

Universität Stuttgart

Fakultät Informatik, Elektrotechnik und Informationstechnik

CR: H.4.1

Institut für Architektur von
Anwendungssystemen

 Universitätsstr. 38
70569 Stuttgart
Germany

An Overview on Implicit Green
Business Process Patterns

Alexander Nowak, Frank Leymann

Report 2013/05
August 07, 2013

Abstract
The environmental impact of doing business becomes an increasingly relevant
aspect for organizations, not only because of legal requirements but also because
more customers care about environmental influences. Most organizations,
however, do not have comprehensive knowledge on how to restructure their
business processes accordingly. In previous work we proposed green business
process patterns that address the environmental impact explicitly as one possible
solution. Beyond those patterns, we now provide environmentally relevant
patterns derived from existing patterns of different domains. In this work, we
present a set of such patterns related to automated business processes. The
identified patterns support stakeholders when analyzing their business processes
with respect to the environmental impact and, therefore, supporting green
business process reengineering.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 3 of 35

1.			INTRODUCTION	
This document provides a set of patterns that may be used to consider the
environmental impact of business processes. The patterns are based on existing
knowledge that has been captured in patterns from the domains of workflows,
application architectures, and Cloud computing. The proposed list of patterns, a
first attempt of building a pattern language, is not complete but serves as a
starting point for further research. The following Table contains an overview of
the patterns described in this document.

Table 1 Pattern Overview.

Pattern-Icon Pattern Name Pattern Intent

Green Control Flow
Smart control flow constructs improve the efficiency of
resource usage while executing a business process.

Green Explicit Termination
Terminate sub-processes when there is nothing else to
do for them.

Green Multiple Instances
With a Priori Runtime
Knowledge

Handle the number of activities in a process model
while the exact number of instances is not known
during design time.

Green External Choice
Provide several alternative control flow branches that
are selected depending on the environment.

Green Cancel Activity
Withdraw activity instances that are no longer relevant
for the execution of the process instance.

Green Client Session State
Optimize the number of server nodes by making them
stateless.

Green Server Session State
Hold session information on server side to reduce
energy consumption in communication and
transformation.

Green Data Transfer Object
Optimize system calls to reduce load and energy
consumption.

Green Lazy Load
Avoid upfront loading of possibly unnecessary
information, instead load data only when really
needed.

!

!

?!

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 4 of 35

Green Gateway
Manage the access to external systems or resources
in order to reduce total number of access instances.

Green Public Cloud
Use external cloud resources to improve resource
efficiency and reduce in-house power consumption.

Green Loose Coupling
Reduce the dependencies between individual
components to use varying resources for their runtime
environment and execution.

Green Batch Processing
Component

Delay and bundle the processing of requests based on
internal or external requirements and dependencies.

Green Eventual Consistency
Distribute data among replicas while reducing the
synchronization overhead to a minimum.

Green Shared Component
Share application components between multiple
tenants to improve resource efficiency.

2.			Characteristics	of	Green	Business	Processes	
Business processes are performed by invoking different activities defined in the
business process model. Each of these activities is using resources that support
and ensure the correct execution of that activity. Such resources can be raw-
materials, a drill bit, a hard disk drive, electricity, or another process or service,
for example. In (Nowak et al. 2011) we found that in order to cope with the
holistic character of environmental aspects, we need to consider a wide variety of
perspectives. Moreover, we can postulate that the impact of resources to the
environmental impact of a business process is crucial. Here, we need to
differentiate and consider two different aspects: (i) which resources are
environmentally compatible and best fit a given work item or objective, and (ii) in
which way should resources be used within a business process.

To identify the potential of reducing the environmental impact of a business
process, we analyzed current patterns and specify characteristics that can be
applied to new patterns. To cover the variety of perspectives, we decided to use
the different perspectives of business processes, described by (Jablonski and
Bussler 1996). Especially, we emphasize their influence on the environmental
impact. The perspectives are described in the following.

Process perspective: The process perspective describes the control flow of a
business processes, i.e. it defines the order in which activities are executed.

G

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 5 of 35

Usually, this perspective is represented by some graphical model. Depending on
the defined control flow a business processes may lead to a different
environmental outcome. Process models that contain many different roles, for
example, may lead to a higher environmental impact due to the necessary context
transmission. In other scenarios it might be useful to structure process models in
such a way that the use of particular resources is somehow bundled. Different
database queries, for example, may be fetched at once. This allows keeping
resources in standby for a longer time which saves energy consumed by the
database management system.

Data perspective: The data perspective describes the structure of the data
objects used by a business processes as well as the way they are associated to the
business process. The way of associating data elements to processes has
significant influence on the total environmental impact. For example, consider an
automated business processes that invokes an activity multiple times. If this
activity is designed as stateless component, all information necessary for the
execution must be provided to the activity each time it gets invoked. If you use a
stateful component or some caching functionalities instead, information transfer
will be reduced which may lead to a decrease in energy consumption. A similar
scenario may be envisioned in industry where raw materials or semi-finished
goods need to be transferred from one place to another.

Organization perspective: The organization perspective describes the roles and
organizational units that are involved in a business process. That includes both
internal and external roles. For a sustainable execution of processes a lot of
changes in different roles or even external organizational units may be
disadvantageous. In this case, the process context needs to be transferred each
time the role changes or goods need to be transported to other sites, for example.
Thus, when considering the environmental perspective of business processes, the
proper selection of roles and of collaboration partners as well as their integration
becomes even more important than in regular process design.

Resource perspective: The resource perspective is another important
perspective as it covers which types of resources are used within business
process. Resources may be humans, machines, raw-materials, and auxiliary
materials like energy, for example. Depending on the chosen resources, different
environmental outcomes may be achieved. In some IT scenarios it might be
useful to use Thin-Clients or renewable energy. Another example is the use of
centralized environments which allows utilizing economies of scale or the
bundling of activity executions in order to prevent servers from changing their
state too often.

Operation perspective: The operation perspective describes how the atomic
elements of a business process are used. This may be represented, for example,
by a scripting language defining how to invoke external applications. For
environmental-aware business processes, this perspective is strongly correlated
with the resource and data perspective. It defines the way activities are invoked
or which kind of activities or additional services are executed within the business

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 6 of 35

process. The use of the Green Compensation pattern from (Nowak et al. 2011), for
example, may be implemented as part of the invocation of an activity.

Integration perspective: The integration perspective describes how the
different perspectives are joined together. In most scenarios this ends up in some
hierarchy of processes and activities. In our use case this may be interesting as
the relations between the different activities and processes are described
explicitly. However, this perspective is more important for the analysis of
existing structures as many relations are already covered by the single
perspectives. Nevertheless, in some scenarios this perspective may help
stakeholders to coordinate process executions especially with respect to the
distribution and sharing of resources that are needed for process execution.

The analysis of each of these business process perspectives indicates that every
perspective has an individual potential to decrease the environmental impact of
business processes. Therefore, we can assume that patterns that address these
perspectives from an environmental point of view may also have a significant
relevance in designing environmentally-aware business processes. However, their
application is strongly dependent on the scenario in which they are used. In order
to support stakeholders that focus on the sustainable (re-)design of their business
processes, we want to provide a set of commonly known patterns that are
transferred in the context of this paper. This means that we analyze existing
patterns addressing at least one of the introduced perspectives and check their
applicability to environmental aspects of business processes. For better usability
of our pattern catalogue, we describe variants of those existing patterns so that
they are ready to use in green business process reengineering scenarios. Please
note that the integration perspective is influenced whenever any of the other
perspectives are modified. Thus, we do not describe this perspective in each of
our patterns but consider it in the results presented in Section 5.

3.			Green	Business	Process	Patterns	
In this section we want to provide a set of patterns that are derived from existing
patterns of other domains but put in the context of environmentally-aware
improvement of business processes. To provide an easy and comprehensible
usage of the patterns we describe all of them in the same structured format (see
Section 3.1). The patterns have been selected based on the impact on the
perspectives described in Section 2. Considering the probably most important
aspect, namely the resources of a business process, we have selected patterns
from the domains of workflows (Aalst et al. 2003), application architectures
(Fowler 2003) in general, and Cloud architectures (Fehling et al. 2013) in
particular. Please note that the selection of these patterns is based on our
personal investigations related to green business process patterns, their
corresponding influence factors, and therefore their ability to positively support
these influence factors. We do not claim that these are all patterns related to that
subject. However, we think they provide a good starting point for (re-)designing
business processes.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 7 of 35

3.1			Pattern	Format	and	Language	
In the following sections we want to extend our previously proposed pattern
language described in (Nowak et al. 2011). When talking about a “language of
patterns” we stick closely to the interpretation of Hanmer (Hanmer 2012) who
describes a language as a set of patterns that are used to solve a problem of a
particular domain. The patterns comprised in a language are structured in such a
way that stakeholders can navigate through the complete set of patterns,
selecting suitable patterns, and recognize the relations between the patterns in
order to solve even bigger problems. Depending on different use case scenarios, a
different set of suitable patterns may be selected. This aspect is also reflected by
the abstract description of solutions which explicitly does not provide final and
concrete solutions for a very specific use case.

To describe and document the patterns of this work we have decided to choose a
simple and straightforward format. This format is geared to commonly known
literature, like the work of Alexander (Alexander et al. 1977), Fowler (Fowler
2003), and Gamma et al. (Gamma et al. 2000). However, our format differs from
the original formats of the observed patterns. This is done on purpose as we want
to emphasize the new aspects, problems, and solutions in the domain of
environmental improvement of business processes. Moreover, the uniform format
eases the use of patterns significantly. Please note that we do not intend to
describe the existing patterns one-to-one. In fact, we want to present variants
that are directly related to the subject of this work.

For documentation, each pattern is defined by a name that is unique within our
pattern language. The name helps to identify patterns and to navigate through
the catalogue. Moreover, we did not use the original name of the patterns but
added the prefix “green” that emphasizes the new application domain. Besides
the name of a pattern we also provide the intent of that pattern which describes
the purpose of the pattern in a single sentence. Next, we describe the context the
pattern may be used in. The context is strongly related to the new domain and
represents the new challenges arising. In this section, we also provide some
information about the affected business process perspectives, introduced in
Section 3.1. Subsequently, we provide an abstract solution for the problem. Like
any other patterns, this solution is typically not “ready-to-use”. We still need to
consider the concrete use case and the corresponding constraints to develop a
suitable solution. Next, we provide information on the result after applying the
pattern and one or more examples, also known as “known uses”, describing
concrete application scenarios of the patterns. The last section points out the
relations to other patterns either because they are usually used together, they
might be considered to use them together, or because they do not fit together due
to mutual constraints. Please note that we do not provide all possible relations in
this work as we have limited the number of patterns to a basic set. Thus, there
might much more patterns from the different domains that are able to support
the patterns of this work in concrete use cases. The identification of these
patterns is, however, subject to the user knowing his concrete application
scenario.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 8 of 35

In the pre-selection phase of our method we have analyzed various patterns of
the aforementioned domains. All of the identified patterns do have the potential
to improve the environmental impact of business processes. In the following, we
provide a brief overview of the resulting patterns:
Workflow Patterns: Green Control Flow, Green Explicit Termination, Green
Multiple Instances With a Priori Runtime Knowledge, Green External Choice,
Green Cancel Activity, Multiple Instances Without Synchronization, Multiple
Instances With a Priori Design Time Knowledge, Cancel Case.
Application Architecture Patterns: Green Client Session State, Green Server
Session State, Green Data Transfer Object, Green Lazy Load, Green Gateway,
Green Query Object.
Cloud Patterns: Green Public Cloud, Green Private Cloud, Green Elastic
Infrastructure, Green Elastic Platform, Green Loose Coupling, Green Batch
Processing Component, Green Data Access Component, Green Stateful
Component, Green Stateless Component, Green Shared Component, Green
Eventual Consistency, Green Elasticity Manager, Green Elastic Load Balancer,
Green Elastic Queue, Green Elasticity Management Process, Green Standby
Pooling Process.

The following sections provide the results of the detailed analysis phases of our
method. We have selected five patterns of each domain that are documented in
detail using our proposed pattern format.

3.2			Workflow	Patterns	
Workflow patterns basically describe solutions on how to design business process
in order to achieve certain business objectives. So far, these patterns did not
consider the environmental impact as a design criterion. Besides the overview in
Section 4.1 we have analyzed the following patterns in detail: Control Flow,
Explicit Termination, Multiple Instances With a Priori Runtime Knowledge,
External Choice, and Cancel Activity. For each of these patterns we present a
corresponding variant that focuses on the improvement of the environmental
impact. For further details on the original patterns see (Aalst et al. 2003).

Green Control Flow

Smart control flow constructs improve the efficiency of resource
usage while executing a business process.

Context: Business processes are designed to compose multiple activities, i.e.
working tasks, whose purpose is to achieve certain business objectives. To
perform those activities corresponding implementation artifacts need to be
specified. Such implementation artifacts can either be humans that perform a
task manually or software that performs a task automatically. Based on the
expected result, the activities are arranged in a specific order. In most cases the
interactions between activities and resources are designed from a pure technical
point of view. However, from an environmental point of view, the usage of those
resources might be inefficient because there could be many different requests of a

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 9 of 35

resource, huge amounts of data needs to be transferred, and different
organizational departments are involved.

When using this pattern the following perspectives are affected:
Process Perspective: The control flow, i.e. the ordering of the activities of a

process, might be changed to achieve an improved
execution.

Operation
Perspective:

Based on a changed control flow the way external
operations are invoked may be changed, too.

Organization
Perspective:

A redesigned control flow might influence the
communication between different organizational
departments. Basically, the objective is to reduce the
communication and management overhead.

Solution: The basic idea of this pattern is the restructuring of the execution
steps of a business process while explicitly considering environmental objectives.
Like applying conventional process optimization patterns, the order in which the
different steps are performed will probably change. Based on existing design
patterns, the following control flow design constructs may be used to reduce the
total environmental impact of a business process:
Sequence: This construct is used to execute one activity after another, i.e. after
the predecessor activity has completed. This may be used to keep resource
utilization at a stable level.

Parallel Split: This construct is used to perform activities in parallel. This
increases the resource utilization and may therefore lead to better duration and
reduced resource allocation time.

Synchronization: This construct is used to merge one or more paths in a control
flow, e.g. to switch from parallel to sequential execution. The results of each
incoming path will be evaluated and processed.

Exclusive Choice: This construct is used to explicitly choose a certain path in the
control flow. An example is the shipment of products which may be shipped as
conventional or carbon free package. Therefore, the decision might be based on
process data or user data, for example.

Simple Merge: This construct is used in a point in the workflow process where
two or more alternative branches come together without synchronization.
Depending on the concrete use case this might be an alternative to the
synchronization construct.

Result: The result of the application of this pattern is a restructured business
processes that considers both the functional aspects as well as an efficient and
environmentally beneficial execution of the different process steps. This allows
changing the execution order of activities based on the efficient usage of the
underlying resources.

Example: On example for an exclusive choice is the “go green” option provided by
DHL (Deutsche Post Ag 2013). Customers are able to choose whether they want
to ship their packages in a conventional way or in a carbon-free way. When

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 10 of 35

choosing the latter one, DHL additionally charges the customers for investments
in climate projects. Another example is the parallelization of backup tasks of a
system. Due to the parallelization, the resource utilization will be increased to a
certain level which improves the efficiency and releases the resources earlier so
that they can be used by other tasks.

Relations to other patterns:
Green Data
Transfer Object:

The change of the control flow does also determine when
and in which order different data objects are needed and
which information must be included.

Green Gateway: It might be suitable to integrate a green gateway that
allows to bundle requests in order to reduce
communication and management overhead.

Green Variant: This pattern may be used to introduce new control flow
paths that build a new, green variant of the existing one.
An Exclusive Choice may be used to decide which patch
should be executed.

Process Automation
& Human Process
Perf.:

If the way of performing activities and the underlying
resources should be changed, these patterns may provide
some basics on how this can be done.

Resource Change: The substitution of existing resources to better fit a new
control flow may be beneficial for the total environmental
impact.

Green Explicit Termination

Terminate sub-processes when there is nothing else to do for
them.

Context: Complex business processes are usually not performed within a single
hierarchical tier but consist of several different sub-processes. Such sub-processes
are intended to encapsulate specific tasks that are created by experts and are
reusable in different scenarios. In some cases, however, the state of a sub-process
remains active although there is nothing more to do, for example, there are no
more active activities within the sub-process and no more activities that can be
activated. In such scenarios, the corresponding sub-process has to be terminated
in order to release the resources for usage with other activities.

When using this pattern the following perspectives are affected:
Process Perspective: Unless the process engine supports the termination of such

sub-processes, the termination of a sub-process must be
modeled explicitly.

Resource
Perspective:

The bound resources may be release earlier which
influences the way these resources are used. For example,
the utilization of the resources will be decreased and,
therefore, other or less resources may be used.

!

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 11 of 35

Solution: If there are no consistency checks done by process engines, the
termination activity, i.e. the termination nodes, must be modeled explicitly
within a sub-process. Based on various conditions, like the state of the containing
activities, the continuity of the process instance has to be checked. These
conditions can either be based on the process instance information or in some
cases based on user decisions. If the conditions are fulfilled, the instance of the
sub-process can be terminated. Note that in some cases the process engine covers
that checks. In those cases, the explicit termination solely focuses on termination
decisions that are made on purpose.

Result: The result of the application of this pattern is a restructured business
processes (or sub-process) that is able to explicitly terminate based on various
decision criteria. Therefore, the termination of a sub-process is not done at the
end of the complete process but right at the time it is not needed any more. Based
on this behavior the allocated resources may be released earlier or fewer
resources are needed at all.

Example: In manufacturing or trading, the quality management is an important
aspect. However, the quality is often assessed using control samples only. Thus,
the sub-process of quality assessment is sometimes executed completely, while
sometimes there are only a few minor checks that are performed. In the latter
case, there is no need to wait for all activities to be executed. The sub-process can
be canceled and marked as successfully completed as soon as the minor checks
have been performed.

Relations to other Patterns:
Green Cancel
Activity / Case:

An explicit termination may also be combined with the
Green Cancel Activity or Green Cancel Case patterns to
improve termination conditions.

Green Lazy Load: It might be suitable to not load and provide all data at the
time of process initialization but reload required data later
on.

Green Multiple Instances With a Priori Runtime Knowledge

Handle the number of activities in a process model while the
exact number of instances is not known during design time.

Context: In some business scenarios, an activity of a business process needs to be
executed multiple times to complete a certain objective. During design time,
however, the concrete number of activity executions is not known as it may be
dependent on runtime information that has been produced be previous activities.
The number of instances of a given activity for a given use case may also vary
and depend on characteristics of the use case or the availability of resources.
Moreover, the number of activity instances may also change during process
execution based on certain criteria. Thus, a modeler is not able to model all

!

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 12 of 35

activities explicitly in advance and, therefore, does not know the necessary
amount of resources.

When using this pattern the following perspectives are affected:
Process Perspective: The introduction of multiple instances influences the

complete design of a process model as it must support the
dynamic and varying number of activity instances.

Operation
Perspective:

Based on a changed control flow the way external
operations are invoked may be changed, too. Moreover, this
perspective may also provide criteria that determine the
number of activity instances that are necessary.

Resource
Perspective:

Due to the dynamic amount of resources, the total amount
may be changed.

Solution: Depending on the Workflow engine in use, choose suitable constructs
that can define the number of instances before instantiating the corresponding
activities. Due to the various implementations and workflow languages a
concrete guideline for designing those constructs is very hard. An overview of
possible implementations is presented in Aalst et al. (Aalst et al. 2003). Usually,
a modeler would choose a design that instantiates only that number of activities
that are commonly used in most cases, i.e. he would not instantiate the
maximum number of possibly required activities. Moreover, in some cases it
might be beneficial to introduce explicit cancel-conditions that allow to further
reduce the total resource allocation. For example, in some cases the process may
not need the result of all activity instances but only a certain number. As soon as
this number is reached there is no need for further instances.

Result: Due to a smart design of business processes the number of activity
instances may be reduced to the number of activities that are suitable in most
common cases. Therefore, fewer resources need to be allocated in advance which
allows using the difference for other activities or applications.

Example: An example for applying this pattern is derived from Aalst et al. (Aalst
et al. 2003): In the review process for a paper submitted to a journal, the review
paper task is executed several times depending on the content of the paper, the
availability of referees and the credentials of the authors. The review process can
only continue when all reviews have been returned.

Relations to other Patterns:
Green Control Flow: The design of multiple instances of an activity within a

process has also effect on the control flow of the process.
This pattern supports the restructuring of the control flow.

Green Explicit
Termination:

The explicit termination pattern may support the design of
cancel-conditions.

Green Cancel
Activity:

This pattern may support the design of cancel-conditions
and activities.

Green Lazy Load: Lazy Load supports the loading of data right at the time it
will be needed. If there are activities that might not be

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 13 of 35

executed, the corresponding data must not be provided
initially, for example.

Resource Change Depending on the number of activity instances different
resources may be put in place which may lead to better
resource efficiency.

Green External Choice

Provide several alternative control flow branches that are
selected depending on the environment.

Context: Business processes are usually not only sequences of activities. They
contain different decision points, branches, and paths. To realize such constructs,
workflow languages provide different possibilities like (1) AND constructs are
able realize parallel splits where all outgoing edges are run in parallel, or (2)
XOR constructs that are able to realize explicit decision points where a single
outgoing edge is chosen based on the incoming edges, for example. Beside those
explicit constructs that are modeled within a process model, the selection of a
particular path or branch can also be transferred to the environment in which a
process is running, i.e. external events influence the control flow of that process.

When using this pattern the following perspectives are affected:
Process Perspective: In order to react to external events the process model and

the control flow need to support those events as well as the
corresponding alternatives in the process model.

Data Perspective: In order to use external events it must be defined which
information is required to come to a decision.

Resource
Perspective:

Based on the decision made different resources may be
used for further processing.

Solution: The process model needs to be extended by introducing external
choices at those positions where external information should be used to
distinguish different process behavior. The required information must be defined
and provided to the runtime environment of the process. For example, the total
power consumption of a process may be retrieved and used for the decision about
the resource to be used in the next process step. Depending on specific use cases
the control flow of the process may be explicitly designed to address various
business objectives.

Result: Due to the integration of external information a process designer is able
to explicitly consider information of the runtime as well as ecological
environment. Like when using the green variant pattern, the execution path as
well as the resources that are used to perform an activity can be defined during
runtime. Moreover, the decision making based on environmental information is
able to optimize the resource usage in general.

?!

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 14 of 35

Example: One opportunity to choose between different paths of a process was
described as Green Variant pattern in (Nowak et al. 2011)]. The example here
was describing the choice for DHL customers to either ship their packages
regularly or carbon-free. Using this pattern we can modify that example. As from
now, the customer does not make the decision, but the process automatically
checks information about the total carbon footprint at that time. Based on that
information the process may decide which shipping option would be best to not
violate defined business objectives for carbon emissions.

Relations to other Patterns:
Green Control Flow: The design of external choices usually influences the

design of the control flow of a process, i.e. the introduction
of a new alternative path or the use of different resources
that might be handled in a new way.

Green
Compensation:

Instead of creating new process path the external
information may also be able to trigger certain
compensation activities or processes.

Green Cancel
Activity:

When deciding for a specific path in the process model all
activities of the other paths can be canceled.

Green Variant: The green variant of a process usually describes a modified
process model or the process model contains a “green
path”. The external information supports the selection of
which of the different path should be used in which case.

Green Lazy Load: Data may only be provided for the most common paths of
the process model.

Green Cancel Activity

Withdraw activity instances that are no longer relevant for the
execution of the process instance.

Context: In some scenarios, especially when containing several branches, not all
activities of a process model are relevant for the actual execution of a business
process. Depending on specific decision, only a subset of activities is actually
executed. However, when a new process instance is created from a process model,
all activities of the process model are instantiated as well. The instantiation of
activities that are not needed in a specific scenario, however, allocate resources
anyhow. At that point in time where it is clear that some activities are not
needed at all or not any more they can be canceled and resources may be
released. Note, it is also possible to cancel running activities when it turns out
that their result is not needed any more.

When using this pattern the following perspectives are affected:
Process Perspective: The control flow of the process model might be changed due

to shadow or cancel activities that are put in place.
Operation The execution of an activity can directly be influenced by

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 15 of 35

Perspective: the use of cancel activities. This may also have impact on
other activities or the way other activities are executed.

Resource
Perspective:

The execution of activities can be canceled in case the
result is no longer required for the process instance. The
allocated resources may be released and used for other
tasks.

Solution: In a first step those sections of a business process need to be identified
that (i) will eventually never be executed, or (ii) that will be executed due to
several varying conditions. With respect to (ii) it might be possible that the
expected results may not be required in each and every use case as information
may be retrieved from multiple sources. The identified sections need to be
restructured in a way that either explicit cancel activities are inserted or implicit
functions provided by the workflow engine are used. However, the designer has to
ensure that no information will be lost nor that activities are canceled by mistake
and the further, i.e. the correct, control flow cannot be assured.

Result: Activities that are affected by cancelation criteria may be disabled as
soon as it is assured that they are not needed any more. Even running activities
may be canceled in case the result of this activity is no longer important for
further processing. Latter one might occur when two independent information
sources are requested but only one answer is required. The cancelation of those
activities releases the allocated resources and makes them available for other
tasks.

Example: Consider an online travel agency that provides a hotel booking service.
Whenever a customer requests available hotels different hotel broker services are
invoked. To avoid long waiting times for customers the result is supposed to show
up in a maximum of 15 seconds. If a broker does not respond within this period of
time, the activity and the invocation of the broker service will be canceled. The
expected results of this service will not be considered in the result set. A similar
case exists if a customer cancels the request for information explicitly. In this
case the corresponding activity will be disabled and the allocated resources are
released.

Relations to other Patterns:
Green Control Flow: The insertion of cancel activities usually influences the

design of the control flow of a process.
Outsourcing: In order to use a dynamic infrastructure that is able to

flexibly claim and release resources external services like
Cloud environments might be a good choice.

Green External
Choice:

The cancelation of an activity may also be based on
external information.

Green Multiple
Instances Without
Synchronization:

In case there are only some of the requested results of
importance the results may be merged using the Green
Multiple Instances Without Synchronization Pattern.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 16 of 35

Green Cancel Case: This pattern extends the scope of the Green Cancel
Activity pattern and covers multiple activities that are
grouped together.

Green Explicit
Termination

Terminates Sub-Processes when there is nothing else to do
for them.

Green Lazy Load Information that is used by activities that might not be
executed are loaded not before the activity really needs it.

3.3			Application	Architecture	Patterns	
Application Architecture patterns basically describe solutions on how to design
applications in order to achieve certain business objectives. So far, these patterns
did not consider the environmental impact as a design criterion. Besides the
overview in Section 4.1 we have analyzed the following patterns in detail: Client
Session State, Server Session State, Data Transfer Object, Lazy Load, and
Gateway. For each of these patterns we present a corresponding variant that
focuses on the improvement of the environmental impact. For further details on
the original patterns see (Fowler 2003).

Green Client Session State

Optimize the number of server nodes by making them stateless.

Context: Operators of datacenters typically want to decrease the total number of
resources as the operation of additional resources leads to additional costs. Thus,
they try to implement a highly scalable infrastructure where resources can be
started and stopped dynamically depending on the current workload. To use such
kinds of clusters the application architecture running on that resources must
support corresponding mechanisms to decouple customer requests and specific
resources, i.e. avoid specific one-to-one relationships between a request and a
specific resource.

When using this pattern the following perspectives are affected:
Data Perspective: The data perspective describes how data is exchanged

between the client (which might be a business process) and
a resource (which might be a server) as well as which kind
of information is provided by which party.

Operation
Perspective:

This perspective describes which kind of activities or
additional services are executed by the business process.
This may change depending on the chosen application
architecture.

Resource
Perspective:

In this pattern the resource is set to be stateless, i.e. client
information is not stored at server side. If a resource fails
another resource takes the work on.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 17 of 35

Solution: The basic idea of this pattern is to create a pool of resources that can
be stopped or started dynamically and that is able to perform specific tasks
interchangeably. In order to use such a pool of resources the application using
those resources must support a so called stateless resource design. The client side
of the application must be designed in a way that all information that is
necessary to process the request, i.e. the session state, is available with the
request. To implement such a solution methods like URL parameters, hidden
fields, or cookies may be used. Further information is available, for example, at
(Oracle 2013).

Result: If the session state is provided completely by the client the resources do
not need any specific information on how to handle a request. Every resource that
provides the functionality can be used to process a request. Such stateless servers
can be scaled much more effective than stateful servers. Resources can be
switched on or off depending on the concrete workload. This may reduce the total
number of resources or makes those resources available for other tasks. However,
we have to keep in mind that transferring the session state all the time from the
client to the server will increase the total data transferred. The more data needs
to be transferred the more energy will be consumed for the transfer and, in some
cases, the performance may decrease.

Example: A typical example for session data stored in the client tier is online
shopping. Customer identification information as well as items that are put into
a shopping cart are usually stored in cookies at the customer’s device. Thus,
browsing of items in a catalog and resulting customer orders can be handled by
multiple computing nodes.

Relations to other Patterns:
Green Data
Transfer Object:

The Green Data Transfer Object may help to design a
suitable data transfer object which can be used to provide
the session state to the server.

Resource Change: When using stateless server resources the type of resource
may be changed due to the new requirements.

In-&Outsourcing: The client session state enables a loose coupling between
clients and servers. This architecture can be used to
provide the resources at different locations and to achieve
economies of scale in operating those resources.

Green Server
Session State:

If the amount of data that needs to be transferred to the
server exceeds a certain threshold it might be suitable to
store at least some information on the server side.

Green Server Session State

Hold session information on server side to reduce energy
consumption
in communication and transformation.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 18 of 35

Context: The energy consumption of server resources is one major aspect in
reducing the environmental impact of an organization. However, the client
infrastructure as well as the communication infrastructure is also an important
aspect. The main challenge here is to reduce the communication between a client
and the application without losing to much flexibility. Another issue is the use of
appropriate client devices, especially when using, for example, Cloud
applications. In those scenarios client devices are supposed to consume very low
energy, provide quick boot time, and are able to continue working from the point
of leaving. All necessary and resource intensive processing is done on server side.

When using this pattern the following perspectives are affected:
Data Perspective: The data perspective describes how data is exchanged

between the client (which might be a business process) and
a resource (which might be a server) as well as which kind
of information is provided by which party.

Operation
Perspective:

This perspective describes which kind of activities or
additional services are executed by the business process.
This may change depending on the chosen application
architecture.

Resource
Perspective:

All relevant session information is stored on server
resources. The application infrastructure must support this
architecture style by providing appropriate resources.

Organization
Perspective:

The use of this pattern affects the communication as well
as the data objects that are transferred between different
roles and organizational units.

Solution: A common approach to implement server session states is to provide
the session state as well as all relevant client data on the server side, e.g. in
memory or in a database. All data objects can be accessed from the server at any
time. For concrete use cases it must be evaluated whether the state has to be
persisted or not.

Result: If the complete session state is stored on a server, clients have to provide
less information. This has impact to the total power consumption of computing
resources in various ways: (1) the communication volume between client and
server can be decreased. (2) The number of resources on the client side may be
decreased if the server supports the persisting of the client state. In this scenario,
the context may be loaded from a server and be provided to the client. This may
also be interesting when using thin clients. There is no need for them to remain
on all time instead they can request their current state from the server at any
time. Thus, those devices may even be turned off completely. This enables to
switch resources on and off depending on the current workload. (3) The persisted
information is usually stored in a generic data format. Depending on the concrete
use case the data can be serialized into different other formats, without using
complex transformation activities.

Example: In a hospital a doctor or a nurse typically insert and retrieve patient
data at very low frequency. Between those interactions the idle time for those

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 19 of 35

devices may be very long. Moreover, the information must be available at
different devices that are, for example, in different sections of the hospital. When
storing the session information at server side, the information is accessible from
all devices. If there is some idle time, thin clients on the user side may even be
turned off.

Relations to other Patterns:
Green Client
Session State:

Depending on the use concrete scenario it might also be
suitable to store partial or complete client data on the
client side.

Resource Change: In some scenarios the used resources may be replaced by
resources that better support the storage and processing of
client information. The Resource Change pattern may help
to choose the appropriate resources that positively
influence the environmental impact.

Green Query Object,
Green Data Access
Component:

These patterns may support the efficient retrieving of data
it persisted on an external data store.

Green Stateful
Component:

This pattern may be used to introduce a component that is
able to manage the data that is necessary to perform
requests.

Green Data Transfer Object

Optimize system calls to reduce load and energy consumption.

Context: Each invoke of an application generates a certain load on a system and,
therefore, increases the total power consumption. A communication channel must
be established and data needs to be (de-) serialized. However, not only the
invocation of an application or system determines the power consumption but
also the amount of relevant data that needs to be provisioned. Consequently, a
common challenge is to make each invocation more efficient or at least reduce the
total number of invocations, respectively.

When using this pattern the following perspectives are affected:
Data Perspective: The data perspective will be affected as it describes how a

data object looks like and how the communication between
different systems is designed.

Operation
Perspective:

The operation perspective describes how external
operations are invoked. When changing the data objects or
even complete data sources the operation perspective needs
to be changed accordingly.

Solution: To reduce the communication overhead, as well as the number of
invocations, different information may be bundled into one single request.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 20 of 35

Information that is part of such a request may be used by single activities of a
business process or even by the complete process. For concrete implementations,
the requests to a system are encapsulated into a so called data transfer object
that is designed to appropriately cover all the information demand of an
application or process. The data transfer object should be designed in a way that
it contains all information that is most likely be used by the requestor. However,
it may also contain information that is not needed or information that is missing
and must be reloaded.

Result: The bundling of information reduces the total number of service calls,
although more information may be transferred per request. However, the
reduction of the number of requests makes the communication more efficient.
Only one communication Channel needs to be established and the payload needs
to be serialized only once. The bundling also allows servers or applications to
remain in stand-by for a longer time because the requests are less frequent. This
again reduces the total amount of power consumption.

Example: PostreSQL (PostgreSQL 2013) from version 9.2 implements methods
that reduce the number of calls to the database. This consequently reduces the
number of wakeups and therefore reduces the amount of time where no
productive work is performed.

Relations to other Patterns:
Green Client
Session State:

The state of an application may also be described as Green
Data Transfer Object.

Green Gateway: It might be suitable to integrate a green gateway that
allows to further bundle or cache requests in order to
reduce communication and management overhead.

Green Variant /
Green Control Flow:

Based on changes in the provisioning of information
adaptations of the control flow may be necessary. This
modification may also be represented as Green Variant.
Moreover, different information may be requested on client
side.

Green Query Object: The Green Data Transfer Object may also contain
optimized Green Query Objects that further improve the
provisioning of requested information.

Green Lazy Load This pattern might be suitable if not all information may
be relevant at initialization time. Data that is rarely used
will be reloaded on demand.

Green Lazy Load

Avoid upfront loading of possibly unnecessary information,
instead load data only when really needed.

Context: During its execution a business process usually consumes different data
from various sources. Especially in complex business processes not all data is

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 21 of 35

needed upfront. Depending on user inputs or different paths in the process model
certain information is only needed in a specific number of process instances.
Some information, for example, may only be used in one of hundred process
instances. The challenge is to identify and provide only that information that is
most likely used by all instances of the business process.

When using this pattern the following perspectives are affected:
Operation
Perspective:

The operation perspective describes which kind of activities
or additional services are executed within the business
process. This may be influenced depending on the
information which has to be provided at a specific time in
process execution.

Data Perspective: Data objects used at process instantiation time need to be
designed to cover not all but the most likely used
information. Other objects need to cover the remaining
data.

Control Flow
Perspective:

The control flow may be modified in order to cover the
reload of data that is not part of the initial data object.

Solution: In a first step the process needs to be analyzed in order to identify the
information that is most likely used by all process instances. Subsequently, the
requests for gathering the data need to be adapted. Initially, only data that is
relevant for all process instances will be loaded and provided to the process. All
other data elements will be tagged with a marker that indicates that the data is
not available yet but might be reloaded on demand. Note that the complete
structure of all information elements will be visible to the business process but
the real data is only referenced.

Result: The resulting processes and applications are designed in a way that
communication effort is reduced. This affects both communication overhead and
the processing of data that is used by the business process. Data elements that
are tagged with a marker are not loaded initially and reference the corresponding
endpoint where this information can be retrieved. The reduced communication
consequently reduces query and transport efforts and therefore is able to reduce
the total power consumption of a process and its corresponding applications.

Example: A common example is the customer web interface of an online sales
company. Users are able to view their completed orders as well as checking the
state of current and open orders. Usually, customers do not view all of their
previous orders but only the latest ones. Therefore, there is typically no need to
load all relevant order information from all previous orders but only the latest or
open ones. However, the user will be able to browse a list of all of his orders.
Whenever he wants to view an order the corresponding data will be reloaded.
This behavior reduces the amount of required resources or makes them available
for other tasks.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 22 of 35

Relations to other Patterns:
Green Data
Transfer Object:

The Data Transfer Object may be used to define the data
that will be provided at different points in time. It can be
used, for example, to bundle data requests from different
process instances.

Green Query Object: Using Green Query Objects may enhance the retrieving of
data at any point in time.

Green Gateway

Manage the access to external systems or resources in order to
reduce total number of access instances.

Context: In modern service-oriented architectures business process and
applications are typically composed out of a set of multiple services. In order to
invoke the functionality that is provided by such services, different interfaced
need to be implemented. Data needs to be prepared in order to align with those
interfaces, i.e. each time an external service will be invoked a collection of data as
well as their serialization is required.

When using this pattern the following perspectives are affected:
Operation
Perspective:

The operation perspective describes which kind of activities
or additional services are executed within the business
process. This may be influenced depending on the
information which has to be provided at a specific time in
process execution.

Resource
Perspective:

The managed execution of activity allows preventing
servers from changing their state too often due to the
controlled access instances. This characteristic may also
influence the type of resource that is used to handle
corresponding requests.

Solution: To manage the access to external process, applications, and services a
Green Gateway may be introduced. This component manages all requests to
specified resources, i.e. it encapsulates the original requests and invokes the
target resources based on different rules like time schedules, number of total
requests, etc. Basically, the gateway may cover two different aspects: (1) it is able
to encapsulate multiple or difficult to understand APIs of resources, and (2) the
requests may be managed based on business, technical, and environmental
objectives. A gateway may also introduce caching functionality that makes
multiple reloads of information needless.

Result: As processes and applications must be changed in a way that all requests
for particular resources are send to the gateway that acts as an intermediary.
Depending on the concrete scenario this gateway is able to manage all incoming
requests based on the demands of the process or the application. The bundling
and execution in a batch-like fashion is only one example. This behavior leads to

G

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 23 of 35

a decreased number of resource invocations and may therefore let the resources
remain in stand-by for longer time. As a side effect, the provided interfaces may
be much easier to understand and use.

Example: Consider a sales company that has a contract with a global logistics
company that ships their products. They pick up parcels three times a day. In
order to automate prepay functionalities the parcel information will be
transferred to the logistics company before the parcels are picked up. Using this
pattern an intermediary gateway may be able to collect all parcel information
and transfer this information at once right before picking them up. This would
reduce the number of communications as well as the number of resources that
must be provided for sending the parcel information.

Relations to other Patterns:
Green Data
Transfer Object:

The Data Transfer Object may be used to define the data
that will be provided at different points in time. It can be
used, for example, to bundle data requests from different
process instances.

Green Control Flow: If activities of a business process invoke Green Gateways
they may interact with their underlying resources in a
different way as before.

Outsourcing: Based on the decoupling introduced by the Green Gateway
resources may be outsourced in order to achieve economies
of scale and therefore reduce the total number of resources.

Green Batch
Processing
Component:

A Green Batch Processing Component may be part of a
Green Gateway.

Green Loose
Coupling:

The Green Loose Coupling pattern supports the
introduction of a broker component that is able to decouple
different application components.

3.4			Cloud	Computing	Patterns	
Cloud Computing Patterns basically describe solutions on how to design Cloud
applications and components in order to achieve certain business objectives. The
Cloud Computing patterns presented in (Fehling et al. 2013) consider all
deployment models, service models, and the corresponding management. So far,
these patterns did not consider the environmental impact as a design criterion.
Besides the overview in Section 4.1 we have analyzed the following patterns in
detail: Public Cloud, Loose Coupling, Batch Processing Component, Eventual
Consistency, and Shared Component. For each of these patterns we present a
corresponding variant that focuses on the improvement of the environmental
impact. Please note that some of the patterns are related to the Application
Architecture Patterns, however, focusing on the properties of Cloud Computing.
For further details on the original patterns see (Fehling et al. 2013).

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 24 of 35

Green Public Cloud

Use external cloud resources to improve resource efficiency and
reduce in-house power consumption.

Context: Organizations that run their own datacenters always have to deal with
the provisioning and operation of a suitable amount of resources. To avoid
bottlenecks and, therefore, loose customers they need to provide as much
resources as necessary to handle eventually occurring peak loads. However, the
resources are often not utilized on a very high level but need to be held available.
The challenge of providing and operating the best number of resources has been
took up by specialized Cloud providers. Those providers offer pools of resources
that are operated in a standardized manner, achieve economies of scale, and are
offered to customers based on their demand. Customers may also use public
Cloud offerings in a hybrid fashion. Hybrid Clouds combine the usage of a private
and a public Cloud, and community Clouds describe a Cloud environment that is
shared between different trusted parties.

When using this pattern the following perspectives are affected:
Data Perspective: When introducing external services the data objects that

are transferred between the different sites may be
redesigned or transformation components need to be
introduced. Moreover, the secure communication of data
needs to be ensured.

Organization
Perspective:

The usage of a Public Cloud introduces a new partner, i.e.
organizational unit, to business processes and their
applications. Especially cross-boundary communication
must be defined and implemented properly.

Resource
Perspective:

This perspective is affected as new resources are used for
performing the tasks of a business process.

Operation
Perspective:

The operation perspective describes which kind of
activities or additional services are executed within the
business process. The way of usage for new, external
resources may therefore change.

Solution: The first step towards the use public Cloud offerings is the
identification of application components and hardware resources that may be
suitable to run in a Cloud environment. This analysis step needs to cover both
functional as well as non-functional aspects. Components that are scalable, i.e.
components that can be distributed to multiple various nodes, are typically good
choices for running in Cloud environments. If they do not need a specific context,
resources that are hosting those components can be turned on and off
dynamically based on their current workload. Moreover, for migrating the
identified components suitable Cloud service models need to be identified. For
application components that, for example, use a common application server stack
may use either Infrastructure as a Service or Platform as a Service offerings.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 25 of 35

Result: Instead of hosting all required resource within a private datacenter
application components are hosted at external Cloud providers. The resources
that are hosting those components are accessed via network, provided in a self-
service manner, and are accounted in a pay per use fashion. The advantage of
such a solution is twofold: (i) a Cloud provider operates a pool of resources that
are used by different customers simultaneously. This leads to better utilization
and allows realizing economies of scale. (ii) Customers can use resources based on
their current demand. Using common standards enables the provisioning of new
resources within minutes. Moreover, the complete management, like installing
updates, is in responsibility of the provider. Consequently, not only the amount of
resources may be reduced but also capital and operational expenditures may be
reduced.

Example: There are already many different Cloud offerings available to
customers. One example is the usage of comprehensive Customer Relationship
Management (CRM) solutions that are provided by companies like Salesforce
(Salesforce 2013). Another example is the use of software development and test
environments in public Cloud environments. Infrastructure or platform services
enable the provisioning of complete development environments within minutes
instead of weeks or months. Moreover, those resources can be turned on and off
dynamically depending on the actual requirements. Thus, resources may be
allocated only for the time of specific projects.

Relations to other Patterns:
Resource Change: The resource change pattern provides more abstract

information on how to exchange resources that are used by
a business process.

Green Private
Cloud:

The Private Cloud pattern describes the use of Cloud
technologies within the own datacenter.

Green Explicit
Termination:

This pattern may be used to explicitly terminate resources
that are not needed any more. Especially in Cloud
environments, allocated resources may be released.

Green Client
Session State:

Using this pattern supports the decoupling of customer
requests and applications that perform the requests. This
enables better scalability functionalities.

Green Stateless
Component:

Using this pattern supports the decoupling of customer
requests and applications that perform the requests. This
enables better scalability functionalities.

Green Elastic
Infrastructure:

The Green Elastic Infrastructure pattern may be used to
design Public Cloud infrastructures that are able to scale
elastically.

Green Eventual
Consistency:

Designing and using an eventual consistent environment
further improves the communication and integration
efforts when using scalable and elastic resources.

Green Load
Balancer:

This pattern may be used to manage the current workload
of a resource and consequently switch resources on or off.

Outsourcing: This pattern describes the outsourcing of resources in

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 26 of 35

general.
Green Loose Coupling

Reduce the dependencies between individual components to use
varying resources for their runtime environment and execution.

Context: In order to use the full potential of Cloud environments the loose
coupling of application components is tried to be maximized. Such architectures
enable the exchange of the used resources and providers as well as the exchange
of application components. However, an upcoming challenge in such scenarios is
the integration of all of these components. Guidelines and patterns like the Green
Loose Coupling help stakeholders to design the components in such a way that
they can be used in those scenarios.

When using this pattern the following perspectives are affected:
Data Perspective: The use of loosely coupled components needs well defined

data objects that are used for communication between the
different components.

Resource
Perspective:

This perspective is affected as new resources may be used
for performing the tasks of a business process.

Operation
Perspective:

The operation perspective describes which kind of activities
or additional services are executed within the business
process. The way of usage for new, external resources may
change.

Solution: One solution to tackle this challenge is to introduce a broker
component that encapsulates the communication layer between the different
components. This component can be invoked from different platforms and is
aware about location, protocol and the corresponding format of the data. Using
such an architecture design enables a separation of concerns and makes
components standalone units that are able to interact with other components.

Result: The use of a broker enables and provides a high degree of decoupling of
different components of an application. This allows to dynamically selecting the
resources and their location. The flexible selection of resources also enables the
temporary use of certain resources based on the current workload, e.g. provided
by Cloud environments. The dynamic selection in combination with scalable
components further decreases the total amount of resources. On the other hand, a
new resource needs to be provided in order to host the broker component.
However, the environmental impact of this component is usually compensated by
the target-oriented use of all other components that communicate via the broker.

Example: A common example of loose coupling is a service oriented architecture
(SOA). Web Services, for example, are typically designed as self-contained
components. If multiple Web services are used to achieve a business objective
they usually communicate with a broker that may be implemented as a business
process. Web Services may even be stateless and therefore very flexible for use in
loosely coupled environments.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 27 of 35

Relations to other Patterns:
Resource Change &
Outsourcing:

The resource change and outsourcing patterns provide
more abstract information on how to exchange resources
that are used by a business process.

Green Public /
Private Cloud:

The Green Private Cloud and Green Public Cloud pattern
describes the general use of Cloud technologies within own
and external datacenters.

Green Batch
Processing:

The asynchronous access to loosely coupled components
can be further managed in order to increase power savings.

Green Client
Session State &
Green Server
Session State:

Those patterns specify where context information is stored.
The chosen location, i.e. on client or server side, influences
the way of communication between the different
components.

Green Stateless
Component, Green
Elasticity Manager,
Green Elastic Load
Balancer, Green
Elastic Queue,
Green Gateway:

These patterns may be used in order to specify and
improve the communication between several loosely
coupled components.

Green Data Access,
Green Query Object,
Green Data
Transfer Object &
Green Lazy Load:

Each use case has different needs with respect to data that
needs to be transferred. The patterns of this category may
help to design the required data objects as well as the time
of providing them to a business processes and the
application components.

Green Control Flow
& Green External
Choice

Due to the use of different components the way they
interact with a business process may change, too.

Green Variant Loosely coupled application components may be used to
provide a green variant of an existing process, without the
need of changing the original infrastructure or process.

Green Batch Processing Component

Delay and bundle the processing of requests based on internal or
external requirements and dependencies.

Context: To provide scalable and flexible applications that can be performed on
different resources the processing functionality is usually distributed between
different application components. These components are often invoked by
asynchronous communication facilities, perform a certain task and deliver a
corresponding result. The communication, therefore, is typically managed by a
broker that encapsulates the communication requirements of each node. The
challenge for reducing the energy consumption of the total system is to improve
the efficiency per request, i.e. invoke each associated component in a way that
minimal power will be consumed.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 28 of 35

When using this pattern the following perspectives are affected:
Resource
Perspective:

Depending on the actual workload of a component various
resources may be used for performing the workload. Thus,
the tasks that are performed by a business process may be
performed on various resources, respectively.

Operation
Perspective:

The operation perspective describes which kind of activities
or additional services are executed within the business
process. Due to the modification of the invocation of
external services the process may change as well.

Solution: The invocation of application components can be improved with
respect to different properties that belong to a request. One possible solution is to
introduce a broker component, similar to a Green Gateway, that executes
incoming requests based on a set of predefined rules, like resource availability,
costs, current power consumption, and time of day. Especially when executing
many small requests a bundling of requests may provide better utilization for
resources as they can be dimensioned based on the exact workload. Requests
from any of the components must be asynchronous and can be emitted at any
time. The broker component collects them and forwards them based on the
predefined rules. For example, based on the number of queued requests a proper
resource for efficiently executing them may be selected.

Result: After introducing a broker component the other components will send all
of their requests to the broker, i.e. they will no longer communicate directly with
the target resource. As the number of requests to be processed is now known in
advance, suitable resources may be selected for their execution. Depending on the
concrete scenario, the allocation of resources may be triggered each time a new
batch has to be executed. During times of idle those resources can be released or
put into stand-by. If Cloud resources are used, for example, they can be allocated
only for performing the defined set of requests.

Example: Consider a sales company that has a contract with a global logistics
company that ships their products. They pick up parcels three times a day. The
batch processing component is able to collect all parcel information and transfers
this information at once right before picking them up. This reduces both the
number of communications between the two parties as well as the utilization of
resources that are responsible to transfer the information.

Relations to other Patterns:
Resource Change: The Green Batch Processing Component may allocate

different resources on demand. The Resource Change
pattern provides abstract information on how to exchange
resources that are used by a business process.

Green Public Cloud
& Green Private
Cloud:

The Private Cloud and Public Cloud patterns describe the
use of Cloud technologies within the own and external
datacenters, respectively.

Green Elastic
Infrastructure:

The Green Elastic Infrastructure pattern may be used to
design infrastructures that are able to scale elastically.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 29 of 35

Green Elasticity
Manager:

The Green Elasticity Manager pattern may support
elasticity functionalities.

Green Elastic
Queue:

Elastic Queues may be used for storage of incoming
requests.

Green Loose
Coupling:

The Loose Coupling pattern supports the design of
asynchronous communication between different
components and may therefore be used to realize batch
processing.

Green Gateway: A Green Gateway may operate as a broker that further
optimizes the access to resources.

Green Eventual Consistency

Distribute data among replicas while reducing the
synchronization overhead to a minimum.

Context: Organizations need to persistently store all kind of relevant data to
prevent damage or loss of data. Due to reliability reasons data is often replicated
among different locations that are connected via some kind of network. In order
to keep the data up to date different synchronization mechanisms need to be
implemented. Each modification of data at one location needs to be synchronized
with all other locations. The replication of data leads to significant
communication overhead and increases the utilization of all storage nodes even
with only one single write operation. The challenge for reducing the
environmental impact is to minimize that synchronization overhead while
ensuring proper quality of services to customers.

When using this pattern the following perspectives are affected:
Process Perspective: If a process instance may deal with eventual consistent

data the control flow of the corresponding process model
may be changed to deal with this issue. For example,
further checks need to be integrated.

Data Perspective: The use of eventual consistent data may force
organizations to redesign their data objects as additional
information may be necessary. Processes must be aware of
the fact that data might not be the latest one.

Resource
Perspective:

The activities of a business process that deal with eventual
consistent data may use different resources for storing the
data. Unlike with strict consistency, the storage nodes can
be coupled much more loosely and the number of nodes can
be adapted according to the current demand.

Solution: Basically, the communication between different nodes used for data
replicas will be designed simple. Write operations will not be replicated
immediately but based on different aspects like time of day and resource
utilization. The overall synchronization overhead as well as communication and

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 30 of 35

processing efforts will be reduced because less read and write operations are
performed on every node simultaneously. The replication may, for example, take
place if the utilization of a node is below a certain threshold.

Result: The application of this pattern is able to reduce total overhead for
replicating data between different locations by reducing the concurrent read and
write operations. The effect of such an architecture is twofold: (1) in strict
consistency scenarios applications request data from every replica node in order
to ensure to process the latest data. When using eventual consistency, an
application requests data from fewer nodes knowing that data might not be the
latest data available. Consequently, the utilization of each of the nodes will be
reduced and nodes with less capacity may be used. (2) The network
communication between the different nodes will be reduced when data is not
replicated immediately. Thus, (1) and (2) lead to the optimization of both the
reduction of resources and their efficient usage.

Example: A commonly known example of eventual consistency is Facebook
(Facebook 2013). Users are using different resource zones where information is
not replicated instantly. However, this leads to the fact that information of users
is not available to all Facebook users at the same time. Another example is
Amazon SimpleDB (Amazon Web Services 2013). It allows customers to setup
eventual consistent storage clusters. Applications that read data from that
cluster request data from fewer nodes accepting that the read data might not be
the latest data. Moreover, it also supports conditional writes of data.

Relations to other Patterns:
Green Public Cloud
& Green Private
Cloud:

The Private Cloud and Public Cloud patterns describe the
use of Cloud technologies within the own and external
datacenters, respectively. The patterns provide solutions to
realize scalable resources.

Green Data Access
Component:

The use of a Green Data Access Component may act as a
multiplier as it manages the queries to databases.

Green Data
Transfer Object &
Green Query Object:

The use of those patterns may is able to enhance the
communication between the data replica nodes.

Green External
Choice:

If a process model does use eventual consistent data a
Green External Choice may be used to reflect this issue
within the business process. For example, if data might be
eventually consistent, a specific branch within the process
will be chosen.

All other Green
Cloud Patterns:

All other Cloud Patterns might be suitable as well as they
support elastic and scalable resources. This, however,
depends on the concrete use case.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 31 of 35

Green Shared Component

Share application components between multiple tenants
to improve resource efficiency.

Context: New technologies like Cloud computing enable a more efficient usage of
existing computing resources. Applications that cover specific business tasks are
often provided not only to a single customer but a group of customers that use the
application in a similar way. Such customers can be both internal and external
users of an application. From a resource point of view the customers, so called
tenants, share parts or a complete application stack including the underlying
hardware resources. The sharing of resources achieves better resource utilization
as well as economies of scale. However, the challenge is to define components
that can be accessed by multiple customers and are able to handle data from
those customers.

When using this pattern the following perspectives are affected:
Organization
Perspective:

The change of an application used by a business process
usually results in a change of the communication within
the organizational boundaries, e.g. new departments are
involved. If an application is provided by a third party a
new external partner role has to be introduced.

Operation
Perspective:

The operation perspective describes how the atomic
elements of a business process are used. If there is another
application used by one of the activities, a different
invocation method may be necessary.

Resource
Perspective:

When using a new, multi-tenant aware type of application
to perform the activities of a business process new types of
resources have to be used. Depending on the type of
application as well as the target customers, those resources
may be hosted internally in the own datacenter or
externally by third parties.

Solution: To provide shared components organizations have to create an
applications stack that minimizes the number of components that are provided to
a single tenant. Shared components can be achieved on different layers of an
application. Tenants can share resources on infrastructure level (especially in
virtualized environments), share Middleware environments, or even share
complete applications that are able to separate between the different tenants. An
important aspect, however, is to ensure privacy between the different tenants of a
system, i.e. data from one tenant cannot be manipulated by any other tenant.

Result: The distribution of customers to fewer physical resources enables a more
efficient utilization of those resources. Unlike applications that are hosted on
single physical resources and are used by only one tenant, a shared component is
able to scale depending on the current workload. As a result of applying this
patter the total number of resources may be reduced and the energy efficiency of
the remaining resources can be improved.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 32 of 35

Example: Commonly known examples for shared components are webmail
providers like Gmail (Google 2013). Their web client is hosted on a shared
application stack that is used by multiple different customers. Other examples
are Infrastructure-as-a-Service offerings. Various customers share infrastructure
and network components in order to consume computing resources.

Relations to other Patterns:
Green Public Cloud,
Green Private
Cloud, Green
Elastic Infra-
structure, Green
Elastic Platform,
Green Stateless
Component, Green
Stateful
Component, Green
Elasticity Manager,
Green Elastic
Queue, Green Loose
Coupling, Green
Gateway:

All of these patterns may support the development of a
flexible and scalable infrastructure that allows hosting
different, independent tenants on the different levels of an
application stack.

Green Client
Session State:

The Green Client Session State pattern supports the loose
coupling of the application as the client explicitly brings in
his own state.

Green Data
Transfer Object:

Due to the use of tenant identifiers on shared components
the data objects for requests and responses need to be
adapted accordingly. The Green Data Transfer Object
helps to create good data transfer objects.

Green Control Flow: In some cases the control flow of business processes needs
to be modified in order to realize authorizing technologies
that are required by the tenant-aware applications.

4.			Results	and	Discussion	
Our resulting set of patterns shows that utilizing systematic analysis methods
involving certain domain knowledge as well as existing patterns may lead to a
bunch of new patterns that are related to new domains and objectives. Like with
any other patterns, however, it is important to note that we cannot derive
completely generic solutions that can be used in each and every application
scenario. Depending on concrete requirements, like the degree of business
change, stakeholders need to traverse the pattern language and chose the
patterns that are appropriate for their scenario.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 33 of 35

Table 2 Green Business Process patterns and corresponding business process
perspectives.

P
ro

ce
ss

P

er
sp

ec
tiv

e

D
at

a
P

er
sp

ec
tiv

e

O
rg

a
ni

za
tio

n
P

er
sp

ec
tiv

e

R
es

ou
rc

e
P

er
sp

ec
tiv

e

O
pe

ra
tio

n
P

er
sp

ec
tiv

e

In
te

gr
at

io
n

P
er

sp
ec

tiv
e

Green Control Flow X X X X

Green Explicit Termination X X X

Green Multiple Instances With a Priori Runtime Knowledge X X X X

Green External Choice X X X X

Green Cancel Activity X X X X

Green Client Session State X X X X

Green Server Session State X X X X X

Green Data Transfer Object X X X

Green Lazy Load X X X X

Green Gateway X X X

Green Public Cloud X X X X X

Green Loose Coupling X X X X

Green Batch Processing Component X X X

Green Eventual Consistency X X X

Green Shared Component X X X X

To provide guidance for identifying patterns that can be applied to an
organization’s business processes we suggest using the introduced process
perspectives as a first indicator for the selection. Depending on which perspective
is able to be changed within an organization, different patterns may be selected.
An overview of these relations is shown in Table 2. Here, each “X” indicates that
a pattern is related to the corresponding process perspective. Moreover, to better
navigate through our extended pattern language, consisting of the patterns
presented in (Nowak et al. 2011) and in this work, we provide an overview of the
mutual relations between the different patterns in Table 3. This eases the
traversal of the pattern language, i.e. the navigation through the patterns, and
helps to find a set of suitable patterns for a concrete use case. Please note that
within the detailed pattern analysis and the corresponding documentation of the
patterns we have also described relations to patterns from the pre-selection
phase. Due to lack of space these relations are not part of Table 3. Again, each
“X” indicates that a pattern is related to the corresponding other pattern.

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 34 of 35

Table 3 Relations between the proposed patterns of multiple domains.

G
re

e
n

C
on

tr
ol

 F
lo

w

G
re

e
n

E
xp

lic
it

T
er

m
in

at
io

n

G
re

e
n

M
ul

tip
le

 In
st

an
ce

s

G
re

e
n

E
xt

er
na

l C
ho

ic
e

G
re

e
n

C
an

ce
l A

ct
iv

ity

G
re

e
n

C
lie

nt
 S

es
si

on
 S

ta
te

G
re

e
n

S
er

ve
r

S
e

ss
io

n
S

ta
te

G
re

e
n

D
at

a
T

ra
n

sf
er

 O
bj

ec
t

G
re

e
n

La
zy

 L
oa

d

G
re

e
n

G
a

te
w

ay

G
re

e
n

P
ub

lic
 C

lo
ud

G
re

e
n

Lo
os

e
C

o
up

lin
g

G
re

e
n

B
at

ch
 P

ro
ce

ss
in

g
C

om
po

ne
nt

G
re

e
n

E
ve

nt
ua

l C
on

si
st

en
cy

G
re

e
n

S
ha

re
d

C
om

po
ne

nt

G
re

e
n

C
om

pe
ns

at
io

n

G
re

e
n

V
ar

ia
nt

R
es

ou
rc

e
C

ha
n

g
e

G
re

e
n

F
ea

tu
re

C
om

m
on

 P
ro

ce
ss

 Im
pr

ov
em

en
t

P
ro

ce
ss

 A
ut

om
at

io
n

H
um

an
 P

ro
ce

ss
 P

er
fo

rm
an

ce

In
so

ur
ci

ng

O
ut

so
ur

ci
ng

Green Control Flow

Green Explicit Termination

Green Multiple Instances X X

Green External Choice X

Green Cancel Activity X X X X

Green Client Session State

Green Server Session State X

Green Data Transfer Object X X

Green Lazy Load X X X X X

Green Gateway X X X

Green Public Cloud X X

Green Loose Coupling X X X X X X X X

Green Batch Processing Component X X X

Green Eventual Consistency X X X X

Green Shared Component X X X X X X

Green Compensation

Green Variant X X X X X

Resource Change X X X X X X X

Green Feature X X X X

Common Process Improvement X X X X

Process Automation X

Human Process Performance X X X

Insourcing X X X

Outsourcing X X X X X X X X X X X X X

5.			Conclusion	and	Future	Work	
In order to advance the acceptance and usage of green business process
management, suitable solutions and guidelines must be available. The
introduction of explicit green business process patterns in our previous work
(Nowak et al. 2011) was a suitable starting point. Unfortunately, only a few of
today’s optimization projects do consider such explicit solutions. However, they
do apply a lot of solutions that provide implicit opportunities to improve the
environmental impact of business process, applications, and infrastructures.
Consequently, we developed a method that guides stakeholders through the
process of identifying suitable solutions, i.e. patterns, which properly fit to their
domain of interest. Moreover, we used that method to identify a set of patterns
from the domains of Workflow Management, Application Architectures, and

Report 2013/05 Institute of Architecture of Application Systems (IAAS)

 Page 35 of 35

Cloud Computing Architectures that are applicable for the improvement of the
environmental impact of organizations and their business processes.
In our future work we want to use the proposed method to identify some more
key characteristics that help to identify more patterns from the introduced as
well as new domains. Based on the identified patterns we want to extend our
pattern language for green business processes. Moreover, we want to improve the
decision support for stakeholders by introducing reasonable dependencies
between patterns. This allows correlating the structure, use cases, and
characteristics that are common for a specific type of pattern.

REFERENCES	
Nowak, A., Leymann, F., Schleicher, D., Schumm, D. and Wagner, S. 2011. Green Business
Process Patterns. In Proc. of PLoP 2011. ACM.

Jablonski, S. and Bussler, C. 1996. Workflow Management: Modeling Concepts, Architecture and
Implementation. Cengage Learning EMEA.

Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B. and Barros, A.P. 2003. Workflow
Patterns. Distributed and Parallel Databases, 14(3), 5--51.

Fowler, M. 2003. Patterns of Enterprise Application Architecture. Addison-Wesley.

Fehling, C., Leymann, F., Retter, R., Schupeck, W. and Arbitter P. 2013. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications. Springer, Berlin-
Heidelberg.

Hanmer, R. 2012. Pattern Mining Patterns. In Proc. of PLoP 2012. ACM.

Alexander, C., Ishikawa, S. and Silverstein, M. 1977. A Pattern Language: Towns, Buildings,
Construction. Oxford University Press, USA.

Gamma, E., Helm, R., Ralph E.J. and Vlissides, J. 2000. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Deutsche Post AG 2013. Green Logistics.
http://www.dhl.com/en/logistics/freight_transportation/go_green.html.

Oracle 2013. Session state in the client tier. http://www.oracle.com/technetwork/java/session-
state-140543.html.

PostgreSQL 2013. PostgreSQL 9.2 release news. http://www.postgresql.org/about/news/1415/.

Salesforce 2013. Online CRM System. http://www.salesforce.com/.

Facebook 2013. http://www.facebook.com/.

Amazon Web Services 2013. Amazon SimpleDB. http://aws.amazon.com/simpledb/.

Google 2013. Gmail. http://mail.google.com.

