
Institute of Architecture of Application Systems, University of
Stuttgart, Germany

{guth, leymann}@iaas.uni-stuttgart.de

Towards Pattern-based Rewrite and
Refinement of Application Architectures

Jasmin Guth and Frank Leymann

@inproceedings{Guth2018_TowardsPatternBasedRewriteAndRefinement,
author = {Guth, Jasmin and Leymann, Frank},
title = {Towards Pattern-based Rewrite and Refinement of Application

Architectures},
booktitle = {Papers From the 12th Advanced Summer School

on Service-Oriented Computing (SummerSOC’18)},
year = {2018},
pages = {90--100},
publisher = {IBM Research Division}
}

Institute of Architecture of Application Systems

© 2018 IBM Research Divison

The full version of this publication has been presented as a poster at
the Advanced Summer School on Service-Oriented Computing

(SummerSOC’18).
http://summersoc.eu

Towards Pattern-based Rewrite and Refinement of
Application Architectures

Jasmin Guth and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
Universitätsstr. 38, 70569 Stuttgart, Germany
[lastname]@iaas.uni-stuttgart.de

Abstract. With the ongoing growth of IT application systems, the development
and modeling process of their architectures becomes increasingly complex. Ar-
chitectural patterns capturing proven solutions for recurring problems in an ab-
stract and human readable way should support this process. Due to the abstract
character of patterns, they cannot be applied to a concrete architecture automati-
cally: For each use case, patterns have to be read, understood, adapted to the re-
spective use case, and realized manually. In this work, we tackle these issues by
proposing an approach for an automated realization of architectural patterns
within a given architectural graph based on graph transformation techniques.

Keywords: Application Architectures, Patterns, Solution Paths, Rewrite, Re-
finement, Graph Transformation.

1 Introduction

With the ongoing growth of IT application systems, the manual modeling and develop-
ment phase of their architectures becomes increasingly complex. Diverse modeling
tools are available to support this process, whereby each tool employs a different format
and, hence, the graphical representation, if available, differs as well. This also affects
the granularity of details depicted, like, e.g., abstract components are depicted or even
implementation details are given. To enable a classification of architectures, Malan and
Bredemeyer [1] delimit between three levels: (i) Conceptual architectures which are
abstract, (ii) logical architectures which are detailed, and (iii) execution architectures
which describe the process and deployment view. Further, each level can be subdivided
into a behavioral and structural view. Since an application system architecture has sig-
nificant impact on the prospective usability, performance, and maintainability, its de-
velopment phase is of explicit importance [2]. To ease this process and to support the
developer, diverse pattern languages can be used [3]. Patterns describe proven solutions
for recurring problems documented in an abstract and human readable way [4]. Due to
the abstract character of patterns, they cannot be applied to an architecture directly:
Patterns have to be read, understood, adapted, and realized manually for each use
case [4]. However, there are many pattern languages available, but a general approach
to automatically apply patterns to architectures to refine and model the architecture by

2

selecting patterns is still missing. Hence, each pattern is realized over and over again
manually, which leads to a multitude of possibly incorrect pattern realizations.

The result of the discussion above is that patterns are a profound support during the
development and modeling phase of an architecture, missing a tool and method inte-
gration. The manual modeling and development of application system architectures is
already a time consuming and error prone task. The lack of pattern integration leads to
an amplification of those negative aspects and a multitude of possibly incorrect pattern
realizations. Hence, the usage of patterns during the modeling phase, which should ac-
tually support and ease this phase, impedes it and makes it even more complex.

In this paper, we tackle these issues by introducing an approach to enable an auto-
mated pattern integration within the modeling and development process of the struc-
tural view of application system architectures on a conceptual level. In general, this
leads to an adapted modeling process: (i) Abstract architectures can be refined by ap-
plying patterns, i.e., corresponding components and connectors are added which results
in a more concrete architecture [5], and (ii) existing architectures can be rewritten based
on applied patterns, i.e., components and connectors get exchanged or deleted [6].

Following, we will combine (i) the knowledge of proven solutions for recurring
problems in terms of patterns, (ii) the modeling and development process of architec-
tures, and (iii) architectural effects of patterns if applied onto architectures.

The remainder of this paper is structured as follows: Fundamentals to ease the un-
derstanding are presented in Section 2. We introduce the concept of our approach in
Section 3 and work related to our approach is discussed in Section 4. We conclude this
work and give a short overview of future work in Section 5.

2 Fundamentals

Within this section we give an overview of fundamentals to ease the understanding of
our approach. First, background of application architectures and architectural graphs
that we use to represent an application system architecture is given. Then fundamentals
of patterns, pattern languages, and solution paths are presented.

2.1 Application System Architectures & Architectural Graphs

The structure of an IT system is described by its architecture, depicting the system's
components and their relationships, as well as their external visible properties [7]. Thus,
an IT architecture describes the composition of architectural elements without imple-
mentation details. For the documentation and visualization of an architecture, multiple
architecture description languages, modeling languages, and modeling tools are pre-
sent, such as ACME1, ArchiMate2, or particular UML3 diagrams. Since each language
and tool differs within their capabilities and, hence, their representation range, and due

1 http://www.cs.cmu.edu/~acme/
2 http://www3.opengroup.org/subjectareas/enterprise/archimate-overview
3 http://www.uml.org

3

to the fact, that in most cases diverse people are involved, like, e.g., business process
managers and programmers, which develop and discuss the architecture, the level of
details within an architecture differs [1]. It has become common practice to use draw-
ings of boxes to represent components and lines representing relationships [8]. This
informal proceeding adapts Le Métayer [9] and describes a representation and formal-
ization of software architectures as graphs, in which nodes represent components and
edges represent relationships among them. Within this work, we use such a graph rep-
resentation of architectures, referred to as an architectural graph to formalize an appli-
cation system architecture. Those architectural graphs represent structural architectures
on the conceptual level [1]. Fig. 1 shows an exemplary architectural graph, whereby
nodes represent the components of the architecture and edges represent the connectors
among the components. Furthermore, each node is mapped to a type, such as applica-
tion, server, or virtual machine. This mapping is required for a verification if the corre-
sponding pattern is applicable to the architectural graph, since a specific pattern cannot
be applied to all kind of architectural graphs due to possibly required components and
relationships, a detailed description follows in Sect. 3.3.

Fig. 1. Architectural Graphs

2.2 Patterns, Pattern Languages & Solution Paths

Patterns describe proven solutions for recurring problems within a certain context in an
abstract and human readable way [4]. For example, a pattern may provide an abstract
solution for common problems on how to design an application architecture. Patterns
abstractly document an approach on how to solve a certain problem, since they are
independent of the underlying technologies, such as specific runtime environments or
programming languages [4]. Typically, concrete implementation realizations, such as
code snippets, are not documented. Hence, patterns need to be adapted to the respective
use case, and can, therefore, be used within various kinds of IT environments [4].

Components &
Types

Connectors

4

A pattern language comprises a collection of related patterns, forming a network as
depicted in Fig. 2, in which one can navigate from one pattern to another related one
that might become relevant after the application of the first pattern [3,10]. Several pat-
tern languages are available in the field of IT, whereby each language has a different
focus. For example, Gamma et al. [11] published design patterns focusing on object-
oriented software, Fowler [12] introduced patterns for the development of enterprise
application systems, and Fehling et al. [13] published patterns which focus on cloud
computing and its architectures. Besides such general pattern languages, several pat-
terns are available, published and realized by platform providers, such as the AWS
Cloud Design Patterns [14]. Such provider-specific patterns are excluded from this
work since they are bound to the provider and implement provider-specific realizations.

Fig. 2. Pattern Language and Exemplary Solution Path [15]

As described above, a pattern language forms a network of patterns, which connects
related patterns [3,10]. After an entry point, i.e., a pattern which solves the problem at
least partially, to this network is found and selected, subsequent and related patterns
can be navigated to and selected as well [15]. Each such a possible path of selected
patterns within this network forms a solution path [15,16], one exemplary solution path
is shown in Fig. 2. Within our approach, we use solution paths to define the application
order of patterns to architectural graphs, since solution paths are directed paths.

3 Concept of Pattern-based Rewrite & Refinement of
Application Architectures

The aim of our approach is to enable a pattern-based rewrite and refinement of archi-
tectures through an automated application of patterns. Therefore, architectures are rep-
resented as architectural graphs as described in Sect. 2.1. To define the application order
of patterns, we use the selected solution path, as described in Sect. 2.2. Fig. 3 gives an
overview of our approach. On the upper left side, the input is shown, i.e., the basis
architectural graph and a selected solution path, which is described in Sect. 3.1. The
remaining steps are iterative, since each pattern of the selected solution path is applied
individually: First, the pattern which is applied next is defined, as described in Sect. 3.2.

Pattern Language

P1
P2

P5

P3 P4 P7

P6

Solution Path

5

Then the requirements of this pattern are checked, as explained in Sect. 3.3. In the last
step, the architectural graph is rewritten or refined, as described in Sect. 3.4.

Fig. 3. Concept of Pattern-based Rewrite and Refinement of Application Architectures

3.1 Input

A basis architectural graph and a selected solution path of a specific pattern language
forms the input of our iterative approach, as shown on the top left of Fig. 3. The basis
architectural graph is a possibly abstract architecture represented as a graph, as de-
scribed within Sect. 2.1, on which the modifications resulting of the application of a
pattern are performed. For instance, a client server architecture could be such a basis
architectural graph with three nodes, i.e., two nodes of type client and another node of
type server, as well as two edges connecting both client components with the server
component. Furthermore, the selected solution path, as described within Sect. 2.2,
forms the second part of the input. The selected solution path comprises all patterns that
have to be applied, and the order of the directed solution path defines the application
order in which the patterns are applied to the basis architectural graph. For each pattern
of the solution path all following described three steps are performed. The resulting
architectural graph of one iteration serves as an input for the next iteration. Within the
first iteration the basis architectural graph of the input is used to operate on.

3.2 Apply Pattern of Solution Path

Within the step Apply Pattern of Solution Path, as shown on the top right-hand side of
Fig. 3, the next pattern of the solution path, as defined within the input, is taken to be
applied to the (basis) architectural graph. The solution path defines the application or-
der, i.e., starting with the first pattern P3 of the solution path, within the next iteration

Apply
Pattern of
Solution

Path

Check
Require-
ments

Rewrite
or Refine

Pattern Language

P1
P2

P5

P3 P4 P7

P6

Solution Path

Modified Architectural Graph

Input

P3
P4

P6

Solution Path

Basis Architectural
Graph

R

FR

fR

Required Fragment

Modification Fragment

Local Pattern Operator

Components

Connectors

(Basis) Architectural GraphP3

R

Required Fragment

(Basis) Architectural Graph

⊆?

P3

FR

Modification Fragment

fR

Selected Solution Path

6

the second pattern P4 gets applied, etc. To achieve a proper modification of the archi-
tectural graph, each pattern consists of three attachments: (i) R - The required fragment,
which describes a possibly empty subgraph containing the required components and
connectors of which the pattern cannot be applied without. If the pattern comprises no
requirements the required fragment is an empty graph. (ii) FR - The modification frag-
ment, comprising a possibly empty graph, contains all components and connectors
which have to be embedded in the architectural graph. Embedding a modification frag-
ment covers adding and removing the fragment or parts of it, as well as replacing com-
ponents and connectors of the architectural graph with components of the modification
fragment or even replacing the whole graph. (iii) fR - The local pattern operator defines
the modification of the architectural graph, i.e., how the modification fragment is em-
bedded, like e.g., the fragment is added and connected to a specific node.

3.3 Check Requirements

Within the step Check Requirements, as shown on the bottom right side of Fig. 3 the
above described requirements of the pattern to be applied get verified. Therefore, it is
checked if the required fragment R is a subgraph of the (basis) architectural graph. For
a positive verification, the (basis) architectural graph has to contain the required frag-
ment R, i.e., R is a subgraph of the (basis) architectural graph. If the required fragment
R is not contained within the (basis) architectural graph, i.e., the required fragment R is
not a subgraph of the (basis) architectural graph, the pattern cannot be applied. This
verification is done within each iteration, checking if the actual pattern of the solution
path can be applied. Corresponding to the example within Fig. 3, for applying the pat-
tern P3 the (basis) architectural graph must contain a subgraph with two nodes of a
specific type, as well as an edge connecting both components with each other. This
procedure ensures that for the (basis) architectural graph only suitable patterns are ap-
plied and, thus, that only reasonable architectural graphs result of the next step.

3.4 Rewrite or Refine

The Rewrite or Refine step, shown on the bottom left side of Fig. 3 modifies the archi-
tectural graph based on the modification fragment and the local pattern operator. As
described above, the modification fragment FR consists of all components and connect-
ors to be embedded within the (basis) architectural graph and the local pattern opera-
tor fR defines how the modification fragment gets embedded. This results in a modified
architectural graph. As shown in Fig. 3, embedding the modification fragment FR in the
basis architectural graph means that the lower left node of the basis architectural graph
is replaced by the middle node of the modification fragment and the remaining two
component nodes and the corresponding connectors are added to the architectural
graph. The modification may either result in a refined architectural graph, i.e., more
details in terms of added components and connectors are depicted, or it results in a
rewritten architectural graph, i.e., components and connectors are exchanged or deleted.
The modified architectural graph is then used within the next iteration as the underlying
architectural graph on which the next pattern of the solution path gets applied.

7

4 Related Work

In this section we delimit our approach against existing works that combine the
knowledge of proven solutions for recurring problems, in terms of patterns, and the
modeling and development process of architectures of application systems.

Eden et al. [17] introduce an approach for an automated application of design pat-
terns. For this, programmers have to specify a pattern in an abstract way and the reali-
zation of the pattern in a specific program. Following, the pattern can be applied auto-
matically, whereby the programmer may edit the implementation manually. Contrary
to our work, patterns are used to add source code to a given program and not to model
and define the architecture of an application system on a conceptual level.

Bergenti and Poggi [18] introduce the IDEA (Interactive DEsign Assistant) system
to detect design patterns within UML class and collaboration diagrams. The system
further enables to improve the detected pattern realizations within an UML diagram.
This work focuses on the detection and improvement of design patterns and operates
on a logical architecture, whereby the structural as well as the behavioral view is con-
sidered [1]. Contrary, our work operates on the conceptual level, focusing on the struc-
tural view and uses patterns to automatically model and define the architecture.

Bolusset and Oquendo [5] introduce a formal approach to refine software architec-
tures based on transformation patterns using rewriting logic. Within their approach the
refinement of an architecture does not change the architecture but specifies the compo-
nents of an architecture in more detail, such as the definition of ports. Contrary, our
approach results in a more detailed and possibly changed architecture. Furthermore,
they use transformation patterns in terms of rewriting logic rules and equations and not
in terms of best-practices and proven solutions for recurring problems.

Zdun and Avgeriou [19] present an approach to model architectural patterns through
architectural primitives using UML profiles. This work focuses on modeling architec-
tural patterns. Contrary, they do not use patterns to model and define an architecture.

Arnold et al. [20,21] introduce an approach for an automated realization of deploy-
ment patterns, which describe service deployment best-practices as model-based pat-
terns capturing the structure of a solution without the binding to a specific resource
instance. Therefore, deployment patterns have to be defined and modeled by experts so
that deployer can use them. In contrast to our work, they do not use architectural pat-
terns to model and define the architecture of an application system.

Zimmermann et al. [22] present an architectural design method based on the combi-
nation of pattern languages and reusable architectural design decision models. Contrary
to our approach, within their work they use patterns in terms of architectural decisions.

Eilam et al. [23] present an approach for an automated transformation of deployment
models onto workflow models. Within this work, transformation operations are repre-
sented as automation signatures including a model pattern representing the effects of
operations on resources. Those automation signatures, i.e., model-based patterns are
matched to a deployment desired state model. Hence, in this work patterns are used in
terms of automation signatures and not as proven solutions for recurring problems.

Fehling et al. [24] present an approach to enrich application architecture diagrams
by pattern annotations during the development phase. In contrast to our approach, those

8

pattern annotations express the requirements of application components and usage de-
pendencies on each other and on the runtime. They do not use patterns to model or
define the refinement of the architecture of an application system itself.

Breitenbücher [25] and Breitenbücher et al. [26,27] introduce an approach to auto-
matically apply management patterns onto topologies to enable the management of
composite cloud applications. Contrary to our approach, they do not focus on modeling
an application architecture through a selection and application of patterns. Since they
operate on topology graphs and use graph isomorphism and subgraph isomorphism
methods to verify if a pattern can be applied to a topology graph, this can be used within
our approach as a basis to check if a pattern is applicable to a given architectural graph.
Furthermore, the algorithm used to transfer the topology, i.e., the application of the
pattern, can be used as a basis for the modification of architectural graphs as well.

Jamshidi et al. [28] describe a set of patterns which document how to migrate an
application to a cloud environment. Within each pattern the initial as well as resulting
architecture of the application is described. Even though this can be used for an auto-
mated migration, each pattern is applied to an architecture manually.

Lytra et al. [29] introduce an approach and prototypical implementation for transfor-
mation actions and consistency checking rules to (semi-)automatically map architec-
tural design decisions onto architectural component models. Furthermore, they intro-
duce an architectural knowledge transformation language to define and realize the men-
tioned mapping. In contrast to our approach, this work does not use patterns to define
an architecture, but the selection of architecture design decisions results in pattern im-
plementations. Thus, pattern realizations are one result of their approach, but patterns
are not used to model or define the refinement or rewrite of an architecture.

Hirmer and Mitschang [30] describe an approach to transform non-executable data
mashup plans into an executable format by selecting an appropriate pattern and further
parameters. This approach is based on rule-based transformations and focuses on data
processing and integration scenarios. In contrast to our work, this approach uses prede-
fined modularized implementation fragments which are selected and scripted together.

Amato and Moscato [31] present an approach for a manual formalization of patterns
resulting in workflows and automatic verification of soundness. Contrary, the devel-
oper has to model or formalize the pattern by hand and cannot apply it automatically.

Lehrig [32] and Lehrig et al. [33] introduce the architectural template (AT) method,
which enables design-time analyses of quality-of-service properties of software sys-
tems based on reusable modeling templates capturing architectural knowledge. Con-
trary, their approach operates on existing architectures aiming the analysis of its behav-
ioral models, and, therefore architectural templates are embedded within the architec-
ture automatically. Nevertheless, the embedding of architectural templates can serve as
a basis for the refinement and rewrite of architectural graphs.

Saatkamp et al. [34,35] present an approach to automatically detect problems in re-
structured deployment models by formalizing the problem and context domain of ar-
chitecture and design patterns. This approach can be adapted and integrated within our
approach to verify if a pattern is applicable to an architectural graph. Nevertheless, they
do not apply patterns to a deployment model or use patterns to model or define the
rewrite or refinement of an architecture of an application system.

9

Falkenthal et al. [36,37] introduce concrete solutions of patterns capturing imple-
mentation realizations, such as code snippets. Based on the selected concrete solution
path, they further present a method to aggregate multiple concrete solutions into an
overall solution. Contrary to our work, Falkenthal et al. do not operate on the structural
view of conceptual architectures. Nevertheless, a pattern realization within an architec-
tural graph can be considered as a concrete solution, this indicates that the aggregation
of concrete solutions is also possible within our approach. In future work we will in-
vestigate if their approach is applicable to the structural view of conceptual architec-
tures and if an aggregated application of patterns is a promising approach for our work.

5 Conclusion & Future Work

Up to this point, patterns have to be read, understood, adapted, and implemented for
each use case manually. This procedure has to be integrated into the modeling process
of architectures of application systems. Our approach eases the development and mod-
eling process of architectures by combining this process with the knowledge of proven
solutions for recurring problems in terms of patterns.
Within this work we introduced our approach to enable a refinement and rewrite of
architectures based on selected patterns. Therefore, architectures are depicted as archi-
tectural graphs, with nodes representing components and edges representing connectors
among the components of an architecture of an application system. Following a selected
solution path, patterns are applied to the architectural graph successively. To achieve a
coherent resulting architectural graph, patterns are only applied if their requirements
are fulfilled, i.e., if the required possibly empty subgraph is present within the underly-
ing (basis) architectural graph. The modification of the architectural graph resulting of
the application of a specific pattern is based on a modification fragment, which depicts
a possibly empty graph to be embedded within the architectural graph, and on the local
pattern operator, which defines how the modification fragment is embedded within the
architectural graph. As a result, the architectural graph can be refined through the ap-
plication of patterns, i.e., components and connectors are added, or the architectural
graph can be rewritten, i.e., already present components and connectors are exchanged
or even deleted. Hence, our approach enables a pattern-based refinement and rewrite of
application architectures by using graph transformation techniques.

Within future work, we will formalize and further elaborate the presented approach.
Furthermore, we will investigate, whether there are better ways to define the application
order of patterns, for example, if an application order based on the required fragments
or modification fragments of all patterns of the selected solution path are more effec-
tive. Additionally, we will consider the approach of Falkenthal et al. [36,37] to investi-
gate if an application of the aggregated patterns of the selected solution path is effective.

Acknowledgements. This work was partially funded by the German Research Foun-
dation (DFG) project ADDCompliance (636503).

10

References

1. Malan, R., Bredemeyer, D.: Software architecture: Central concerns, key decisions. Software
Architecture Action Guide. Architecture Resources Pubs., Bredemeyer Consulting (2002).

2. Kaartinen, J., Palviainen, J., Koskimies, K.: A pattern-driven process model for quality-cen-
tered software architecture design - A case study on usability-centered design. In: Proceedings
of the Australian Software Engineering Conference, pp. 17–26. IEEE (2007).

3. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press (1977).

4. Alexander, C.: The Timeless Way of Building. Oxford University Press (1979).
5. Bolusset, T., Oquendo, F.: Formal Refinement of Software Architectures Based on Rewriting

Logic. Proceedings of the International Workshop on Refinement of Critical Systems: Meth-
ods, Tools and Experience 29(5), 1-20 (2002).

6. Meseguer, J.: Research Directions in Rewriting Logic. In: Computational Logic.
Springer (1999).

7. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wes-
ley (2003).

8. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the 16th Inter-
national Conference on Software Engineering, pp. 71–80. IEEE (1994).

9. Le Métayer, D.: Describing software architecture styles using graph grammars. IEEE Trans-
actions on Software Engineering 24, 521–533 (1998).

10. Fehling, C., Barzen, J., Falkenthal, M., Leymann, F.: PatternPedia – Collaborative Pattern
Identification and Authoring. In: Proceedings of Pursuit of Pattern Languages for Societal
Change. The Workshop 2014, pp. 252–284 (2015).

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Ob-
ject-oriented Software. Addison-Wesley (1994).

12. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley (2002).
13. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing Patterns:

Fundamentals to Design, Build, and Manage Cloud Applications. Springer (2014).
14. Amazon Web Services LLC: AWS Cloud Design Pattern. http://en.clouddesignpattern.org/in-

dex.php/Main_Page, last accessed 2018/06/22.
15. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F., Hadjakos, A., Hent-

schel, F., Schulze, H.: Leveraging Pattern Applications via Pattern Refinement. In: Proceed-
ings of the International Conference on Pursuit of Pattern Languages for Societal Change,
pp. 38–61. epubli (2016).

16. Zdun, U.: Systematic Pattern Selection Using Pattern Language Grammars and Design Space
Analysis. In: Software: Practice & Experience 37, 983–1016 (2007).

17. Eden, A. H., Yehudai, A., Gil, J.: Precise Specification and Automatic Application of Design
Patterns. In: Proceedings of the 12th IEEE International Conference Automated Software En-
gineering, pp. 143–152. IEEE (1997).

18. Bergenti, F., Poggi, A.: Improving UML Designs Using Automatic Design Pattern Detection.
Handbook of Software Engineering and Knowledge Engineering: Volume II: Emerging Tech-
nologies, pp. 771-784 (2002).

19. Zdun, U., Avgeriou, P.: Modeling Architectural Patterns Using Architectural Primitives. In:
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, pp. 133–146. ACM (2005).

20. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern Based SOA
Deployment. Proceedings of the 5th International Conference on Service-Oriented Computing,
pp. 1–12. Springer (2007).

11

21. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Automatic Realization
of SOA Deployment Patterns in Distributed Environments. Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing, pp. 162–179. Springer (2008).

22. Zimmermann, O., Zdun, U., Gschwind, T., Leymann, F.: Combining Pattern Languages and
Reusable Architectural Decision Models into a Comprehensive and Comprehensible Design
Method. In: 7th Working IEEE/IFIP Conference on Software Architecture, pp. 157–166.
IEEE (2008).

23. Eilam, T., Elder, M., Konstantinou, A.V, Snible, E.: Pattern-based Composite Application
Deployment. In: Proceedings of the 12th IFIP/IEEE International Symposium on Integrated
Network Management, pp. 217–224. IEEE (2011).

24. Fehling, C., Leymann, F., Rütschlin, J., Schumm, D.: Pattern-Based Development and Man-
agement of Cloud Applications. In: Future Internet 4, 110–141 (2012).

25. Breitenbücher, U.: Eine musterbasierte Methode zur Automatisierung des Anwendungsmana-
gements. Dissertation, University of Stuttgart, Faculty of Computer Science, Electrical Engi-
neering, and Information Technology (2016).

26. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Management of
Composite Cloud Applications. In: Proceedings of the 3rd International Conference on Cloud
Computing and Services Science, pp. 475–482. SciTePress (2013).

27. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Automating Cloud Application Manage-
ment Using Management Idioms. In: Proceedings of the 6th International Conferences on Per-
vasive Patterns and Applications, pp. 60–69. Xpert Publishing Services (2014).

28. Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud Migration Patterns: A Multi-Cloud Ser-
vice Architecture Perspective. In: Service-Oriented Computing - ICSOC 2014 Workshop,
pp. 6–19. Springer (2014).

29. Lytra, I., Tran, H., Zdun, U.: Harmonizing architectural decisions with component view mod-
els using reusable architectural knowledge transformations and constraints. In: Future Gener-
ation Computer Systems 47, 80–96 (2015).

30. Hirmer, P., Mitschang, B.: FlexMesh - Flexible Data Mashups Based on Pattern-Based Model
Transformation. In: Rapid Mashup Development Tools, pp. 12–30. Springer (2016).

31. Amato, F., Moscato, F.: Pattern-based orchestration and automatic verification of composite
cloud services. In: Computers and Electrical Engineering 56, 842–853. Elsevier Ltd (2016).

32. Lehrig, S. M.: Efficiently Conducting Quality-of-Service Analyses by Templating Architec-
tural Knowledge. Dissertation, University of Stuttgart, Faculty of Computer Science, Electri-
cal Engineering, and Information Technology (2018).

33. Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating architec-
tural knowledge to efficiently conduct quality-of-service analyses. In: Software: Practice and
Experience 48, 268–299 (2018).

34. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: An Approach to Automatically De-
tect Problems in Restructured Deployment Models based on Formalizing Architecture and
Design Patterns. Computer Science - Research and Development (2018).

35. Saatkamp, K., Breitenbücher, U., Kopp, O., Leymann, F.: Application Scenarios for Auto-
mated problem Detection in TOSCA Topologies by Formalized Patterns. In: Proceedings of
the 12th Advanced Summer School on Service Oriented Computing. IBM Research Divi-
sion (2018).

36. Falkenthal, M., Barzen, J., Breitenbücher, U., Fehling, C., Leymann, F.: Efficient Pattern Ap-
plication: Validating the Concept of Solution Implementations in Different Domains. In: In-
ternational Journal On Advances in Software 7, 710–726 (2014).

37. Falkenthal, M., Barzen, J., Breitenbücher, U., Leymann, F.: On the Algebraic Properties of
Concrete Solution Aggregation. In: Computer Science - Research and Development (2018).

