
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{harzenetter, breitenbuecher, falkenthal, guth, krieger, leymann}@iaas.uni-stuttgart.de

Pattern-based Deployment Models and Their
Automatic Execution

Lukas Harzenetter, Uwe Breitenbücher, Michael Falkenthal, Jasmin Guth,
Christoph Krieger, and Frank Leymann

© 2018 IEEE Computer Society. Personal use of this material is
permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works
for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

@inproceedings{Harzenetter2018_PatternbasedDeploymentModels,
author = {Lukas Harzenetter and Uwe Breitenb{\"u}cher and

Michael Falkenthal and Jasmin Guth and Christoph Krieger and
Frank Leymann},

title = {Pattern-based Deployment Models and Their Automatic Execution},
booktitle = {11th IEEE/ACM International Conference on

Utility and Cloud Computing UCC 2018, 17–20 December 2018,
Zurich, Switzerland},

year = 2018,
pages = {41--52},
doi = {10.1109/UCC.2018.00013},
publisher = {IEEE Computer Society}

}

:

Institute of Architecture of Application Systems

Pattern-based Deployment Models and Their Automatic Execution

Lukas Harzenetter, Uwe Breitenbücher, Michael Falkenthal,
Jasmin Guth, Christoph Krieger, and Frank Leymann

Institute of Architecture of Application Systems (IAAS), University of Stuttgart, Stuttgart, Germany
{harzenetter, breitenbuecher, falkenthal, guth, krieger, leymann}@iaas.uni-stuttgart.de

Abstract—The automated deployment of cloud applications
is of vital importance. Therefore, several deployment automa-
tion technologies have been developed that enable automatically
deploying applications by processing so-called deployment
models, which describe the components and relationships an
application consists of. However, the creation of such deploy-
ment models requires considerable expertise about the tech-
nologies and cloud providers used—especially for the technical
realization of conceptual architectural decisions. Moreover, de-
ployment models have to be adapted manually if architectural
decisions change or technologies need to be replaced, which is
time-consuming, error-prone, and requires even more expertise.
In this paper, we tackle this issue. We introduce a meta-model
for Pattern-based Deployment Models, which enables using
cloud patterns as generic, vendor-, and technology-agnostic
modeling elements directly in deployment models. Thus, instead
of specifying concrete technologies, providers, and their con-
figurations, our approach enables modeling only the abstract
concepts represented by patterns that must be adhered to
during the deployment. Moreover, we present how these models
can be automatically refined to executable deployment models.
To validate the practical feasibility of our approach, we present
a prototype based on the TOSCA standard and a case study.

Keywords-Deployment Automation; Deployment Modeling;
Patterns; Model-driven Architecture; TOSCA;

I. INTRODUCTION

Cloud computing has evolved to an important paradigm as
it offers cost-efficient and on-demand IT infrastructure [1].
However, depending on the complexity of an application,
manually deploying a cloud application quickly gets error-
prone and requires immense expertise—especially when
requirements on security, elasticity, and data consistency must
be considered by the operator during the deployment [2], [3].
Therefore, several deployment automation systems have
been developed that enable the automated deployment of
applications, for example, CloudFormation. Most of these
deployment systems provision applications by processing
so-called deployment models [4], [5], which describe all
components of the applications to be deployed as well as
their relationships. For example, a typical deployment model
may specify that a Java Web-application has to be deployed
on Amazon’s Beanstalk to enable automatic scaling, while
a single Ubuntu virtual machine running on Amazon EC2
hosts a MySQL database to which the application connects.

However, already the creation of such simple deployment
models quickly becomes a challenging task. For example, to
achieve an optimal scaling behavior of the Web-application
for handling varying workload, significant experience and
technical expertise are required to configure the PaaS: Metrics
have to be selected, thresholds need to be specified, etc.

Moreover, there is a lack when it comes to describing
such deployments in a generic, vendor- and technology-
independent way: Using a concrete technology in the model
results in a lock-in effect as changing this technology
afterwards possibly requires changes on multiple layers.
However, the most influential issues are subsequent changes
of architectural decisions that must be respected by the de-
ployment. For example, if the previously non-scaling database
should be scaled, too, this requires complex configurations
on several components or replacements, e. g., by a database
service—which, ironically, again requires specific knowledge.

These issues mainly result from the very detailed technical
modeling of components, relationships, and configurations
required to fully automate deployments. Therefore, in this
paper, we present an approach that eliminates the necessity
for manually modeling such technical details beforehand. We
introduce Pattern-based Deployment Models, which enable
using conceptual patterns directly in deployment models
instead of modeling concrete components, technologies, and
configurations. Further, we present algorithms to refine these
pattern-based models automatically to executable deployment
models. The approach goes beyond the mere replacement of
abstractly modeled components by more concrete components
as it also includes the semantics of the patterns. By combining
both contributions, the approach follows the concepts of
Model-driven Architecture (MDA) [6] and avoids vendor- and
technology-lock-ins as technologies can be selected for each
deployment individually. We validate the practical feasibility
of our approach by a prototype based on the TOSCA standard.

The remainder is structured as follows: Section II motivates
our approach and introduces the concept of patterns and
pattern languages. Section III introduces a method for Pattern-
based Deployment Modeling, while Sect. IV introduces the
meta-model, which can be refined by the algorithms presented
in Sect. V. Section VI presents our prototype. Finally, related
work and the conclusion are discussed in Sect. VII and VIII.

Port: 80
[…]

Web Shop Frontend
(Java_8-Servlet)

[…]

(Java_8-Runtime)

DB-Name: webshop
[…]

Database
(MySQL-Database_5.7)

Port: 8080
[…]

Purchase Order Processor
(Java_8-Application)

Type: FIFO
[…]

Queue
(JMS_1.1-Queue)

API: https://stack.iaas.de
[…]

(OpenStack_12)

= hostedOn

RAM: 64GB
[…]

(Ubuntu_18.04)

PW: **********
[…]

(MySQL-DBMS_5.7)

IP-Address:
[…]

(SimpleQueueService)

= JmsQueueCon_1.1 = SQL-Con

Scaling: AutoScaling
[…]

(ElasticBeanstalk)

Region: EU
Account: ust-iaas
[…]

(AWS) RAM: 8GB
[…]

(Ubuntu_18.04)

Figure 1. Exemplary declarative deployment model of a simple cloud-based Web shop

II. MOTIVATION EXAMPLE AND FUNDAMENTALS

In this section, we present our motivation and describe
fundamentals about deployment automation and patterns.

A. Deployment Automation & Deployment Models

The automation of application deployment is essential as
manually deploying applications is too error-prone, time-
consuming, and requires an immense level of technical
expertise [2], [3]. Therefore, various deployment automation
systems have been developed that process deployment models
in order to automatically deploy applications [4]. Deployment
models are either of declarative, or imperative nature.
Imperative deployment models explicitly describe processes
including all technical activities to be executed to deploy an
application, their sequence, and the data flow in between [5].
In contrast, declarative deployment models describe only
the desired outcome of a deployment in the form of the
application’s structure including all components and their
relations in a directed, weighted, and possibly disconnected
graph, which is commonly refereed to as the topology of
an application [5]. Thereby, they omit technical details on
how the deployment should be performed [5]. In this paper,
we focus on declarative deployment models as this kind is
supported by a variety of deployment systems [4].

B. Running Case Study

In this section, we introduce a case study that is used
throughout the paper to motivate and explain our approach.
Figure 1 shows a typical declarative deployment model of
a company’s Web shop application. The shown model is
a conceptual representative and not specific to a particular
technology, but its topology-based structure allows imple-
menting this model in various declarative technologies [5],

e. g., TOSCA [7]. The left side shows the application stack
building the shop frontend, which consists of a Java servlet
hosted on an instance of Amazon’s PaaS offering Elastic
Beanstalk in order to enable automatic scaling for handling
unpredictable workload. Due to laws concerning private data
protection, the data tier needs to be hosted in the private
cloud of the company. Therefore, the data tier shown on the
right side consists of a relational database (MySQL Database
5.7) running in a virtual machine, which is hosted by the
company’s own OpenStack environment. As the frontend
is running in a public cloud, it should not directly access
the database running in the private environment for security
reasons. Therefore, a Java processor running in the private
part picks all purchase order requests from a queue, which
is hosted on Amazon SQS, and processes them. Deployment
models specify desired configurations by attributes, e. g.,
scaling thresholds or application ports. In addition, attributes
can also contain instance information such as IP-addresses of
the provisioned instances as shown for the Queuing Service.

However, already the creation of this simple deployment
model requires significant technical expertise about sev-
eral concrete technologies, e. g., for configuring Beanstalk
appropriately for handling unpredictable workload. These
problems arise primarily from the widespread focus on
technology-oriented deployment modeling forced by available
deployment systems, which requires a detailed and concrete
specification of the components, relationships, and configura-
tions to be deployed in order to achieve the desired effects—
e. g., to achieve an optimal scaling of a component for a
certain workload prediction. Therefore, we propose to shift
this focus towards concept-oriented deployment modeling,
i. e., reducing dependencies to concrete technologies by using
patterns as first-class deployment modeling elements.

C. Architecture Patterns & Pattern Languages

Patterns are an established means to document abstract
solutions for frequently recurring problems in a specific
domain [8]. They typically follow a well-defined structure,
which mainly consists of a problem description, a description
of the context in which it can be applied, a proven solution,
and an icon for graphical modeling.

Typically, patterns are not isolated pieces of advices,
instead each pattern is linked to other patterns which might be
relevant in the same context. These links between patterns, es-
tablish a network of patterns—a so called pattern language [8].
Moreover, those links can have different semantic meanings to
clearly indicate different navigation possibilities [9]. Among
others, links with AND semantics describe that two related
patterns are often used in combination, while OR-links
indicate alternative choices, and XOR-links imply exclusive
options of the described pattern [10]. Hence, these links can
share insights to equivalent problems, context, or solutions
of other patterns [11]. Semantic links can also be used to
describe that linked patterns deal with equivalent problems
but different levels of granularity regarding implementation-
specific or technology-specific details [12].

In the domain of software architecture there are several
different pattern languages. For example, the Cloud Comput-
ing Patterns by Fehling et al. [13], the Enterprise Integration
Patterns by Hohpe et al. [14], or the Internet of Things (IoT)
Patterns by Reinfurt et al. [15], [16], which describe proven
solutions for reoccurring problems for developing software
and hardware components in an abstract and reusable manner.

The Cloud Computing Patterns describe problems and best
practices in the domain of cloud computing as defined by the
NIST definition [17]. Hereby, they describe different solutions
for (i) cloud computing fundamentals, (ii) cloud offerings,
(iii) cloud application architectures, (iv) cloud application
management, and (v) composite cloud applications [13]. The
latter ones introduce, e.g., the Elastic Platform pattern [13]
solving the problem of how execution environments offered
by cloud providers should behave and how customers can
employ them for their applications. The context of the Elastic
Platform pattern is considering a fundamental cloud property:
The ability to share resources among different customers
which are maintained by the provider. By increasing the
amount of shared resources the benefit for both, provider and
customer, can be increased as the management effort and
consequently costs can be reduced. Therefore, the Elastic
Platform pattern as introduced by Fehling et al. [13] describes
sharing of middleware components as a solution. The vendor
hereby extends the provided offerings and presents managed
middleware which is shared by multiple customers and
provides simple scaling functionality to its users. Hence,
the pattern conceptually describes how to achieve scalability
for a component, independently of concrete technologies or
providers. Thereby, the Elastic Platform pattern is a vendor

and technology agnostic representative of middleware for
the execution of applications provided and maintained by a
cloud provider which reduces the management and operation
costs for its customers.

However, to enable asynchronous and reliable communica-
tion between distributed components in a cloud application,
the Cloud Computing Patterns have to be combined with
the Enterprise Integration Patters by Hohpe et al. [14]. For
example, they introduced the Point-to-Point Channel pattern
as a specific form of the Messaging pattern [14]. While
the Messaging pattern generically solves the problem of
how multiple applications can communicate with each other
responsively in an asynchronous manner, the Point-to-Point
Channel pattern describes how an application can perform
message-based commands, as an implementation of RPC, or
send data to another application or component. It is thereby
ensured that a message is received and processed by another
application which is able to handle the request. To transfer
data in the sense of a Point-to-Point Channel, a typical
implementation is a message queue such as Amazon’s Simple
Queue Service (SQS) or Google’s Task Queue.

Moreover, nowadays software components more and more
interact with physical hardware in the form of sensors and
actuators forming the Internet of Things (IoT). As involved
hardware components also influence the overall application
architecture, IoT Patterns are used to document best practices
in this domain. An example for a hardware device pattern of
the IoT Patterns by Reinfurt et al. [15], [16] is the Energy
Harvesting Device [16]. It solves the problem of powering
a hardware device that requires little power by adding a
power generation element such as a solar cell to the device.
However, IoT devices may still not be available at all times,
e.g., due to network outages. To enable other components
to communicate with them either way, the Device Shadow
pattern [15] introduces a server component managing all
communication to each device by persistently saving an
image of each device.

Thus, patterns provide a suitable means to be used as
nodes in deployment models, while behavioral patterns could
annotate nodes and relations. Furthermore, by combining
multiple pattern languages, for example, the presented Cloud
Computing Patterns, Enterprise Integration Patterns, and IoT
Patterns, a large set of structural and behavioral patterns
can be used for modeling the deployment of an application
in a generic and vendor independent way. While structural
patterns can be used as nodes to abstractly represent a set
of components, behavioral patterns can be used to annotate
nodes and relations to detail their characteristics. Thereby,
patterns are predestined to be used in deployment models to
reduce dependencies to concrete technologies which provides
the basis for our approach. In this paper, we focus on
structural patterns to provide a first basis for Pattern-based
Deployment Modeling. In future work, we plan to extend our
metamodel to also support suitable behavioral patterns.

Software Artifacts,
Architecture Models,

Applied Patterns

Pattern-based
Deployment Model

A

Deployment Model
Candidate

PRMs
Repository

Executable
Deployment Model

Derive
Refine

(optional)

Vendor & Technology Agnostic Modeling (Semi-) Automatic Refinement Vendor & Technology Specific Modeling

B

Figure 2. Pattern-based Deployment Modeling Method

III. A METHOD FOR
PATTERN-BASED DEPLOYMENT MODELING

In order to model the deployment of an application without
introducing dependencies to technologies or providers, we
propose a method to describe the deployment in an abstract
way. Thereby, patterns are employed as first-class deployment
modeling elements that allow to relax the coupling of a
deployment model to specific components and technologies.
The method consists of three phases as illustrated in Fig. 2
from left to right: (i) the Vendor & Technology Agnostic
Modeling phase, (ii) the (Semi-) Automatic Refinement phase,
and (iii) the Vendor & Technology Specific Modeling phase.
Thereby, the approach applies the concepts of Model-driven
Architecture to the domain of deployment automation.

A. Vendor & Technology Agnostic Modeling

As depicted in Fig. 2, in the first phase, the modeler
analyzes the software artifacts, architecture models, and other
entities of the application to be deployed as basis for deriving
a deployment model—similarly to the common procedure.
However, instead of creating a deployment model that
specifies all concrete components, providers, technologies,
and configurations, our method also allows the use of patterns
for describing requirements from a conceptual point of view.
Therefore, the method introduces so-called Pattern-based
Deployment Models, which specify concrete components and
configurations similarly to traditional deployment models,
but also enable the use of conceptual patterns for specifying
concepts that must be realized during deployment.

For instance, to relax the coupling of the deployment
model to specific technologies, such as a specific version
of a MySQL Database Management System, the concrete
MySQL Database Management System can be replaced by
the Relational Database pattern from the Cloud Computing
Pattern Language by Fehling et al. [13]. Thus, the semantics
of the deployment model is relaxed to cover all technologies
that are implementations of the Relational Database pattern.
Following this example, the modeler can introduce variability
points into the deployment model where coupling to specific
technologies and providers has to be avoided.

B. (Semi-) Automatic Refinement

The previous phase results in a Pattern-based Deployment
Model, which leverages patterns as first-class modeling
elements of application structures to be deployed. However,
these models cannot be instantiated directly as they contain
patterns which only describe concepts rather than concrete
components and technologies. Therefore, all patterns have
to be replaced by concrete components and technologies in
order to create a deployment model that can be consumed
and executed by a deployment automation system. Of
course, executing this refinement manually is a complex
task, which is time-consuming, error-prone, and requires
immense expertise about the used patterns and technologies.

Therefore, we introduce so-called Pattern Refinement
Models (PRM), which we introduce in detail in the next
sections. PRMs specify a refinement of patterns to concrete
components implementing these patterns. Thus, they are used
to (i) automatically detect patterns and related composite
structures in a Pattern-based Deployment Model in order to
(ii) replace them with suitable deployment model fragments
specifying concrete components and technologies imple-
menting the detected patterns. The replacement is executed
iteratively (see circular steps A and B in Fig. 2). In one
iteration, several suitable Pattern Refinement Models could
be found for refining the modeled patterns, e. g., several
databases may be used as implementations for the Relational
Database pattern. Thus, in this case the modeler can select
the desired refinement. In the next sections, we also show
how this can be automated completely. These iterations are
executed until all patterns in the Pattern-based Deployment
Model have been replaced by concrete components. The
resulting model is called a Deployment Model Candidate.

C. Vendor & Technology Specific Modeling

Finally, in the last, optional phase, the deployment modeler
may need to additionally refine the Deployment Model
Candidate towards an Executable Deployment Model. Manual
refinements could be necessary to further configure compo-
nents to enable automatic deployment, e.g., provide user
accounts and passwords of the cloud offerings used.

*

Relation
Type

Relation
Topology

Node

1

*

1

Pattern
Type

1 *

Topology
Element

1

*

Topology
Element Type

is of type

is source of

is target of

Component
Type

1

*
is of type

is of type

ComponentPattern

Attribute
has *1 has* 1

Figure 3. A metamodel for Pattern-based Deployment Models (abstract classes are depicted as rectangles with dashed border)

IV. PATTERN-BASED DEPLOYMENT MODELS

This section introduces a formal metamodel for Pattern-
based Deployment Models, which are used in the presented
method to model deployments on a conceptual level. First, we
introduce the metamodel on an abstract level, independently
of a concrete declarative deployment technology. Afterwards,
in Sect. VI, we (i) show how the TOSCA standard can be
extended to support the metamodel and (ii) how Pattern-
based Deployment Models can be automatically refined to
executable models using the OpenTOSCA ecosystem.

A. Metamodel for Pattern-based Deployment Models

Fig. 3 shows the metamodel as class diagram. The basis
of the metamodel is the concept of application topologies as
defined by TOSCA [7]: An application topology describes
the structure of an application including its components, their
relationships, and configurations in the form of a weighted
directed graph. However, Pattern-based Deployment Models
extend this common declarative modeling style [5] by patterns
as first-class modeling elements. The advantage of using
patterns in deployment models is that modelers only require to
specify the concepts that must be realized by the deployment
system, rather than forcing them to specify the technologies
and configurations required to implement these concepts.

Let 𝒯 be the set of all Pattern-based Deployment Models,
then 𝑡 ∈ 𝒯 is defined as a nine-tuple as follows:

𝑡 = (𝐶𝑡, 𝑃𝑡, 𝑅𝑡, 𝐶𝑇𝑡, 𝑃𝑇𝑡, 𝑅𝑇𝑡, 𝐴𝑡, 𝑡𝑦𝑝𝑒𝑡, 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡)
(1)

The elements of 𝑡 are defined as follows:
∙ 𝐶𝑡 is the set of Components in 𝑡, whereby each 𝑐𝑖 ∈ 𝐶𝑡

represents a component of the application to be deployed
∙ 𝑃𝑡 is the set of Patterns in 𝑡. Each 𝑝𝑖 ∈ 𝑃𝑡 represents

a pattern that must be realized during deployment.
∙ The union of the set of Components and the set of

Patterns denoted as 𝑇𝑁𝑡 := 𝐶𝑡 ∪ 𝑃𝑡 consequently
represents the set of all Topology Nodes in 𝑡.

∙ 𝑅𝑡 ⊆ 𝑇𝑁𝑡 × 𝑇𝑁𝑡 is the set of Relations in 𝑡, whereby
each 𝑟𝑖 = (𝑡𝑛𝑠, 𝑡𝑛𝑡) ∈ 𝑅𝑡 represents the relationship

between two topology nodes, where 𝑡𝑛𝑠 is the source
node and 𝑡𝑛𝑡 is the target node of the relationship.

∙ 𝐶𝑇𝑡 is the set of Component Types in 𝑡, whereby each
𝑐𝑡𝑖 ∈ 𝐶𝑇𝑡 describes the semantics for the Components
that have this Component Type assigned.

∙ 𝑃𝑇𝑡 is the set of Pattern Types in 𝑡, whereby each
𝑝𝑡𝑖 ∈ 𝑃𝑇𝑡 describes the semantics for the Patterns that
have this Pattern Type assigned.

∙ 𝑅𝑇𝑡 is the set of Relation Types in 𝑡, whereby each
𝑟𝑡𝑖 ∈ 𝑅𝑇𝑡 describes the semantics for the Relations that
have this Relation Type assigned.

∙ 𝑡𝑦𝑝𝑒𝑡 is a map that assigns all Relations, Components,
and Patterns in 𝑡 to their respective Relation Type,
Component Type, or Pattern Type. The union set
𝑇𝐸𝑡 := 𝐶𝑡 ∪ 𝑅𝑡 ∪ 𝑃𝑡 contains all Topology Elements
of 𝑡 and the union set 𝑇𝐸𝑇𝑡 := 𝐶𝑇𝑡 ∪ 𝑅𝑇𝑡 ∪ 𝑃𝑇𝑡

all Topology Element Types of 𝑡. Then, the map 𝑡𝑦𝑝𝑒𝑡
associates each 𝑡𝑒𝑖 ∈ 𝑇𝐸𝑡 with an 𝑡𝑒𝑡𝑗 ∈ 𝑇𝐸𝑇𝑡 to
provide the semantics for each Topology Element:

𝑡𝑦𝑝𝑒𝑡 : 𝑇𝐸𝑡 → 𝑇𝐸𝑇𝑡 (2)

∙ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 is the map that assigns Relation Types,
Component Types, and Pattern Types to their respective
supertypes. Consequently, the map 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 asso-
ciates a 𝑡𝑒𝑡𝑖 ∈ 𝑇𝐸𝑇𝑡 with a 𝑡𝑒𝑡𝑗 ∈ 𝑇𝐸𝑇𝑡 with 𝑖 ̸= 𝑗.
This means that 𝑡𝑒𝑡𝑗 is the supertype of 𝑡𝑒𝑡𝑖. The
mapping 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 is defined as:

𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡 : 𝑇𝐸𝑇𝑡 → 𝑇𝐸𝑇𝑡 (3)

∙ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 is the map that assigns a Topology Element
type to all of its supertypes that can be transitively
resolved. Thus, the map that associates a Topology
Element Type 𝑡𝑒𝑡𝑖 ∈ 𝑇𝐸𝑇𝑡 of 𝑡 to its respective
𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡(𝑡𝑒𝑡𝑖) combined with all transitively resolv-
able supertypes of 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑡(𝑡𝑒𝑡𝑖) is defined as:

𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠𝑡 : 𝑇𝐸𝑇𝑡 → ℘(𝑇𝐸𝑇𝑡) (4)

∙ 𝐴𝑡 ⊆ 𝛴+ ×𝛴+ is the set of Attributes in 𝑡, whereby
each 𝑎𝑖 = (𝐾𝑒𝑦, 𝑉 𝑎𝑙𝑢𝑒) ∈ 𝐴𝑡 describes an attribute of
a Topology Element or of a Topology Element Type.

ExpectedWorkload: StaticExpectedWorkload: Unpredictable

Web Shop Frontend
(Java_8-Servlet)

Purchase Order Processor
(Java_8-Application)

Point-to-Point
Channel (Queue)

Message-oriented
Middleware

Elastic
Platform

Public
Cloud

Relational
Database

Execution
Environment

Private
Cloud

= hostedOn= JmsQueueCon_1.1 = SQL-Con

Figure 4. Pattern-based Deployment Model of the case study (speech bubbles attached to the Patterns specify the corresponding Pattern Types)

B. Applying the Approach to the Case Study

This section describes how the technology- and provider-
specific deployment model introduced in Sect. II-B can
be described as a Pattern-based Deployment Model. The
resulting model is shown in Fig. 4 and contains only the
shop frontend component and the processor component from
the original model as well as their relations. However, in-
frastructure and middleware requirements are now described
as Cloud Computing Patterns [13] and Enterprise Integration
Patterns [14], which are depicted as rectangular icons.

The Frontend Component in the upper left corner has the
associated Component Type Java_8-Servlet. It is connected
via a Relation of Relation Type hostedOn to a Pattern of Type
Elastic Platform. Thereby, the Component Java_8-Servlet
is defined as the source and the Elastic Platform pattern is
defined as the target of the relation. The Elastic Platform is
again hosted on a Pattern of type Public Cloud. Furthermore,
a stack consisting of the two patterns Point-to-Point Channel
representing the queue concept and a corresponding Message-
oriented Middleware are hosted on the same Public Cloud. On
the right-hand side, a Processor Component with Component
Type Java_8-Application is hosted on a Pattern of type
Execution Environment. The Processor Component has a
SQL-Con Relation to a Pattern of type Relational Database.
The Execution Environment and Relational Database are
hosted on a Pattern of Pattern Type Private Cloud.

Moreover, the frontend and processor components each
specify an attribute ExpectedWorkload, which specifies the
workload the modelers expect the respective component needs
to serve. In this scenario, an unpredictable number of users
browse the Web shop’s frontend, therefore, it must scale and
needs to be hosted on an Elastic Platform. However, the
company produces and sells only a static number of exclusive
products each month. This static number of sellable products
thus corresponds to the maximum number of purchase orders
the processor has to process, which requires only a non-
scaling Execution Environment pattern for hosting it.

C. Benefits of Pattern-based Deployment Models

Pattern-based Models significantly reduce the amount of
technical expertise modelers need to create it compared to the
traditional procedure. For example, while the original model
requires a technical configuration of the Amazon Beanstalk
environment regarding scaling thresholds, selection of metrics,
etc. to serve unpredictable workload, the Pattern-based Model
only requires to model an Elastic Platform pattern and
the specification of the expected workload attribute at the
frontend component (cf. Fig. 4). Thus, no technical expertise
about the scaling configuration of a certain technology is
required, but only the selection of appropriate patterns and
conceptual attributes. This makes the deployment model less
complex and reduces the risk of incorrect configurations.

Moreover, Pattern-based Models efficiently support chang-
ing requirements. For example, if the company increases the
number of sellable products, also more purchase orders need
to be processed. The increased workload may overload a
single instance of the processor, making it necessary to scale
it, too. While the adaptation of the original model would
require a significant amount of technical expertise about
the scaling configuration of OpenStack, the Pattern-based
model can be easily adapted: Only the non-scaling Execution
Environment pattern needs to be replaced by a scaling Elastic
Platform pattern and the ExpectedWorkload attribute of the
processor component needs to be changed to Unpredictable.

The Pattern-based Model shown in Fig. 4 eliminates
technology dependencies of the original deployment model
(cf. Sect. II) as all provider and middleware components are
replaced by conceptual patterns. Thus, for each deployment of
this model, different technologies and providers can be chosen
depending on the actual requirements, for example, depending
on the desired cloud provider hosting the frontend. As a result,
the model can be easily reused for different deployment
scenarios without the need to adapt it manually. Moreover,
assumptions about technologies and versions of components,
such as databases or virtual machines, are avoided.

V. REFINEMENT TO EXECUTABLE DEPLOYMENT MODELS

Besides all the benefits described in the last section, Pattern-
based Models are not directly executable as the used patterns
only describe concepts instead of concrete components and
configurations (cf. Sect. III). Therefore, we introduce an
approach that enables refining Pattern-based Deployment
Models automatically into executable deployment models by
replacing the used patterns by appropriate components, by
handling adjacent relations, and by setting configurations.

A. Overview of the Refinement Approach

To automatically transform Pattern-based Deployment
Models to executable models we introduce Pattern Refinement
Models (PRM) in this section, which describe how a pattern
or a set of interconnected patterns can be refined to concrete
components, relations, and technical configurations. A PRM
consists of (i) a Pattern-based Deployment Model fragment
called Detector, (ii) a Pattern-based Deployment Model
fragment called Refinement Structure, and (iii) a set of
Relation Mappings. An example is shown in Fig. 5.

The Detector of a PRM defines a Pattern-based Deploy-
ment Model fragment, which can be refined by the PRM. For
example, the Detector can define a single pattern, such as
simply the Relational Database pattern, or a more complex
fragment, such as the Relational Database pattern hosted on
the Private Cloud pattern, as exemplarily depicted in Fig. 5.
In order to detect a PRM as possible refinement of a certain
part in a Pattern-based Deployment Model, the Detector
must be a subgraph of this model, whereby the types and
attributes of the Topology Elements defined in the Detector
must match the types and attributes of the Topology Elements
in the matching part of the model (Subgraph isomorphism).
For instance, the Detector modeled in Fig. 5 is a subgraph
of the Pattern-based Deployment Model shown in Fig. 4 as
the pattern composition specified by the Detector, namely
the Relational Database pattern hosted on the Private Cloud
pattern, occurs identically in the model. Since the patterns in
both models do not define attributes, only their types must
match. However, if attributes are specified for Components,
Relations, or Patterns in the Detector, the matching elements
in the deployment model must provide either (i) exactly the
same value or (ii) an arbitrary value in case the detector
specifies a wildcard for this attribute (asterisk as value).

The Refinement Structure provides a Pattern-based Deploy-
ment Model fragment which replaces the subgraph matched
by the Detector in the deployment model. For example, the
PRM illustrated in Fig. 5 refines the Relational Database
pattern hosted on a Private Cloud pattern to a MySQL
database hosted on an Ubuntu virtual machine running on
OpenStack. This PRM refines both patterns including their
relation exclusively to concrete components, relations, and
configurations. However, it is also possible to use PRMs to
refine high-level patterns to more specific patterns to refine
the model stepwise towards actual implementations.

Pattern Refinement Model

Refinement StructureDetector

(Ubuntu_18.04)

(OpenStack_12)

(MySQL-5.7)

Relation Mappings

(MySQL-DBMS_5.7)

RelationType: SQL-Con
Direction: Inbound
SourceType: *

RelationMapping

RelationType: connectsTo
Direction: Outbound
TargetType: MySQLMaster

RelationMapping

RelationType: hostedOn
Direction: Inbound
SourceType: VM

RelationMapping

Figure 5. Exemplary Pattern Refinement Model

Lastly, Relation Mappings dictate the rules how ingoing
and outgoing relations in a matching subgraph of a Pattern-
based Deployment Model can be redirected to the refined
fragment represented by the Refinement Structure. For
example, the top most Relation Mapping shown in Fig. 5
defines a Relation Mapping for incoming relations of type
SQL-Con at the Relational Database pattern. Since the
Relation Mapping points to the MySQL-5.7 component in the
Refinement Structure, Relations of type SQL-Con targeting
the Relational Database pattern are redirected to the MySQL-
5.7 Component during refinement. Additionally, depending
on the Relation’s direction, a Relation Mapping can define a
valid source or target type, restricting ingoing or outgoing
Relations. For example, the Relation Mapping for Relations
of type SQL-Con defines an asterisk as source type, indicating
that any type of Topology Node can be the source of the
Relation. However, as the other two Relation Mappings in
Fig. 5 show, the valid source or target type, can be set to a
specific Topology Element Type. If so, the respective source
or target Topology Node must be of the defined type, i.e., that
only a Topology Node of type VM, or which has VM as an
element of it’s supertypes, can be hosted on the Private Cloud,
or ultimately on the OpenStack instance. Similarly, only an
outgoing connectsTo Relation at the Relational Database
pattern, or MySQL-DBMS_5.7 Component respectfully, can
target a Topology Node of type MySQLMaster. However,
if, for example, a given Pattern-based Deployment Model
incorrectly connects Patterns or Components, no, or only a
few, PRMs may be applied resulting in an incompletely or
incorrectly refined Deployment Model Candidate.

Algorithm 1 refineTopology(𝑡 ∈ 𝑇)
1: while 𝑃𝑡 ̸= ∅ do
2: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 := {(𝑝𝑟𝑚𝑖, 𝑠𝑚𝑗)}|𝑝𝑟𝑚𝑖 ∈ 𝑃𝑅𝑀∧𝑠𝑚𝑗 ∈ 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡,𝜋1(𝑝𝑟𝑚𝑖)∧applicable(𝑡, 𝑝𝑟𝑚𝑖, 𝑠𝑚𝑗)
3: if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ̸= ∅ then
4: (𝑝𝑟𝑚𝑐ℎ𝑜𝑠𝑒𝑛, 𝑠𝑚𝑐ℎ𝑜𝑠𝑒𝑛) := choosePatternRefinementModel(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
5: applyRefinement(𝑝𝑟𝑚𝑐ℎ𝑜𝑠𝑒𝑛, 𝑡, 𝑠𝑚𝑐ℎ𝑜𝑠𝑒𝑛)
6: else
7: return 𝑡
8: end if
9: end while

10: return 𝑡

In the following, we introduce a metamodel for PRMs
and present algorithms for refining a given Pattern-based
Deployment Model by the very same.

B. Metamodel for Pattern Refinement Models

In this section, we define a metamodel for PRMs as basis
for the algorithms presented in the next section. As introduced
above, a PRM consists of a Detector modeled as Pattern-
based Deployment Model fragment, a Refinement Structure
which is also a Pattern-based Deployment Model fragment,
as well as a set of Relation Mappings.

Let 𝑃𝑅𝑀 be the set of all Pattern Refinement Models,
then 𝑝𝑟𝑚 ∈ 𝑃𝑅𝑀 is defined as a three-tuple:

𝑝𝑟𝑚 = (𝑑𝑝𝑟𝑚, 𝑟𝑠𝑝𝑟𝑚, 𝑅𝑀𝑝𝑟𝑚) (5)

The elements of 𝑝𝑟𝑚 are defined as follows:
∙ 𝑑𝑝𝑟𝑚 := 𝑡𝑖 ∈ 𝑇 : A Pattern-based Deployment Model

fragment defining the Detector, which can be replaced
by the Refinement Structure fragment.

∙ 𝑟𝑠𝑝𝑟𝑚 := 𝑡𝑖 ∈ 𝑇 : A Pattern-based Deployment Model
fragment defining the Refinement Structure, which
replaces the Detector fragment.

∙ 𝑅𝑀𝑝𝑟𝑚: The set of Relation Mappings defining redi-
rection rules for ingoing and outgoing relations of
Topology Nodes in the Detector to Topology Nodes
in the Refinement Structure.

During the refinement of a Pattern-based Deployment
Model, the ingoing and outgoing Relations of all Topology
Nodes corresponding to a Topology Node in the Detector
fragment must be redirected to a Topology Node in the
Refinement Structure fragment. The rules dictating which
types of a Relation referencing a specific Detector Topology
Node must be redirected to which Topology Node in the
Refinement Structure, are defined in the Relation Mappings.
Let 𝑅𝑀𝑝𝑟𝑚 be the set of Relation Mappings in 𝑝𝑟𝑚, then
𝑟𝑚 ∈ 𝑅𝑀𝑝𝑟𝑚 is defined as a five-tuple:

𝑟𝑚 = (𝑑𝑛𝑟𝑚, 𝑟𝑠𝑛𝑟𝑚, 𝑟𝑡𝑟𝑚, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑚, 𝑣𝑡𝑟𝑚) (6)

∙ 𝑑𝑛𝑟𝑚 ∈ 𝑇𝑁𝜋1(𝑝𝑟𝑚): The Topology Node of the 𝑝𝑟𝑚’s
Detector whose Relation in a matching Pattern-based
Deployment Model must be redirected

∙ 𝑟𝑠𝑛𝑟𝑚 ∈ 𝑇𝑁𝜋2(𝑝𝑟𝑚): The Topology Node of the 𝑝𝑟𝑚’s
Refinement Structure which will be the new source or
target of the redirected Relation

∙ 𝑟𝑡 ∈ 𝑅𝑇 : The type of Relations that can be redirected
from the matching Topology Node 𝑑𝑛𝑟𝑚

∙ 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑟𝑡 ∈ {𝑖𝑛𝑔𝑜𝑖𝑛𝑔, 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔}: Specifies which
direction of the Relation Type 𝑟𝑡 can be redirected

∙ 𝑣𝑡𝑟𝑡 ∈ 𝐶𝑇 ∪ 𝑃𝑇 : The valid type or supertype of the
considered Relation Type’s source or target node

A Subgraph Mapping contains all valid subgraph map-
pings between two given Pattern-based Deployment Models.
Let 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡1,𝑡2 be the set of all subgraph
mappings between two Pattern-based Deployment Models
𝑡1, 𝑡2 ∈ 𝑇 , then 𝑠𝑚𝑖 ∈ 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡1,𝑡2 is defined
as a set of Element Mappings. Further, an Element Mapping
𝑒𝑚𝑡𝑒1,𝑡𝑒2 ∈ 𝑠𝑚𝑖 is defined as a tuple of Topology Elements,
whereby 𝑡𝑒𝑛 ∈ 𝑇𝐸𝑡1 and 𝑡𝑒𝑚 ∈ 𝑇𝐸𝑡2 :

𝑒𝑚𝑡1,𝑡2 = (𝑡𝑒𝑛, 𝑡𝑒𝑚) (7)

C. Refinement Algorithms

In the following, we introduce the algorithms to (semi-)
automatically refine a Pattern-based Deployment Model into
an executable deployment model.

The overall refinement of a Pattern-based Deployment
Model is described in Algorithm 1, which gets a Pattern-
based Deployment Model 𝑡 ∈ 𝑇 as input. Then, while the
Pattern-based Deployment Model 𝑡 contains patterns (line 1),
the algorithm starts by iterating over the following four steps:
(i) retrieve all PRM candidates (line 2), (ii) if the set of PRM
candidates is not empty (line 3), choose a PRM (line 4), and
(iii) apply the chosen PRM to 𝑡 (line 5). Otherwise, if no more
Patterns are contained in 𝑡, or no more PRM candidates can
be found, (iv) the refined Pattern-based Deployment Model
𝑡′ is returned (lines 7 and 10).

To check whether a PRM is an applicable candidate, the
PRM’s Detector must be an isomorphic subgraph of 𝑡 and
the PRM must be applicable to the current Pattern-based
Deployment Model 𝑡 (line 2). If the set of candidates is not
empty (line 3), one PRM must be chosen (line 4). This can be
implemented in two ways: First, the modeler has to choose

Algorithm 2 applicable(𝑡 ∈ 𝑇, 𝑝𝑟𝑚 ∈ 𝑃𝑅𝑀, 𝑠𝑚 ∈ 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡,𝜋1(𝑝𝑟𝑚))

1: for all 𝑒𝑚𝑖 ∈ 𝑠𝑚 : 𝜋1(𝑒𝑚𝑖) ∈ 𝑇𝑁𝑡 do
2: // check if a relation of a Topology Node exists which cannot be handled by a Relation Mapping
3: if ∃𝑟𝑗 ∈ relations(𝜋1(𝑒𝑚𝑖)) :

(︀
@𝑒𝑚𝑦 ∈ 𝑠𝑚 : 𝜋1(𝑒𝑚𝑦) = 𝑟𝑗) ∧ (@𝑟𝑚𝑥 ∈ 𝜋3(𝑝𝑟𝑚) :

(𝜋1(𝑟𝑚𝑥) = 𝜋2(𝑒𝑚𝑖) ∧ 𝜋3(𝑟𝑚𝑥) ∈ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠(𝑟𝑗) ∧ 𝜋4(𝑟𝑚𝑥) = direction(𝑟𝑗)∧
𝜋5(𝑟𝑚𝑥) = 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠(sourceOrTarget(𝑟𝑗)))

)︀
then

4: return false
5: end if
6: end for
7: return true

Algorithm 3 applyRefinement(𝑝𝑟𝑚 ∈ 𝑃𝑅𝑀, 𝑡 ∈ 𝑇, 𝑠𝑚 ∈ 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡,𝜋1(𝑝𝑟𝑚))
1: 𝐶𝑡 := 𝐶𝑡 ∪ 𝐶𝜋2(𝑝𝑟𝑚); 𝑃𝑡 := 𝑃𝑡 ∪ 𝑃𝜋2(𝑝𝑟𝑚); 𝑅𝑡 := 𝑅𝑡 ∪𝑅𝜋2(𝑝𝑟𝑚)

2: // apply Relation Mappings: redirect external relations
3: for all 𝑒𝑚𝑖 ∈ 𝑠𝑚 : 𝜋1(𝑒𝑚𝑖) ∈ 𝑇𝑁𝑡 do
4: // iterate over all relations of a Topology Node in the detected subgraph ignoring the Relations in this subgraph
5: for all 𝑟𝑗 ∈ relations(𝜋1(𝑒𝑚𝑖)) : (@𝑒𝑚𝑦 ∈ 𝑠𝑚 : 𝜋1(𝑒𝑚𝑦) = 𝑟𝑗) do
6: // change the source or target of 𝑟𝑗 according to the Relation Mapping defined in 𝑝𝑟𝑚
7: 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝𝑝𝑖𝑛𝑔 := 𝑟𝑚𝑥 ∈ 𝜋3(𝑝𝑟𝑚) :

(︀
𝜋1(𝑟𝑚𝑥) = 𝜋2(𝑒𝑚𝑖) ∧ 𝜋3(𝑟𝑚𝑥) ∈ 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠(𝑟𝑗)∧

𝜋4(𝑟𝑚𝑥) = direction(𝑟𝑗) ∧ 𝜋5(𝑟𝑚𝑥) = 𝑠𝑢𝑝𝑒𝑟𝑡𝑦𝑝𝑒𝑠(sourceOrTarget(𝑟𝑗))
)︀

8: if direction(𝑟𝑗) = 𝑖𝑛𝑔𝑜𝑖𝑛𝑔 then
9: 𝜋2(𝑟𝑗) := 𝜋2(𝑟𝑚𝑥) // set the target to the current Topology Node

10: else if direction(𝑟𝑗) = 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 then
11: 𝜋1(𝑟𝑗) := 𝜋2(𝑟𝑚𝑥) // set the source to the current Topology Node
12: end if
13: end for
14: end for
15: // remove all Topology Elements that are mapped by the Detector’s fragment
16: 𝑇𝐸𝑑𝑒𝑙𝑒𝑡𝑒 := {𝑡𝑒1 ∈ 𝑇𝐸𝑡 : ∃(𝑡𝑒1, 𝑡𝑒2) ∈ 𝑠𝑚}
17: 𝐶𝑡 := 𝐶𝑡 ∖ {𝑐𝑖 ∈ 𝑇𝐸𝑑𝑒𝑙𝑒𝑡𝑒 : 𝑐𝑖 ∈ 𝐶𝑡}; 𝑃𝑡 := 𝑃𝑡 ∖ {𝑝𝑖 ∈ 𝑇𝐸𝑑𝑒𝑙𝑒𝑡𝑒 : 𝑝𝑖 ∈ 𝑃𝑡}; 𝑅𝑡 := 𝑅𝑡 ∖ {𝑟𝑖 ∈ 𝑇𝐸𝑑𝑒𝑙𝑒𝑡𝑒 : 𝑟𝑖 ∈ 𝑅𝑡}
18: return 𝑡

a PRM (semi-automatic approach) or, second, the PRM is
selected in an automated fashion (fully automatic approach).
However, regardless of how the refinement candidate is
chosen, it gets applied to the Pattern-based Deployment
Model 𝑡 (line 5). Finally, the output of the algorithm is a
Deployment Model Candidate 𝑡′ containing the Refinement
Structures of the chosen PRMs.

Algorithm 2 describes how it can be decided if a PRM
𝑝𝑟𝑚 ∈ 𝑃𝑅𝑀 can be applied to a given Pattern-based De-
ployment Model 𝑡 ∈ 𝑇 . Additionally, the algorithm requires
a subgraph mapping 𝑠𝑚 ∈ 𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡,𝜋1(𝑝𝑟𝑚)

between 𝑡 and the 𝑝𝑟𝑚’s Detector as input. The output is a
boolean value that indicates whether the 𝑝𝑟𝑚 is applicable to
the Pattern-based Deployment Model 𝑡 at the given subgraph
mapping 𝑠𝑚 (line 7) or not (line 4). A PRM is applicable to a
Pattern-based Deployment Model if all ingoing and outgoing
Relations of all matching Topology Nodes can be mapped
to a Topology Node of the PRM’s Refinement Structure by
applying any Relation Mapping contained in the PRM’s set
of Relation Mappings. Therefore, for each element mapping

𝑒𝑚𝑖 of two Topology Nodes (line 1), it is checked if an
ingoing or outgoing Relation of the Topology Node in 𝑡
exists that is not contained in the subgraph mapping 𝑠𝑚,
i.e., that all Relations, which are part of the subgraph, are
ignored (line 3). If one of these external relations cannot
be redirected using a Relation Mapping defined by the 𝑝𝑟𝑚
(line 3), it is considered inapplicable (line 4). To determine if
a Relation Mapping 𝑟𝑚 redirects a Relation 𝑟𝑗 , the following
four conditions must hold: (i) the current Topology Node
must be the Detector Node in 𝑟𝑚, (ii) the type or any of
𝑟’s supertypes must be equal to the Relation Type defined
in 𝑟𝑚, (iii) the direction of 𝑟 must be equal to the direction
in 𝑟𝑚, and (iv) the type or any supertypes of 𝑟’s source or
target, depending on the direction of 𝑟, must be equal to the
valid source or target defined in 𝑟𝑚.

Lastly, the steps to apply an applicable PRM to a
Pattern-based Deployment Model are described in Algo-
rithm 3. The algorithm gets the selected Pattern Refine-
ment Model 𝑝𝑟𝑚 ∈ 𝑃𝑅𝑀 , a Pattern-based Deployment
Model 𝑡 ∈ 𝑇 , and the selected subgraph mapping 𝑠𝑚 ∈

𝑆𝑢𝑏𝑔𝑟𝑎𝑝ℎ𝑀𝑎𝑝𝑝𝑖𝑛𝑔𝑠𝑡,𝜋1(𝑝𝑟𝑚). Then, in the first step, the
Pattern-based Deployment Model defined in the 𝑝𝑟𝑚’s
Refinement Structure is imported into 𝑡 (line 1). Therefore,
all Patterns, Components, and Relations defined in the
Refinement Structure are added to their equivalents in 𝑡.
Similar as in Algorithm 2, we again iterate over all element
mappings defined in 𝑠𝑚 which are Topology Node elements
(line 3). In the following step, for each of these Topology
Nodes, the algorithm iterates over all Relations which are
not part of the subgraph mapping, i.e., they are external (line
5). Using the 𝑝𝑟𝑚’s Relation Mappings, the corresponding
Relation Mapping dictating the redirect for the current
Relation is retrieved (line 7). Then, depending on the direction
of the Relation, the source or target is updated to the
new source or target element (lines 8-12). Finally, after
all Relations were redirected to their new source, or target
respectively, the Topology Elements of the subgraph mapping
are deleted from 𝑡, and 𝑡 is returned (line 16-18).

D. Discussion and Limitations

The main idea of Pattern-based Deployment Models is to
describe several components to be deployed on an abstract
level in the form of patterns. For example, Fig. 4 shows
the Web Shop Frontend connecting to a queue modeled as
pattern. However, of course the frontend’s implementation
expects a certain messaging technology to connect to. Thus,
the refinement algorithm must select PRMs that refine such
patterns to appropriate concrete technologies. Our approach
ensures this correct refinement by requiring the modeler to
define detailed relationships between patterns and concrete
components as shown in Fig. 4: The frontend connects to
the queue by using a JmsQueueCon_1.1, which restricts our
algorithms to select PRMs that inject compatible messaging
technologies. However, this requires a detailed modeling of
all relations between technical components and patterns.

Furthermore, the approach is limited by the applicability of
available PRMs. To refine a Pattern-based Deployment Model
a possibly huge set of suitable PRMs must be available since
parts of the detector may already be refined in a previous
refinement step or the allowed Relation Mappings are highly
specific. For example, if the Private Cloud pattern illustrated
in Fig. 4 was already refined during a previous refinement
iteration, the example PRM described in Fig. 5 would not be
applicable because the Detector subgraph cannot be found
in the Pattern-based Deployment Model. This quickly results
in a huge number of different PRM variants describing
the same technology configurations using multiple different
Detector and Refinement Structure fragments. For example,
two similar PRMs may define its Detector as a Relational
Database directly hosted on an (i) OpenStack or (ii) Ubuntu
instance. In future work, we plan to tackle this issue by
generating PRM variants automatically based on comparing
different completely refined deployment models and their
corresponding original Pattern-based Deployment Models.

VI. PROTOTYPE

This section introduces our prototype implementing the
presented concepts. It is based on the OASIS standard
Topology Orchestration Specification for Cloud Applications
(TOSCA) [7], [18], which allows to define the structure and
orchestration of cloud applications in a standardized and
vendor independent manner. Therefore, we briefly introduce
TOSCA and it’s mapping to our metamodel.

In TOSCA, cloud applications are described in Service
Templates. A Service Template describes its deployment
model in a directed, weighted and possibly disconnected
graph, also referred to as a topology, which is described in
the Service Template’s Topology Template. The Components
of a Topology Template are represented by Node Templates
and Relations by Relationship Templates [7]. Similar to
our metamodel, both, Node Templates and Relationship
Templates are instances of a type specifying their semantics.
Hereby, Node Types correspond to Component Types, while
Relation Types are represented by Relationship Types. For
example, these types define the attributes for their templates
in Properties Definition elements, whereby their names and
types are specified. Additionally, Patterns and Pattern Types
are expressed via annotated Node Templates and Node Types.

As an extension to TOSCA, we introduce the Pattern
Refinement Model consisting of a Detector, a Refinement
Structure, and a set of Relation Mappings. While the Detector
and the Refinement Structure reuse the Topology Template
definition, the Relation Mappings are new elements and are
defined according to their structure described in Sect. V-B. To
define a Relation Mapping, users must select a component of
the Detector, the corresponding component of the Refinement
Structure, and a Relationship Type which can be redirected.
However, since Pattern Refinement Models are only used for
refining Topology Templates internally, the extension does
not interfere with other TOSCA compliant implementations.

The prototype builds upon Winery [19] [20], which is
a web-based tool for modeling TOSCA-based applications
graphically. To show the feasibility of the presented concepts,
the extension of Winery enables the modeling of Pattern-
based Deployment Models, as well as Pattern Refinement
Models. Moreover, Winery realizes the pattern refinement
described in Sect. V-C. It hereby employs a semi-automatic
approach in which the user must decide which applicable
PRM has to be applied to which subgraph mapping. Therefore
applicable PRMs are presented to the user in a list. To ease
the selection of the subgraph mapping to be refined, Winery
highlights the affected Node Templates when hovering over
an applicable PRM. By combining both approaches, Winery
eases the development of deployment models and helps to
avoid vendor- and technology-lock-ins. The extension is
available as open source and demonstrated in a video1.

1https://github.com/OpenTOSCA/winery/releases/tag/paper%
2Flh-pattern-based-modeling

https://github.com/OpenTOSCA/winery/releases/tag/paper%2Flh-pattern-based-modeling
https://github.com/OpenTOSCA/winery/releases/tag/paper%2Flh-pattern-based-modeling

VII. RELATED WORK

Our approach for Pattern-based Deployment Models is
based on the idea of Platform Independent Models (PIMs) in
the context of Model-driven Architecture (MDA) presented by
Soley et al. [6]. The main idea of MDA is to iteratively detail
an application’s architecture with more concrete elements
upon each iteration. Therefore, a PIM is created to generically
specify the architecture of an application which is then
refined into (possibly multiple) Platform Specific Models
(PSMs). In our case, the PIM is represented by a Pattern-
based Deployment Model since patterns represent abstract
and vendor-independent solutions, while an Executable
Deployment Model can be referred to as a PSM containing
specific technologies. In order to refine the PIM into a PSM,
Mellor et al. [21] define steps in their software development
process where mappings from an abstract metamodel to
the metamodels of the target platforms must be defined
and implemented. Pattern Refinement Models combine the
mapping and implementation since they can be automatically
applied to a Pattern-based Deployment Model. Further, since
PRMs can also define Pattern-based Deployment Model
fragments in their Refinement Structure, our refinement is
able to increase the details on a platform independent level.

Fehling et al. [22] envision a cloud pattern framework,
which contains a decision tool and a provisioning tool. The
framework allows to enrich patterns with runtime annota-
tions that can be utilized by a so-called provisioning flow
for deploying software components in cloud environments.
Although the framework addresses the provisioning of cloud
applications, it does not introduce patterns as first level
deployment modeling entities nor does it show how such
models can be executed However, while their approach is
formulated from the perspective of application development
our approach can be grasped as an implementation of their
framework from the perspective of deployment models.

Different approaches focus on the transformation of de-
ployment models. Saatkamp et al. [23] formalize architecture
and design patterns by means of logic programming to detect
and resolve problems in deployment models. Eilam et al. [24],
[25] as well as Arnold et al. [26], [27] present approaches
to detect structures in application topologies, respectively,
deployment models to automatically transform them by pre-
defined transformation steps similar to PRMs. However, these
approaches do not introduce patterns as first-class modeling
elements in deployment models to enable conceptual, i. e.,
technology- and provider-independent, modeling.

Hallstrom and Soundarajan [28] introduce design refine-
ment via patterns. Thereby, sub-patterns refine the solution
concepts of more abstract patterns. This leads to specialized
variants of the abstract solution concepts of coarse-grained
patterns. A similar approach that especially addresses to
close the abstraction gab between the solution concepts
described in patterns and refinements of them towards

concrete technologies is presented by Falkenthal et al. [11].
Both approaches can be combined with the presented work to
allow the refinement of patterns used in deployment models
towards specific implementation variants and technologies.

Di Martino et al. [29] use patterns to describe the
composition of cloud services to overall cloud applications.
They further present a semantic model of patterns, which
can be used to describe business processes, cloud applica-
tions and mappings to required cloud resources for their
implementation [30]. Those mappings are similar to Pattern
Refinement Models, however, they cannot be directly used
to describe abstract deployment models for later reuse, nor
can they be automatically refined by concrete deployment
model fragments as presented in this work.

Falkenthal et al. [31] introduce concrete solutions as
reusable implementations of patterns [9]. Furthermore, they
introduce aggregation operators [32] capable of combining
concrete solutions of different patterns to be combined. Thus,
the introduced PRMs can be seen as concrete solutions that
act in combination with other PRMs as aggregation operators.

Schürr [33] introduced Triple Graph Grammars (TGGs)
which can be used to generically define transformations of
graphs from one model to another. In contrast to correspon-
dence graphs in TGGs, Relation Mappings in PRMs do not
specify correspondences between nodes directly, but rather
how external relations, i.e., ingoing or outgoing relations
which are not part of the detected subgraph, can be redirected
to the exchanged graph fragment. Thereby, each Relation
Mapping defines the Relation Type, the direction, and the
source or target node of an external relation. To check the
applicability of a PRM to a Pattern-based Deployment Model,
its Relation Mappings are taken into account.

VIII. CONCLUSION AND FUTURE WORK

The modeling of deployment models requires deep tech-
nical knowledge, especially considering conceptual archi-
tectural decisions. In this paper, we introduced a method
for (semi-) automatically refine Pattern-based Deployment
Models into executable ones, to enable their automated
deployment. We further presented a formal metamodel and
showed the feasibility using a TOSCA-based prototype. Our
method leads to a simplified modeling of deployment models,
avoiding vendor- and technology-lock-ins. Thus, the approach
applies the concepts of Model-driven Architecture [21] to the
domain of deployment modeling and deployment automation
by describing the deployment of an application in a Platform
Independent Model (PIM) which is refined in a Platform
Specific Model (PSM) in an (semi-) automatic fashion. One
limitation of our approach is the assumption that only correct
Pattern-based Deployment Models can be processed. To
achieve a correct architecture to form the input of our method
the approach by Guth and Leymann [34] can be used. In
future work, we will close the gap between such architectures
and the Pattern-based Deployment Models.

ACKNOWLEDGMENT

This work was partially funded by the DFG projects
SustainLife (641730), ADDCompliance (636503) and the
BMWi project SePiA.Pro (01MD16013F).

REFERENCES

[1] F. Leymann, “Cloud Computing: The Next Revolution in IT,”
in Proceedings of the 52th Photogrammetric Week. Wichmann
Verlag, Sep. 2009, pp. 3–12.

[2] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why
do internet services fail, and what can be done about it?” in
USITS 2003. USENIX, Jun. 2003.

[3] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and
J. Wettinger, “Integrated Cloud Application Provisioning: In-
terconnecting Service-Centric and Script-Centric Management
Technologies,” in CoopIS 2013. Springer, Sep. 2013, pp.
130–148.

[4] A. Bergmayr et al., “A Systematic Review of Cloud Modeling
Languages,” ACM Computing Surveys (CSUR), vol. 51, no. 1,
pp. 22:1–22:38, 2 2018.

[5] C. Endres et al., “Declarative vs. Imperative: Two Modeling
Patterns for the Automated Deployment of Applications,” in
PATTERNS 2017. Xpert Publishing Services (XPS), Feb.
2017, pp. 22–27.

[6] R. Soley et al., “Model driven architecture,” OMG white paper,
vol. 308, no. 308, p. 5, 2000.

[7] OASIS, Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0, OASIS, 2013.

[8] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern
Language: Towns, Buildings, Construction. Oxford University
Press, Aug. 1977.

[9] M. Falkenthal and F. Leymann, “Easing Pattern Application by
Means of Solution Languages,” in PATTERNS 2017. Xpert
Publishing Services (XPS), 2017.

[10] R. Reiners, “An Evolving Pattern Library for Collaborative
Project Documentation,” Ph.D. dissertation, RWTH Aachen
University, 2013.

[11] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling,
F. Leymann, A. Hadjakos, F. Hentschel, and H. Schulze,
“Leveraging Pattern Application via Pattern Refinement,” in
PURPLSOC 2015. epubli, Jun. 2015.

[12] M. Falkenthal, J. Barzen, U. Breitenbücher, and F. Leymann,
“Solution Languages : Easing Pattern Composition in Different
Domains,” International Journal On Advances in Software,
vol. 10, no. 3&4, pp. 263–274, 2017.

[13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Ar-
bitter, Cloud Computing Patterns: Fundamentals to Design,
Build, and Manage Cloud Applications. Springer, Jan. 2014.

[14] G. Hohpe and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions.
Addison-Wesley, 2004.

[15] L. Reinfurt, U. Breitenbücher, M. Falkenthal, F. Leymann, and
A. Riegg, “Internet of things patterns,” in Proceedings of the
21st European Conference on Pattern Languages of Programs
(EuroPLoP). ACM, 2016.

[16] Reinfurt, Lukas and Breitenbücher, Uwe and Falkenthal,
Michael and Leymann, Frank and Riegg, Andreas, “Internet
of Things Patterns for Devices: Powering, Operating, and
Sensing,” International Journal on Advances in Internet
Technology, IARIA, pp. 106–123, 2017.

[17] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” 2011.

[18] OASIS, TOSCA Simple Profile in YAML Version 1.0, Organiza-
tion for the Advancement of Structured Information Standards
(OASIS), 2015.

[19] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery
– A Modeling Tool for TOSCA-based Cloud Applications,” in
ICSOC 2013. Springer, Dec. 2013, pp. 700–704.

[20] Eclipse. (2018) Eclipse winery. [Online]. Available: https:
//eclipse.github.io/winery/

[21] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven
architecture,” in Advances in Object-Oriented Information
Systems. Springer Berlin Heidelberg, 2002, pp. 290–297.

[22] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schu-
peck, “An Architectural Pattern Language of Cloud-based
Applications,” in PLoP 2011. ACM, Oct. 2011.

[23] K. Saatkamp, U. Breitenbücher, O. Kopp, and F. Leymann, “An
Approach to Automatically Detect Problems in Restructured
Deployment Models based on Formalizing Architecture and
Design Patterns,” Computer Science - Research and Develop-
ment, 2018, to appear.

[24] T. Eilam, M. Kalantar, A. Konstantinou, G. Pacifici, J. Pershing,
and A. Agrawal, “Managing the configuration complexity of
distributed applications in Internet data centers,” Communica-
tions Magazine, vol. 44, no. 3, pp. 166–177, Mar. 2006.

[25] T. Eilam, M. Elder, A. V. Konstantinou, and E. Snible,
“Pattern-based Composite Application Deployment,” in IM
2011. IEEE, May 2011, pp. 217–224.

[26] W. Arnold, T. Eilam, M. Kalantar, A. V. Konstantinou, and
A. A. Totok, “Pattern Based SOA Deployment,” in ICSOC
2007. Springer, Sep. 2007, pp. 1–12.

[27] Arnold, William and Eilam, Tamar and Kalantar, Michael and
Konstantinou, Alexander V. and Totok, Alexander A., “Auto-
matic Realization of SOA Deployment Patterns in Distributed
Environments,” in ICSOC 2008. Springer, Dec. 2008, pp.
162–179.

[28] J. O. Hallstrom and N. Soundarajan, “Reusing Patterns through
Design Refinement,” in Formal Foundations of Reuse and
Domain Engineering. Springer, 2009, pp. 225–235.

[29] B. Di Martino, G. Cretella, and A. Esposito, “Cloud services
composition through cloud patterns,” in Adaptive Resource
Management and Scheduling for Cloud Computing. Springer,
2015, pp. 128–140.

[30] B. Di Martino, A. Esposito, S. Nacchia, and S. A. Maisto, “A
semantic model for business process patterns to support cloud
deployment,” Computer Science - Research and Development,
vol. 32, no. 3, pp. 257–267, 2017.

[31] M. Falkenthal, J. Barzen, U. Breitenbücher, C. Fehling, and
F. Leymann, “From Pattern Languages to Solution Implemen-
tations,” in PATTERNS 2014. Xpert Publishing Services,
May 2014, pp. 12–21.

[32] M. Falkenthal, J. Barzen, U. Breitenbücher, and F. Leymann,
“On the Algebraic Properties of Concrete Solution Aggregation,”
Computer Science - Research and Development, 2018.

[33] A. Schürr, “Specification of graph translators with triple graph
grammars,” in Graph-Theoretic Concepts in Computer Science.
Springer Berlin Heidelberg, 1995, pp. 151–163.

[34] J. Guth and F. Leymann, “Towards Pattern-based Rewrite
and Refinement of Application Architectures,” in Proceedings
of the 12th Advanced Summer School on Service Oriented
Computing. IBM Research Division, 2018.

https://eclipse.github.io/winery/
https://eclipse.github.io/winery/

	Introduction
	Motivation Example and Fundamentals
	Deployment Automation & Deployment Models
	Running Case Study
	Architecture Patterns & Pattern Languages

	A Method forPattern-based Deployment Modeling
	Vendor & Technology Agnostic Modeling
	(Semi-) Automatic Refinement
	Vendor & Technology Specific Modeling

	Pattern-based Deployment Models
	Metamodel for Pattern-based Deployment Models
	Applying the Approach to the Case Study
	Benefits of Pattern-based Deployment Models

	Refinement to Executable Deployment Models
	Overview of the Refinement Approach
	Metamodel for Pattern Refinement Models
	Refinement Algorithms
	Discussion and Limitations

	Prototype
	Related Work
	Conclusion and Future Work
	References

