b h H Institute of Architecture of Application Systems

Modeling Data Transformations in
Data-Aware Service Choreographies

Michael Hahn, Uwe Breitenblicher, Frank Leymann,
Michael Wurster, Vladimir Yussupov

Institute of Architecture of Application Systems,
University of Stuttgart, Stuttgart, Germany
{hahnml, breitenbuecher, leymann, wurster, yussupov}@iaas.uni-stuttgart.de

BIBTRX:
@InProceedings{Hahn2018_TraDEDataTransformationModeling,
author = {Hahn, Michael and Breitenb{\"u}cher, Uwe and Leymann, Frank and
Wurster, Michael and Yussupov, Vladimir},
title = {{Modeling Data Transformations in Data-Aware Service
Choreographies}},

booktitle = {Proceedings of the IEEE 22nd International Enterprise Distributed
Object Computing Conference (EDOC)},

publisher = {IEEE Computer Society},
pages = {28--34},

year = {2018},

doi = {10.1109/EDOC.2018.00014}

© 2018 IEEE Computer Society. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

University of Stuttgart
Germany




Modeling Data Transformations in
Data-Aware Service Choreographies

Michael Hahn, Uwe Breitenbiicher, Frank Leymann, Michael Wurster, and Vladimir Yussupov
Institute of Architecture of Application Systems (IAAS)
University of Stuttgart, Germany
{michael.hahn, uwe.breitenbuecher, frank.leymann, michael.wurster, vladimir.yussupov } @iaas.uni-stuttgart.de

Abstract—The importance of data is steadily increasing in the
domain of business process management due to recent advances
in data science, IoT, and Big Data. To reflect this paradigm shift
towards data-awareness in service choreographies, we introduced
the notion of data-aware choreographies based on concepts for
Transparent Data Exchange (TraDE) in our previous works. The
goal is to simplify the modeling of business-relevant data and
its exchange in choreography models while increasing their run
time flexibility. To further improve and simplify the modeling
of data-related aspects in service choreographies, in this paper,
we focus on the extension of our TraDE concepts to support
the modeling of data transformations in service choreographies.
Such data transformation capabilities are of dire need to mediate
between different data formats, structures and representations
of the collaborating participants within service choreographies.
Therefore, the paper presents a modeling extension as means for
specifying and executing heterogeneous data transformations in
service choreographies based on our TraDE concepts.

I. INTRODUCTION

With recent advances in data science the importance of data is
increasing also in the domain of Business Process Management
(BPM) [1, 2]. The concept of Service-oriented Architectures
(SOA), i.e., composing units of functionality as services over
the network, has found application in many research areas and
application domains besides BPM [3, 4]. For example, in Cloud
Computing, the Internet of Things, or eScience. To specify
such compositions of services, a broad variety of modeling
languages exist which can be grouped into two categories: ser-
vice orchestrations and service choreographies. While service
orchestrations, also known as processes, are specified from
the viewpoint of one party that acts as a central coordinator,
service choreographies provide a global view on the potentially
complex conversations between multiple interacting services
without relying on a central coordinator [5, 6]. Therefore, the
notion of service choreographies focuses on services taking part
in a collaboration as participants and their interplay with other
services by specifying corresponding conversations through
message exchanges between them [6]. However, current state
of the art in service choreographies, despite some promising
works [7, 8], fails to provide an overall solution that allows data
to assume its deserved primary role. We tackled this issue by
introducing the notion of data-aware choreographies through
concepts for Transparent Data Exchange (TraDE) [9]. Our main
goal is to simplify the specification of business-relevant data
and its exchange across participants in choreography models.

However, participants in service choreographies rely on their
own internal data models on which their business logic is
based. Therefore, data transformation capabilities are of dire
need to mediate between different data formats, structures
and representations of the collaborating participants within
service choreographies. For example, if one participant needs
to aggregate the data provided by other participants, data
transformations are required. Such data transformations have to
be explicitly specified in choroeography models by introducing
additional activities that conduct the required transformations.
This pollutes the choreography models with data transformation
functionality that is not relevant from a business perspective
but technically required, leading to more complex models.

In this work, the focus is on how data transformations can
be specified on the level of data-aware service choreographies
to provide aforementioned data transformation capabilities. The
contributions of this paper can be summarized as follows: (i)
we present concepts for modeling and transparent execution
of data transformations in service choreographies based on
our previous work on TraDE, and (ii) present a prototypical
implementation of an integrated ecosystem for data-aware
service choreographies with data transformation support.

The rest of this paper is structured as follows. Section II
motivates this work and provides further details on back-
ground and problem statements to be tackled. In Section III,
we introduce and provide a modeling extension for data
transformations and describe its execution semantics. The
prototypical implementation of the resulting ecosystem is
outlined in Section IV. Finally, the paper discusses related
work (Section V), and concludes with our findings together
with an outlook on future work in Section VI.

II. MOTIVATION, BACKGROUND, AND
PROBLEM STATEMENTS

Before going into the discussion on how to support data
transformations in service choreographies, we first want to
provide some background on our previous works on TraDE as
well as further motivate this work. We therefore use the example
choreography models depicted in Fig. 1 to describe the standard
way of exchanging data across participants (Message-based
Data Exchange), how our concepts and modeling extensions
for transparent data exchange (TraDE) are applied (TraDE
Extensions) and discuss open problems regarding the support
of data transformations within service choreographies.



ufput | 1 intermediate -
B LN .

Legend

O 0 ®©

<+----
Message

@,‘ Data Element

Start
Task Data Object ar
Event

Receive Event Send Event

;. M @

Event

End Flow Cross-Partner

Data Flow

Data Cross-Partner
Association Data Object

Figure 1. An example choreography model based on standard message-based data exchange (left) and in comparison using our TraDE concepts (right).

A. Data in Service Choreographies

Both choreography models depicted in Fig. 1 have three
interacting participants and are illustrated as Business Process
Management Notation (BPMN) [10] collaboration models.
The conversations between the participants are modeled by
BPMN message intermediate events and message flows, e. g.,
mx] in Fig. 1. The participants are instantiated through
corresponding BPMN message start events which consume
incoming request messages to extract and process the contained
data within the choreography participants. In the following, a
short description of the behavior of the example choreography
models shown in Fig. 1 is provided using the left one as a
basis and then describe how our TraDE concepts are applied.

Following the standard way of modeling and exchanging
data in choreographies, we call this Message-based data
exchange, choreography data is modeled in form of BPMN
data objects and exchanged as content of messages through
specified message flows as shown in the left choreography
model depicted in Fig. 1. The BPMN data objects have therefore
to be modeled within the context of each participant processing
the related data. Whenever participant PI receives an incoming
request, it extracts the contained data from the request message
and stores it in data objects D and E. The data is then
wrapped within a message and sent to participant P2 through
message flow mxI. There, data object E is directly forwarded to
participant P3 by sending a message depicted through message
flow mx2. Before participant P3 can process the data of data
object E using task B, the data has to be transformed into a
processable representation and stored in data object G which
can then be used as input by task B. Therefore, the participant
specifies a corresponding transformation task 7' that executes
required data transformation logic. The result of task B is then
stored in data object H and sent back to participant P2 through
message flow mx3. In the meantime, participant P2 runs task A
using data object D as input and stores its result in data object
F. As soon as the results of both participants, i.e., data object
F and data object H, are available, participant P2 is sending the

data wrapped in a message back to participant PI (message flow
mx4). Finally, participant PI also has to transform data object F
received from participant P2 to enable its further processing by
task C. Therefore, an additional transformation task 7', provides
related data transformation logic which transforms data object
F into the representation required by task C. The result of the
transformation is stored in a new data object K that is then
used as input of task C. Finally, the choreography returns a
message to the initial requester containing data object H.

As discussed in our previous work [9], following the
Message-based data exchange approach has some drawbacks.
First, the same data objects have to be specified in a repetitive
manner within the context of each participant that is reading
or writing data to them, e.g., data objects E and H have
to be specified in all three participants. Furthermore, data
flow within participants and across participants has to be
modeled differently. While the data flow within a participant can
be modeled through corresponding BPMN data associations,
data exchange across participants has to be modeled through
message flows and related control flow modeling elements,
e.g., BPMN send and receive tasks, and message throw or
message catch events. This results in the fact, that data cannot
be exchanged across participants without introducing additional
control flow constructs at two participants (sender and receiver)
within a choreography model. Another related issue is that data
are potentially unnecessary routed through a set of participants,
e. g., data object D is routed from participants PI to P3 over
participant P2 through message exchanges mx1 and mx2.

To tackle these issues, we introduced concepts for data-
aware choreographies through Transparent Data Exchange
(TraDE) modeling extensions and the TraDE Middleware
supporting their execution in our previous works [9, 11]. The
choreography model depicted on the right of Fig. 1 applies
our TraDE modeling extensions, namely cross-partner data
objects and cross-partner data flows, to replace the message-
based data exchange used in the left choreography model. The
choreography data is now modeled in a participant-independent



manner using cross-partner data objects, e. g., input in Fig. 1,
and the reading and writing of the cross-partner data objects
from tasks and events is specified through cross-partner data
flows, e. g., dxI or dx3. This allows us to exchange data across
participants independent of the modeled conversations (message
flows) and therefore decouples the exchange of data from the
exchange of messages. For example, instead of forwarding
and routing the data of the initial request from participant P1
to participants P2 and P3 through message flows mx1 and
mx2, we can directly specify cross-partner data flows to task
A of participant P2 (dx2) and task T; of participant P3 (dx4)
where the data are actually processed. Furthermore, the use
of cross-partner data objects makes it explicit which data the
choreography and its participants require and produce. For the
example shown in Fig. 1, a modeler can directly identify the
three cross-partner data objects input, intermediate, and output.
According to their names, they store the input and output data
of the overall choreography as well as some intermediary data
that is exchanged between the participants. Each cross-partner
data object has a unique identifier and contains one or more
data elements. For example, the cross-partner data object input
contains the two data elements D and E as shown in Fig. 1.
A data element has a name and contains a reference to a
definition of its structure, e. g., using a build-in type system or
an XML Schema Definition [12]. The actual data values during
run time are represented by these data elements. The idea of
this level of nesting is that data elements can be grouped
based on their relations to create more understandable and
better readable choreography models. Based on the fact that
a lot of choreography modeling languages do not produce
directly executable models, an established approach is to
transform the choreography models into a collection of private
process models [13]. The resulting private process models can
then be manually refined by adding corresponding internal
logic for each participant. To execute the resulting data-aware
service choreographies (i.e., by executing the refined private
process models) the TraDE Middleware and its integration into
process engines is introduced and described in detail in our
previous work [11]. The TraDE Middleware acts as a data hub
between the choreography participants and therefore supports
the process engines that execute the private process models
with the modeled cross-partner data flows.

However, the choreography model with our TraDE concepts
applied still forces modelers to specify data transformations by
adding corresponding tasks and related data flows that conduct
the required data transformation logic within the participants
of a choreography model. For example, participant P3 requires
transformation task 7; to transform the data produced by
participant PI (data element E) and participant PI requires
another transformation task T, to be able to process the data
produced by participant P2 (data element F). To further improve
the modeling of data-related aspects in service choreographies,
concepts for a seamless specification and execution of data
transformations in service choreographies are required.

B. Problem Statements

The main problem to solve is how to enable modelers to
specify required transformations of choreography data in a
simple and understandable manner and outside of the scope of
choreography participants. By forcing modelers to explicitly
define transformation tasks on the level of participants, as
depicted on the left of Fig. 1, the participant models become
polluted with functionality that solely operates on data having
no direct impact on the control flow of a participant and there-
fore can be executed in a decoupled fashion. The transformed
data is therefore only available at a single participant and has
to be exchanged to make it explicitly available and enable
its (re)use at other participants. Furthermore, the underlying
transformation logic is scattered across the participants and
not easily identifiable on the level of the choreography
model since it is integrated to the choreography through a
task definition which provides the respective transformation
logic as its implementation. Therefore, modelers should be
enabled to define data transformations directly on the level
of choreography data instead of forcing them to introduce
transformation logic on the level of participants.

By supporting the definition of data transformations inde-
pendent of participants’ control flow, another challenge is on
how to provide and invoke the related data transformation
logic during choreography execution. While explicitly modeled
transformation tasks are executed by the process engine
responsible for the execution of the private process model
of a choreography participant, now the required transformation
logic has to be otherwise integrated and triggered within the
context of a choreography based on the choreography data.
This requires concepts on how to provide and trigger modeled
data transformations in a data-driven manner as a substitution
for explicit transformation tasks in choreography models. In
the next section, related concepts and a modeling extension
are introduced as a solution to these problems.

III. DATA TRANSFORMATIONS IN SERVICE
CHOREOGRAPHIES

As outlined in Section II-A and depicted by the left model
shown in Fig. 2, applying our TraDE concepts still forces
modelers to manually specify data transformations by adding
corresponding transformation tasks to a choreography model.
Furthermore, it even requires modelers to introduce additional
cross-partner data flows connecting the transformation tasks
and their inputs and outputs represented through cross-partner
data objects leading to more complex models. While the
TraDE concepts allow to decouple data from participants
by specifying cross-partner data objects, something similar
for data transformations is missing, i.e., decoupling data
transformations from concrete participants. Therefore, our goal
is to provide an end-to-end support for the modeling and
execution of data transformations in service choreographies
independent of participants directly between cross-partner
data objects. The choreography model on the right of Fig. 2
presents our vision on modeling data transformations in service
choreographies in a seamless and straightforward manner.



Figure 2.

DT Implementation

Input/Output Mappings
O« |

o

Input Parameters

; Trigger Condition
E Activation Mode N
<. [-]
B -
[defr™™ PO

DO,

Figure 3. Modeling data transformations through a new Data Transformation
(DT) element and cross-partner data flows.

There, the transformation tasks 7; and 7, are replaced by
corresponding cross-partner data flows with associated data
transformation logic between the data objects E and G (for
task 7;) as well as F and K (for task 7). The underlying
software, e. g., services, scripts or executables, that is used in
the transformation tasks and provides the data transformation
logic is referred to as DT Implementation in the following. In
the following, a modeling extension for data transformations
and its execution semantics are presented.

A. Modeling Data Transformations in Service Choreographies

Figure 3 depicts our data transformation (DT) modeling
extension for the specification of data transformations in data-
aware service choreography models. Modelers can use the new
DT element to specify a required data transformation directly
between a set of cross-partner data objects independent of
participants. All sources and targets of such a DT element
have to be cross-partner data objects. The rationale behind
that restriction is twofold. On one hand, this guarantees that
there always exists an independent container (i.e., cross-
partner data object) for all input and output data of a data
transformation which will be materialized during run time.
This is required since the specified cross-partner data objects
define the choreography data in terms of data formats, structures
and related properties. Furthermore, cross-partner data objects
represent the data that will be produced and consumed by
the choreography’s tasks and therefore reflect the potential

et e, B
| jintermediate

o+ o S i

TraDE with Data Transformation Support

Comparison of the example choreography depicted in Fig. 1 using TraDE concepts (left) and with targeted support for data transformations (right).

inputs for data transformations on the level of a choreography.
Therefore, a cross-partner data flow connecting a cross-partner
data object and a DT element is well-defined, while for a
cross-partner data flow between a task and a DT element it
is unclear what data can be expected as the tasks’ output. On
the other hand, this allows modelers to graphically specify
the inputs and outputs of a data transformation by simply
connecting cross-partner data objects via cross-partner data
flows with them. This restriction will be also valuable for
providing more advanced functionalities in future, e. g., data
provenance, sharing of transformation results, or monitoring
of data exchange and transformations.

Figure 3 shows an example for a data transformation defined
through a DT modeling element between the cross-partner data
objects DO,, DO, and DO, connected through corresponding
cross-partner data flows. The DT element contains a reference
to the software that provides the related data transformation
logic, e.g., a web service. Concepts on how the integration,
invocation and execution of heterogeneous data transformation
software can be realized are not in the scope of this work
and will be presented in future work. If a data transformation
requires or produces more than one input or output, modelers
are able to map the connected cross-partner data objects
to the respective inputs and outputs of the underlying DT
Implementation through specifying a set of Input/Output
Mappings. The definition of such mappings might differ based
on the type of the underlying DT Implementation. Therefore,
modelers might be also graphically supported through the
choreography modeling tool by utilizing available knowledge
about required inputs and outputs from a DT Implementation,
e. g., extract related information from the interface definition
of a web service. By default, required inputs of a DT
Implementation will be provided through mapping the cross-
partner data objects of incoming cross-partner data flows to
them and the resulting outputs are mapped to respective cross-
partner data objects of outgoing cross-partner data flows to
store the transformation results. Furthermore, the DT element
allows to specify a set of Input Parameters which enables
modelers to specify inputs for a DT Implementation that
are not provided through corresponding cross-partner data



Data-aware Choreography &
Orchestration Modeling Environment

H
H

H

Tra -
K -
I

|@ecccccccccnad

Deployment .
Descriptor i Private Process
DT Implementations " Bundles
. TraDE Process
Middleware Engine

A

—
: E
L. ] =

Legend:
Cross-partner
Data Object

Figure 4. Integrated system architecture and deployment artifacts of the TraDE
ecosystem.

<= -» Data Flow

< --- Deployment
<P Message Flow plov W

objects. For example, input parameters can be used to provide
constant values, e. g., for the configuration or initialization of
the underlying DT Implementation. Furthermore, an optional
Trigger Condition and Activation Mode can be specified for
each data transformation. A trigger condition allows to specify
a certain logical condition which has to be evaluated to true
before the referenced DT Implementation is executed. The
activation mode enables modelers to specify when the data
transformation should be conducted: on-read or on-write. This
will be discussed in more detail in the context of the execution
semantics of the DT element in the following section.

B. Transparent Execution of Data Transformations

Before describing how modeled data transformations will
be executed based on TraDE, we first have a short look on the
deployment artifacts of a data-aware choreography and how
they are distributed and utilized by the different components
of the overall TraDE ecosystem shown in Fig. 4.

The Data-aware Choreography & Orchestration Modeling
Environment enables modelers to specify data-aware service
choreographies by modeling cross-partner data objects, cross-
partner data flows and Data Transformation (DT) elements. As
outlined in Section II-A, the resulting choreography models
will then be transformed into a collection of private process
models to enable their execution. The refined private process
models are finally packaged with related files, e. g., process
engine deployment descriptors, as Private Process Bundles
for the deployment on Process Engines as shown in Fig. 4.
Furthermore, the specification of all modeled cross-partner
data objects and their dependencies are exported to a TraDE
Deployment Descriptor file. This deployment descriptor file
is uploaded to the TraDE Middleware where it is compiled
into the middleware’s internal metamodel so that all specified
cross-partner data objects and data elements are provided
and exposed as resources through the middleware’s REST
API [11]. Moreover, the TraDE Deployment Descriptor contains
a representation of all specified data transformations, i.e., DT
elements, of a modeled choreography. This comprises all the
information outlined in Section III-A, i.e., the reference to a
DT Implementation and mappings of cross-partner data objects

to inputs and outputs of such a DT Implementation. The TraDE
Middleware extracts all this information from the deployment
descriptor and translates it into an internal representation. Since
the integration and execution of heterogeneous DT Implementa-
tions through the TraDE Middleware is an additional challenge,
required concepts and tools will be presented in future work.
In the following, we therefore focus on the execution semantics
of the defined DT elements and how the TraDE Middleware
conducts them by triggering respective transformations on data
provided through cross-partner data objects.

Since the realization of data exchange across participants
through integrating the TraDE Middleware with the underlying
process engines is described in detail in our previous work [11],
in the following, our focus is on the execution semantics
of DT elements and how the TraDE Middleware conducts
them. Therefore, we first want to have a closer look on the
choreography language-independent metamodel underlying the
TraDE Middleware as presented in our previous work [11]. For
the sake of conciseness, we only provide a brief recap of it. As
outlined in Section II-A, all cross-partner data objects and their
data elements are represented through CrossPartnerDataObject
and DataElement entities at the TraDE Middleware. In addi-
tion to the model perspective, the metamodel of the TraDE
Middleware provides further entities to represent instances of
cross-partner data objects and data elements to reflect the run
time perspective of data-aware choreographies, i. e., manage the
data of choreography instances. For each choreography instance
CrossPartnerDataObjectinstance and DataElementlnstance
entities will be created within the TraDE Middleware with
associated CorrelationProperty entities that enable to uniquely
identify to which choreography instance the data object and
data element instances belong. The actual data is provided
through DataValue entities which are referenced by one or
more DataElementlnstance entities. All these entity types have
an event model associated, i.e., a life cycle with states and
transitions. We distinguish two types of event models, one for
model entities (e.g., CrossPartnerDataObject, DataElement)
and one for instance entities (e.g., DataElementlnstance,
DataValue). Whenever such an entity changes its state, a
corresponding event is fired within the TraDE Middleware.

The middleware uses this event propagation mechanism to
trigger specified data transformations in an event-driven manner
based on corresponding data-related events, e. g., a DataValue
is initialized or modified. To discuss the different possibilities
of triggering data transformations within the middleware, we
describe the overall process of invoking a DT Implementation
and how to resolve its input data and persist its output data as
cross-partner data objects.

First, all required information to execute a specified DT
Implementation is collected to prepare its invocation. This
comprises the resolution of corresponding DataValue entities
for a specific choreography instance that holds the input
data of the transformation as modeled in the choreography
through a corresponding DT element. For the example depicted
in Fig. 3, this means that the middleware has to first identify the
DataObjectInstance and DataElementInstance entities of data



elements dey, of cross-partner data object DO, and de; of cross-
partner data object DO, based on the correlation properties
of a choreography instance. Based on that, the DataValue
entities associated to the resulting data element instances
can be resolved within the middleware. Input parameters
defined with DT elements can be passed as defined to the
DT Implementation. After the data of all required inputs are
resolved the specified DT Implementation can be invoked.
As soon as the transformation of the data is completed, the
DT Implementation replies the results back to the TraDE
Middleware which stores the data in respective DataValue
entities. These resulting DataValue entities are then associated
to the corresponding instance entities (DataObjectInstance,
DataElementlnstance) of the cross-partner data objects specified
as output of the DT element. For the example depicted in Fig. 3,
this means that the middleware resolves the DataObjectInstance
and DataElementInstance entities of data element de;, of cross-
partner data object DO, based on the correlation properties of
a choreography instance and associates the DataValue entity
that holds the transformation result data to them. Therefore, the
transformation result data is available at the TraDE Middleware
through the cross-partner data object specified within the
choreography model for further use or processing.

As introduced in Section III-A modelers can specify an
Activation Mode and a Trigger Condition for a DT element
which influences the behavior of the TraDE Middleware
regarding the execution of modeled data transformations. Based
on the specified Activation Mode the triggering will take place
in one of the following two ways.

If the Activation Mode is set to on-write, the TraDE
Middleware initially waits until all inputs of a DT element, i.e.,
DataValue entities associated to cross-partner data objects being
the source of incoming cross-partner data flows of the DT ele-
ment, are successfully initialized. As soon as all related events
are emitted, i.e., the transformation inputs are available, the
TraDE Middleware triggers the specified DT Implementation
and passes the data as described above. Furthermore, whenever
one or more of the inputs of a DT element are modified
and therefore a corresponding event is emitted, the TraDE
Middleware again triggers the underlying data transformation
using the updated input data. This guarantees that the specified
outputs of a DT element provide always up-to-date data. While
this is beneficial in cases where the transformation output
data objects are read frequently, it might introduce a lot of
unnecessary work in cases where the input data objects are
often modified but the output data objects are only rarely read.
Based on the example shown in Fig. 3, this means that the DT
Implementation is triggered as soon as both cross-partner data
objects DO, and DO, are initialized or whenever one of them
is modified no matter if DO, is read or not. By default, the
Activation Mode on-write is applied within the middleware.

Setting the Activation Mode to on-read instead changes the
behavior of the TraDE Middleware so that it triggers a data
transformation on-demand on a read request to one of the
output data objects of a DT element, i.e., cross-partner data
objects being the target of outgoing cross-partner data flows of

the DT element. Based on the example shown in Fig. 3, this
means that the DT Implementation is triggered whenever DO,
is read using the current values of the associated transformation
input data objects DO, and DO,. In case all required input
data is available, i.e., the DataValue entities associated to
cross-partner data objects specified as transformation inputs
are initialized, the TraDE Middleware triggers the specified
DT Implementation and passes the data as described above. If
one of the specified source data objects is not initialized yet,
the TraDE Middleware will block the invocation of the DT
Implementation until all the required data is available. This is
beneficial in cases where transformation output data objects are
read only rarely and inputs often change, while it introduces
the overhead of running the DT Implementation to each read
access on the output cross-partner data object.

Since sometimes it does not make sense to trigger a data
transformation just because all required input data exists, the
specification of a Trigger Condition allows to provide a more
fine-grained specification on when to actually trigger a data
transformation or not. For example, this is required in cases
where an input data value should be within certain margins,
e.g., above a threshold, or if a collection data element (i.e.,
a data element that can hold a collection of values, like an
array structure) needs to have a certain number of DataValue
entities associated before the specified transformation can be
triggered. Therefore, the TraDE Middleware evaluates the
logical expressions provided as Trigger Conditions at DT
elements. The definition of a related expression language on
top of the metamodel of the TraDE Middleware to specify
and evaluate such trigger conditions for DT elements during
modeling and run time is planned for future work.

IV. PROTOTYPE

For the modeling of data-aware choreographies and to sup-
port the introduced data transformation concepts, we extended
the choreography modeling language BPEL4Chor [13] and use
BPEL [14] for the modeling of the private process models.
The Data-aware Choreography & Orchestration Modeling
Environment is built on existing tools, i. e., Chor Designer [15]
and an extended version of the Eclipse BPEL Designer. The
resulting environment also provides required model transforma-
tion capabilities [16] to transform a BPEL4Chor choreography
model into a collection of BPEL process models.

An extended version of the open source BPEL engine Apache
Orchestration Director Engine (ODE) is used as Process
Engine. The execution of cross-partner data flows is realized by
integrating Apache ODE with our TraDE Middleware to enable
the reading and writing of cross-partner data objects [11].

The TraDE Middleware itself is realized as a Java-based web
server which exposes its functionality through a REST APIL. We
therefore use Eclipse Jetty in embedded mode. The REST API
is specified and documented using Swagger and implemented
based on the Jersey RESTful Web Services framework. For
the persistence of the TraDE internal representations and the
actual data processed within the choreographies, we support
MongoDB as a document-oriented database and the local file



system. For the implementation of the event-driven triggering
of data transformations within the middleware Apache Camel
is used. The support of trigger conditions and activation modes
for DT elements within the TraDE Middleware is planned for
future work. The complete open source code of the TraDE
Middleware is available on GitHub!.

V. RELATED WORK

The model-driven approach by Meyer et al. [7] supports
the modeling and enactment of data exchange and data
transformations in choreographies on the level of messages.
The authors propose an extension of the BPMN modeling
language by introducing annotations on BPMN data objects
which are then automatically transformed into SQL queries to
specify and enact message extraction from and message storage
to local databases. To model and enact data transformations
between messages and local data they refer to standard data
query languages, e. g., XQuery [17].

Habich et al. [18] provide related concepts on the level of
process models and BPEL in particular to resolve the issue of
centrally controlled and implicitly modeled data flow in BPEL.
Therefore, they combine their concept of Data-Grey-Box Web
Services with an extension of BPEL through so-called BPEL
data transitions. The former allow to enhance web service
interfaces with an explicit data aspect allowing the separation
of parameters passed by value and data passed by reference.
The latter support the annotation of BPEL processes with
explicit data flows between the composed Data-Grey-Box Web
Services. The concepts together allow to integrate specialized
data propagation and transformation logic, e. g., specified using
Extract Transform Load (ETL) tools, as means to implement
the specified data transitions and act as mediators between
Data-Grey-Box Web Services during run time to provide and
resolve data by reference and enable its transformation.

Both of these works do not provide an integrated, generic
solution for the modeling and execution of data transformations
within service choreographies or orchestrations, respectively.
Our focus is on defining data transformations on the level of
choreography models and enable their execution in a transparent
manner, decoupled from the control flow of choreography
participants. To the best of our knowledge, any other related
work with focus on data-related aspects of service choreogra-
phies or orchestrations, e.g., Barker et al. [8], rely on the
explicit modeling of data transformation logic in form of adding
corresponding tasks to the underlying choreography models.

VI. CONCLUSION AND OUTLOOK

To further strengthen our notion of data-aware chore-
ographies, we extended our TraDE concepts to support the
modeling of data transformations in service choreographies.
Therefore, we introduced a modeling extension for data-aware
choreographies which allows to define data transformations on
the level of choreography data decoupled from choreography
control flow. Furthermore, the execution semantics of the

ITraDE Middleware: https://github.com/traDE4chor/trade-core

introduced data transformation modeling extension and how
choreography data is actually transformed during choreography
execution in a data-driven manner is described as a blueprint
for a supporting run time environment. Finally, our prototypical
implementation of an underlying TraDE ecosystem is outlined.

In future work, we want to provide the required support
and concepts for the integration and invocation of heteroge-
neous data transformation logic as means to provide end-to-
end support for data transformations in data-aware service
choreographies. One of the core challenges there is to provide
concepts for the technology independent specification, pack-
aging and invocation of heterogeneous data transformation
logic in an easy and reusable manner through the TraDE
Middleware. Moreover, we want to improve and extend the
introduced features and capabilities for data transformations
for both choreography modeling and execution. For example,
introducing an expression language to support the specification
of transformation trigger conditions for more fine-grained
control when a data transformation should take place.

ACKNOWLEDGMENT

This research was supported by the projects SmartOrchestra
(0IMD16001F) and SePiA.Pro (01MD16013F).

REFERENCES

[1] R. Schmidt e al., “Big Data as Strategic Enabler - Insights from Central
European Enterprises,” in Business Information Systems, 2014.

[2] S. Meyer et al., “Towards Modeling Real-world Aware Business
Processes,” in WoT, 2011.

[3] O. Zimmermann, “Microservices tenets,” Computer Science - Research
and Development, 2016.

[4] A. Bouguettaya et al., “A Service Computing Manifesto: The Next 10
Years,” Communications of the ACM, 2017.

[5] F. Leymann and D. Roller, Production Workflow - Concepts and
Techniques. PTR Prentice Hall, 2000.

[6] G. Decker et al., “An Introduction to Service Choreographies,” Informa-
tion Technology, 2008.

[7] A. Meyer et al., “Automating Data Exchange in Process Choreographies,”
Information Systems, 2015.

[8] A. Barker et al., “Choreographing Web Services,” IEEE Transactions on
Services Computing, 2009.

[9] M. Hahn et al., “Modeling and Execution of Data-Aware Choreographies:

An Overview,” Computer Science - Research and Development, 2017.

OMG, “Business Process Model And Notation (BPMN) Version 2.0,”

Jan. 2011. [Online]. Available: http://www.omg.org/spec/BPMN/2.0/

M. Hahn et al., “TraDE - A Transparent Data Exchange Middleware for

Service Choreographies,” in OTM Conferences, 2017.

W3C, “XML Schema Definition Language (XSD) 1.1 Part 1: Structures,”

2012. [Online]. Available: http://www.w3.org/TR/xmlschemall-1/

G. Decker et al., “Interacting services: from specification to execution,”

Data & Knowledge Engineering, 2009.

OASIS, “Web Services Business Process Execution Language Version

2.0,” 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/

OS/wsbpel-v2.0-OS.html

A. Wei} et al., “Modeling Choreographies using the BPEL4Chor

Designer,” University of Stuttgart, Technical Report 2013/03, 2013.

P. Reimann et al., “Generating WS-BPEL 2.0 Processes from a Grounded

BPEL4Chor Choreography,” Universitit Stuttgart, Technischer Bericht

2008/07, 2008.

W3C, “XQuery 3.1: An XML Query Language,” 2017. [Online].

Available: https://www.w3.org/TR/xquery-31/

D. Habich et al., “BPELPT - Data-Aware Extension for Data-Intensive

Service Applications,” in Emerging Web Services Technology, 2008.

[10]
[11]
[12]
[13]

[14]

[15]

(16]

(17]

[18]

All links were followed on 2018-07-19.


https://github.com/traDE4chor/trade-core
http://www.omg.org/spec/BPMN/2.0/
http://www.w3.org/TR/xmlschema11-1/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.w3.org/TR/xquery-31/

	Introduction
	Motivation, Background, and Problem Statements
	Data in Service Choreographies
	Problem Statements

	Data Transformations in Service Choreographies
	Modeling Data Transformations in Service Choreographies
	Transparent Execution of Data Transformations

	Prototype
	Related Work
	Conclusion and Outlook

