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Abstract. With the ongoing growth of IT application systems, the development 
and modeling process of their architectures becomes increasingly complex. Ar-
chitectural patterns capturing proven solutions for recurring problems in an ab-
stract and human readable way should support this process. Due to the abstract 
character of patterns, they cannot be applied to a concrete architecture automati-
cally: For each use case, patterns have to be read, understood, adapted to the re-
spective use case, and realized manually. In this work, we tackle these issues by 
proposing an approach for an automated realization of architectural patterns 
within a given architectural graph based on graph transformation techniques. 

Keywords: Application Architectures, Patterns, Solution Paths, Rewrite, Re-
finement, Graph Transformation. 

1 Introduction 

With the ongoing growth of IT application systems, the manual modeling and develop-
ment phase of their architectures becomes increasingly complex. Diverse modeling 
tools are available to support this process, whereby each tool employs a different format 
and, hence, the graphical representation, if available, differs as well. This also affects 
the granularity of details depicted, like, e.g., abstract components are depicted or even 
implementation details are given. To enable a classification of architectures, Malan and 
Bredemeyer [1] delimit between three levels: (i) Conceptual architectures which are 
abstract, (ii) logical architectures which are detailed, and (iii) execution architectures 
which describe the process and deployment view. Further, each level can be subdivided 
into a behavioral and structural view. Since an application system architecture has sig-
nificant impact on the prospective usability, performance, and maintainability, its de-
velopment phase is of explicit importance [2]. To ease this process and to support the 
developer, diverse pattern languages can be used [3]. Patterns describe proven solutions 
for recurring problems documented in an abstract and human readable way [4]. Due to 
the abstract character of patterns, they cannot be applied to an architecture directly: 
Patterns have to be read, understood, adapted, and realized manually for each use 
case [4]. However, there are many pattern languages available, but a general approach 
to automatically apply patterns to architectures to refine and model the architecture by 
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selecting patterns is still missing. Hence, each pattern is realized over and over again 
manually, which leads to a multitude of possibly incorrect pattern realizations. 

The result of the discussion above is that patterns are a profound support during the 
development and modeling phase of an architecture, missing a tool and method inte-
gration. The manual modeling and development of application system architectures is 
already a time consuming and error prone task. The lack of pattern integration leads to 
an amplification of those negative aspects and a multitude of possibly incorrect pattern 
realizations. Hence, the usage of patterns during the modeling phase, which should ac-
tually support and ease this phase, impedes it and makes it even more complex. 

In this paper, we tackle these issues by introducing an approach to enable an auto-
mated pattern integration within the modeling and development process of the struc-
tural view of application system architectures on a conceptual level. In general, this 
leads to an adapted modeling process: (i) Abstract architectures can be refined by ap-
plying patterns, i.e., corresponding components and connectors are added which results 
in a more concrete architecture [5], and (ii) existing architectures can be rewritten based 
on applied patterns, i.e., components and connectors get exchanged or deleted [6].  

Following, we will combine (i) the knowledge of proven solutions for recurring 
problems in terms of patterns, (ii) the modeling and development process of architec-
tures, and (iii) architectural effects of patterns if applied onto architectures. 

The remainder of this paper is structured as follows: Fundamentals to ease the un-
derstanding are presented in Section 2. We introduce the concept of our approach in 
Section 3 and work related to our approach is discussed in Section 4. We conclude this 
work and give a short overview of future work in Section 5. 

2 Fundamentals 

Within this section we give an overview of fundamentals to ease the understanding of 
our approach. First, background of application architectures and architectural graphs 
that we use to represent an application system architecture is given. Then fundamentals 
of patterns, pattern languages, and solution paths are presented. 

2.1 Application System Architectures & Architectural Graphs 

The structure of an IT system is described by its architecture, depicting the system's 
components and their relationships, as well as their external visible properties [7]. Thus, 
an IT architecture describes the composition of architectural elements without imple-
mentation details. For the documentation and visualization of an architecture, multiple 
architecture description languages, modeling languages, and modeling tools are pre-
sent, such as ACME1, ArchiMate2, or particular UML3 diagrams. Since each language 
and tool differs within their capabilities and, hence, their representation range, and due 

                                                        
1  http://www.cs.cmu.edu/~acme/ 
2  http://www3.opengroup.org/subjectareas/enterprise/archimate-overview 
3  http://www.uml.org 
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to the fact, that in most cases diverse people are involved, like, e.g., business process 
managers and programmers, which develop and discuss the architecture, the level of 
details within an architecture differs [1]. It has become common practice to use draw-
ings of boxes to represent components and lines representing relationships [8]. This 
informal proceeding adapts Le Métayer [9] and describes a representation and formal-
ization of software architectures as graphs, in which nodes represent components and 
edges represent relationships among them. Within this work, we use such a graph rep-
resentation of architectures, referred to as an architectural graph to formalize an appli-
cation system architecture. Those architectural graphs represent structural architectures 
on the conceptual level [1]. Fig. 1 shows an exemplary architectural graph, whereby 
nodes represent the components of the architecture and edges represent the connectors 
among the components. Furthermore, each node is mapped to a type, such as applica-
tion, server, or virtual machine. This mapping is required for a verification if the corre-
sponding pattern is applicable to the architectural graph, since a specific pattern cannot 
be applied to all kind of architectural graphs due to possibly required components and 
relationships, a detailed description follows in Sect. 3.3. 

Fig. 1. Architectural Graphs 

2.2 Patterns, Pattern Languages & Solution Paths 

Patterns describe proven solutions for recurring problems within a certain context in an 
abstract and human readable way [4]. For example, a pattern may provide an abstract 
solution for common problems on how to design an application architecture. Patterns 
abstractly document an approach on how to solve a certain problem, since they are 
independent of the underlying technologies, such as specific runtime environments or 
programming languages [4]. Typically, concrete implementation realizations, such as 
code snippets, are not documented. Hence, patterns need to be adapted to the respective 
use case, and can, therefore, be used within various kinds of IT environments [4]. 

Components & 
Types

Connectors
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A pattern language comprises a collection of related patterns, forming a network as 
depicted in Fig. 2, in which one can navigate from one pattern to another related one 
that might become relevant after the application of the first pattern [3,10]. Several pat-
tern languages are available in the field of IT, whereby each language has a different 
focus. For example, Gamma et al. [11] published design patterns focusing on object-
oriented software, Fowler [12] introduced patterns for the development of enterprise 
application systems, and Fehling et al. [13] published patterns which focus on cloud 
computing and its architectures. Besides such general pattern languages, several pat-
terns are available, published and realized by platform providers, such as the AWS 
Cloud Design Patterns [14]. Such provider-specific patterns are excluded from this 
work since they are bound to the provider and implement provider-specific realizations. 

Fig. 2. Pattern Language and Exemplary Solution Path [15] 

As described above, a pattern language forms a network of patterns, which connects 
related patterns [3,10]. After an entry point, i.e., a pattern which solves the problem at 
least partially, to this network is found and selected, subsequent and related patterns 
can be navigated to and selected as well [15]. Each such a possible path of selected 
patterns within this network forms a solution path [15,16], one exemplary solution path 
is shown in Fig. 2. Within our approach, we use solution paths to define the application 
order of patterns to architectural graphs, since solution paths are directed paths. 

3 Concept of Pattern-based Rewrite & Refinement of 
Application Architectures 

The aim of our approach is to enable a pattern-based rewrite and refinement of archi-
tectures through an automated application of patterns. Therefore, architectures are rep-
resented as architectural graphs as described in Sect. 2.1. To define the application order 
of patterns, we use the selected solution path, as described in Sect. 2.2. Fig. 3 gives an 
overview of our approach. On the upper left side, the input is shown, i.e., the basis 
architectural graph and a selected solution path, which is described in Sect. 3.1. The 
remaining steps are iterative, since each pattern of the selected solution path is applied 
individually: First, the pattern which is applied next is defined, as described in Sect. 3.2. 

Pattern Language

P1
P2

P5

P3 P4 P7

P6

Solution Path
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Then the requirements of this pattern are checked, as explained in Sect. 3.3. In the last 
step, the architectural graph is rewritten or refined, as described in Sect. 3.4. 

Fig. 3. Concept of Pattern-based Rewrite and Refinement of Application Architectures 

3.1 Input 

A basis architectural graph and a selected solution path of a specific pattern language 
forms the input of our iterative approach, as shown on the top left of Fig. 3. The basis 
architectural graph is a possibly abstract architecture represented as a graph, as de-
scribed within Sect. 2.1, on which the modifications resulting of the application of a 
pattern are performed. For instance, a client server architecture could be such a basis 
architectural graph with three nodes, i.e., two nodes of type client and another node of 
type server, as well as two edges connecting both client components with the server 
component. Furthermore, the selected solution path, as described within Sect. 2.2, 
forms the second part of the input. The selected solution path comprises all patterns that 
have to be applied, and the order of the directed solution path defines the application 
order in which the patterns are applied to the basis architectural graph. For each pattern 
of the solution path all following described three steps are performed. The resulting 
architectural graph of one iteration serves as an input for the next iteration. Within the 
first iteration the basis architectural graph of the input is used to operate on. 

3.2 Apply Pattern of Solution Path 

Within the step Apply Pattern of Solution Path, as shown on the top right-hand side of 
Fig. 3, the next pattern of the solution path, as defined within the input, is taken to be 
applied to the (basis) architectural graph. The solution path defines the application or-
der, i.e., starting with the first pattern P3 of the solution path, within the next iteration 
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the second pattern P4 gets applied, etc. To achieve a proper modification of the archi-
tectural graph, each pattern consists of three attachments: (i) R - The required fragment, 
which describes a possibly empty subgraph containing the required components and 
connectors of which the pattern cannot be applied without. If the pattern comprises no 
requirements the required fragment is an empty graph. (ii) FR - The modification frag-
ment, comprising a possibly empty graph, contains all components and connectors 
which have to be embedded in the architectural graph. Embedding a modification frag-
ment covers adding and removing the fragment or parts of it, as well as replacing com-
ponents and connectors of the architectural graph with components of the modification 
fragment or even replacing the whole graph. (iii) fR - The local pattern operator defines 
the modification of the architectural graph, i.e., how the modification fragment is em-
bedded, like e.g., the fragment is added and connected to a specific node. 

3.3 Check Requirements 

Within the step Check Requirements, as shown on the bottom right side of Fig. 3 the 
above described requirements of the pattern to be applied get verified. Therefore, it is 
checked if the required fragment R is a subgraph of the (basis) architectural graph. For 
a positive verification, the (basis) architectural graph has to contain the required frag-
ment R, i.e., R is a subgraph of the (basis) architectural graph. If the required fragment 
R is not contained within the (basis) architectural graph, i.e., the required fragment R is 
not a subgraph of the (basis) architectural graph, the pattern cannot be applied. This 
verification is done within each iteration, checking if the actual pattern of the solution 
path can be applied. Corresponding to the example within Fig. 3, for applying the pat-
tern P3 the (basis) architectural graph must contain a subgraph with two nodes of a 
specific type, as well as an edge connecting both components with each other. This 
procedure ensures that for the (basis) architectural graph only suitable patterns are ap-
plied and, thus, that only reasonable architectural graphs result of the next step. 

3.4 Rewrite or Refine 

The Rewrite or Refine step, shown on the bottom left side of Fig. 3 modifies the archi-
tectural graph based on the modification fragment and the local pattern operator. As 
described above, the modification fragment FR consists of all components and connect-
ors to be embedded within the (basis) architectural graph and the local pattern opera-
tor fR defines how the modification fragment gets embedded. This results in a modified 
architectural graph. As shown in Fig. 3, embedding the modification fragment FR in the 
basis architectural graph means that the lower left node of the basis architectural graph 
is replaced by the middle node of the modification fragment and the remaining two 
component nodes and the corresponding connectors are added to the architectural 
graph. The modification may either result in a refined architectural graph, i.e., more 
details in terms of added components and connectors are depicted, or it results in a 
rewritten architectural graph, i.e., components and connectors are exchanged or deleted. 
The modified architectural graph is then used within the next iteration as the underlying 
architectural graph on which the next pattern of the solution path gets applied. 
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4 Related Work 

In this section we delimit our approach against existing works that combine the 
knowledge of proven solutions for recurring problems, in terms of patterns, and the 
modeling and development process of architectures of application systems. 

Eden et al. [17] introduce an approach for an automated application of design pat-
terns. For this, programmers have to specify a pattern in an abstract way and the reali-
zation of the pattern in a specific program. Following, the pattern can be applied auto-
matically, whereby the programmer may edit the implementation manually. Contrary 
to our work, patterns are used to add source code to a given program and not to model 
and define the architecture of an application system on a conceptual level.  

Bergenti and Poggi [18] introduce the IDEA (Interactive DEsign Assistant) system 
to detect design patterns within UML class and collaboration diagrams. The system 
further enables to improve the detected pattern realizations within an UML diagram. 
This work focuses on the detection and improvement of design patterns and operates 
on a logical architecture, whereby the structural as well as the behavioral view is con-
sidered [1]. Contrary, our work operates on the conceptual level, focusing on the struc-
tural view and uses patterns to automatically model and define the architecture. 

Bolusset and Oquendo [5] introduce a formal approach to refine software architec-
tures based on transformation patterns using rewriting logic. Within their approach the 
refinement of an architecture does not change the architecture but specifies the compo-
nents of an architecture in more detail, such as the definition of ports. Contrary, our 
approach results in a more detailed and possibly changed architecture. Furthermore, 
they use transformation patterns in terms of rewriting logic rules and equations and not 
in terms of best-practices and proven solutions for recurring problems. 

Zdun and Avgeriou [19] present an approach to model architectural patterns through 
architectural primitives using UML profiles. This work focuses on modeling architec-
tural patterns. Contrary, they do not use patterns to model and define an architecture. 

Arnold et al. [20,21] introduce an approach for an automated realization of deploy-
ment patterns, which describe service deployment best-practices as model-based pat-
terns capturing the structure of a solution without the binding to a specific resource 
instance. Therefore, deployment patterns have to be defined and modeled by experts so 
that deployer can use them. In contrast to our work, they do not use architectural pat-
terns to model and define the architecture of an application system. 

Zimmermann et al. [22] present an architectural design method based on the combi-
nation of pattern languages and reusable architectural design decision models. Contrary 
to our approach, within their work they use patterns in terms of architectural decisions. 

Eilam et al. [23] present an approach for an automated transformation of deployment 
models onto workflow models. Within this work, transformation operations are repre-
sented as automation signatures including a model pattern representing the effects of 
operations on resources. Those automation signatures, i.e., model-based patterns are 
matched to a deployment desired state model. Hence, in this work patterns are used in 
terms of automation signatures and not as proven solutions for recurring problems. 

Fehling et al. [24] present an approach to enrich application architecture diagrams 
by pattern annotations during the development phase. In contrast to our approach, those 
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pattern annotations express the requirements of application components and usage de-
pendencies on each other and on the runtime. They do not use patterns to model or 
define the refinement of the architecture of an application system itself. 

Breitenbücher [25] and Breitenbücher et al. [26,27] introduce an approach to auto-
matically apply management patterns onto topologies to enable the management of 
composite cloud applications. Contrary to our approach, they do not focus on modeling 
an application architecture through a selection and application of patterns. Since they 
operate on topology graphs and use graph isomorphism and subgraph isomorphism 
methods to verify if a pattern can be applied to a topology graph, this can be used within 
our approach as a basis to check if a pattern is applicable to a given architectural graph. 
Furthermore, the algorithm used to transfer the topology, i.e., the application of the 
pattern, can be used as a basis for the modification of architectural graphs as well. 

Jamshidi et al. [28] describe a set of patterns which document how to migrate an 
application to a cloud environment. Within each pattern the initial as well as resulting 
architecture of the application is described. Even though this can be used for an auto-
mated migration, each pattern is applied to an architecture manually. 

Lytra et al. [29] introduce an approach and prototypical implementation for transfor-
mation actions and consistency checking rules to (semi-)automatically map architec-
tural design decisions onto architectural component models. Furthermore, they intro-
duce an architectural knowledge transformation language to define and realize the men-
tioned mapping. In contrast to our approach, this work does not use patterns to define 
an architecture, but the selection of architecture design decisions results in pattern im-
plementations. Thus, pattern realizations are one result of their approach, but patterns 
are not used to model or define the refinement or rewrite of an architecture. 

Hirmer and Mitschang [30] describe an approach to transform non-executable data 
mashup plans into an executable format by selecting an appropriate pattern and further 
parameters. This approach is based on rule-based transformations and focuses on data 
processing and integration scenarios. In contrast to our work, this approach uses prede-
fined modularized implementation fragments which are selected and scripted together. 

Amato and Moscato [31] present an approach for a manual formalization of patterns 
resulting in workflows and automatic verification of soundness. Contrary, the devel-
oper has to model or formalize the pattern by hand and cannot apply it automatically. 

Lehrig [32] and Lehrig et al. [33] introduce the architectural template (AT) method, 
which enables design-time analyses of quality-of-service properties of software sys-
tems based on reusable modeling templates capturing architectural knowledge. Con-
trary, their approach operates on existing architectures aiming the analysis of its behav-
ioral models, and, therefore architectural templates are embedded within the architec-
ture automatically. Nevertheless, the embedding of architectural templates can serve as 
a basis for the refinement and rewrite of architectural graphs. 

Saatkamp et al. [34,35] present an approach to automatically detect problems in re-
structured deployment models by formalizing the problem and context domain of ar-
chitecture and design patterns. This approach can be adapted and integrated within our 
approach to verify if a pattern is applicable to an architectural graph. Nevertheless, they 
do not apply patterns to a deployment model or use patterns to model or define the 
rewrite or refinement of an architecture of an application system. 
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Falkenthal et al. [36,37] introduce concrete solutions of patterns capturing imple-
mentation realizations, such as code snippets. Based on the selected concrete solution 
path, they further present a method to aggregate multiple concrete solutions into an 
overall solution. Contrary to our work, Falkenthal et al. do not operate on the structural 
view of conceptual architectures. Nevertheless, a pattern realization within an architec-
tural graph can be considered as a concrete solution, this indicates that the aggregation 
of concrete solutions is also possible within our approach. In future work we will in-
vestigate if their approach is applicable to the structural view of conceptual architec-
tures and if an aggregated application of patterns is a promising approach for our work. 

5 Conclusion & Future Work 

Up to this point, patterns have to be read, understood, adapted, and implemented for 
each use case manually. This procedure has to be integrated into the modeling process 
of architectures of application systems. Our approach eases the development and mod-
eling process of architectures by combining this process with the knowledge of proven 
solutions for recurring problems in terms of patterns. 
Within this work we introduced our approach to enable a refinement and rewrite of 
architectures based on selected patterns. Therefore, architectures are depicted as archi-
tectural graphs, with nodes representing components and edges representing connectors 
among the components of an architecture of an application system. Following a selected 
solution path, patterns are applied to the architectural graph successively. To achieve a 
coherent resulting architectural graph, patterns are only applied if their requirements 
are fulfilled, i.e., if the required possibly empty subgraph is present within the underly-
ing (basis) architectural graph. The modification of the architectural graph resulting of 
the application of a specific pattern is based on a modification fragment, which depicts 
a possibly empty graph to be embedded within the architectural graph, and on the local 
pattern operator, which defines how the modification fragment is embedded within the 
architectural graph. As a result, the architectural graph can be refined through the ap-
plication of patterns, i.e., components and connectors are added, or the architectural 
graph can be rewritten, i.e., already present components and connectors are exchanged 
or even deleted. Hence, our approach enables a pattern-based refinement and rewrite of 
application architectures by using graph transformation techniques. 

Within future work, we will formalize and further elaborate the presented approach. 
Furthermore, we will investigate, whether there are better ways to define the application 
order of patterns, for example, if an application order based on the required fragments 
or modification fragments of all patterns of the selected solution path are more effec-
tive. Additionally, we will consider the approach of Falkenthal et al. [36,37] to investi-
gate if an application of the aggregated patterns of the selected solution path is effective.  

Acknowledgements. This work was partially funded by the German Research Foun-
dation (DFG) project ADDCompliance (636503). 
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