In future work, we focus on the im-
plementation and integration of the approach into the TOSCA
modeling tool Winery [12] and also provide experimentation
results on the execution time with various sizes of deployment
models and Deployment Compliance Rules.

ACKNOWLEDGEMENT

This work was partially funded by the German Research
Foundation (DFG) project ADDCompliance and the BMWi
project SmartOrchestra (01MD16001F).

REFERENCES
[1] Federal data protection act. [Online]. Available: https://www.

gesetze-im-internet.de/englisch bdsg/ [Accessed: 2017-07-17]

[2] ISO/IEC 27018:2014 Code of practice for protection of personally
identifiable information (PII) in public clouds acting as PII processors,
International Organization for Standardization Std., 2014.

[3] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and J. Wettinger,
“Integrated Cloud Application Provisioning: Interconnecting Service-
Centric and Script-Centric Management Technologies,” in On the Move
to Meaningful Internet Systems: OTM 2013 Conferences (CoopIS
2013). Springer, Sep. 2013, pp. 130–148.

[4] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of the
4th Conference on USENIX Symposium on Internet Technologies and
Systems (USITS 2003). USENIX, Jun. 2003, pp. 1–1.

[5] T. Binz et al., “OpenTOSCA - A Runtime for TOSCA-based Cloud
Applications,” in Proceedings of the 11th International Conference on
Service-Oriented Computing (ICSOC 2013). Springer, Dec. 2013, pp.
692–695.

[6] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-Aware Provisioning of Cloud Applications,” in Proceedings
of the Seventh International Conference on Emerging Security In-
formation, Systems and Technologies (SECURWARE 2013). Xpert
Publishing Services, Aug. 2013, pp. 86–95.

[7] U. Breitenbücher et al., “Policy-Aware Provisioning and Management
of Cloud Applications,” International Journal On Advances in Security,
vol. 7, no. 1&2, 2014, pp. 15–36.

[8] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On
the Move to Meaningful Internet Systems: OTM 2013 Conferences.
Springer, Sep. 2013, pp. 360–376.

[9] T. Waizenegger, M. Wieland, Tobias, U. Breitenbücher, and F. Leymann,
“Towards a Policy-Framework for the Deployment and Management
of Cloud Services,” in SECURWARE 2013, The Seventh International
Conference on Emerging Security Information, Systems and Technolo-
gies. IARIA, August 2013, pp. 14–18.

[10] C. A. Ardagna, R. Asal, E. Damiani, and Q. H. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Computing Surveys (CSUR),
vol. 48, no. 1, 2015, p. 2.

[11] OASIS, Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[12] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[13] OASIS, Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) Primer Version 1.0, Organization for the Advancement
of Structured Information Standards (OASIS), 2013.

[14] OASIS, TOSCA Simple Profile in YAML Version 1.0, Organization for
the Advancement of Structured Information Standards (OASIS), 2015.

[15] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and D. Schumm,
“Vino4TOSCA: A Visual Notation for Application Topologies based
on TOSCA,” in On the Move to Meaningful Internet Systems: OTM
2012 (CoopIS 2012). Springer, Sep. 2012, pp. 416–424.

[16] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer, 2014.

[17] B. Gallagher, “Matching structure and semantics: A survey on graph-
based pattern matching,” AAAI FS, vol. 6, 2006, pp. 45–53.

[18] B. Martens and F. Teuteberg, “Risk and compliance management for
cloud computing services: Designing a reference model,” Risk, vol. 8,
2011, pp. 5–2011.

[19] D. Schleicher et al., “Compliance domains: A means to model data-
restrictions in cloud environments,” in Enterprise Distributed Object
Computing Conference (EDOC), 2011 15th IEEE International. IEEE,
2011, pp. 257–266.

[20] OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group (OMG), 2011.

