

Stuttgart Research Centre for Simulation Technology (SRC SimTech)

SimTech – Cluster of Excellence
Pfaffenwaldring 7a
70569 Stuttgart
publications@simtech.uni-stuttgart.de
www.simtech.uni-stuttgart.de

M. Sonntag1 D. Karastoyanova1

Ad hoc Iteration and Re-execution of Activities in Workflows

Stuttgart, July 2012

1 Institute of Architecture of Application Systems (IAAS)
University of Stuttgart,
Universitaetsstrasse 38
70569 Stuttgart, Germany
{sonntag, karastoyanova}@iaas.uni-stuttgart.de
http://www.iaas.uni-stuttgart.de

Abstract The repeated execution of workflow logic is usually modeled with loop constructs in the
workflow model. But there are cases where it is not known at design time that a subset of activities has to
be rerun during workflow execution. For instance in e-Science, scientists might have to spontaneously
repeat a part of an experiment modeled and executed as workflow in order to gain meaningful results. In
general, a manually triggered ad hoc rerun enables users reacting to unforeseen problems and thus
improves workflow robustness. It allows natural scientists steering the convergence of scientific results,
business analysts controlling their analyses results, and it facilitates an explorative workflow development
as required in scientific workflows. In this paper, two operations are formalized for a manually enforced
repeated enactment of activities, the iteration and the re-execution. The focus thereby lies on an arbitrary,
user-selected activity as a starting point of the rerun. Important topics discussed in this context are
handling of data, rerun of activities in activity sequences as well as in parallel and alternative branches,
implications on the communication with partners/services and the application of the concept to workflow
languages with hierarchically nested activities. Since the operations are defined on a meta-model level,
they can be implemented for different workflow languages and engines.

Keywords Workflow ad hoc adaptation; iteration; re-execution; service composition.

Reference Sonntag, M. and Karastoyanova, D., “Ad hoc Iteration and Re-execution of Activities in
Workflows.” International Journal on Advances in Software, ISSN 1942-2628, vol. 5, no. 1 & 2, 2012, pp.
91–109

© IARIA
The original publication is available at: http://www.iariajournals.org/software/

Ad hoc Iteration and Re-execution of Activities in Workflows

Mirko Sonntag, Dimka Karastoyanova
Institute of Architecture of Application Systems
University of Stuttgart, Universitaetsstrasse 38

70569 Stuttgart, Germany
sonntag@iaas.uni-stuttgart.de, karastoyanova@iaas.uni-stuttgart.de

Abstract—The repeated execution of workflow logic is usually
modeled with loop constructs in the workflow model. But there
are cases where it is not known at design time that a subset of
activities has to be rerun during workflow execution. For
instance in e-Science, scientists might have to spontaneously
repeat a part of an experiment modeled and executed as
workflow in order to gain meaningful results. In general, a
manually triggered ad hoc rerun enables users reacting to
unforeseen problems and thus improves workflow robustness.
It allows natural scientists steering the convergence of scientific
results, business analysts controlling their analyses results, and
it facilitates an explorative workflow development as required
in scientific workflows. In this paper, two operations are
formalized for a manually enforced repeated enactment of
activities, the iteration and the re-execution. The focus thereby
lies on an arbitrary, user-selected activity as a starting point of
the rerun. Important topics discussed in this context are
handling of data, rerun of activities in activity sequences as
well as in parallel and alternative branches, implications on the
communication with partners/services and the application of
the concept to workflow languages with hierarchically nested
activities. Since the operations are defined on a meta-model
level, they can be implemented for different workflow
languages and engines.

Keywords-workflow ad hoc adaptation; iteration; re-
execution; service composition

I. INTRODUCTION

Imperative workflow languages are used to describe all
possible paths through a process. On the one hand, this
ensures the exact execution of the modeled behavior without
deviations. On the other hand, it is difficult, if not
impossible, to react to unforeseeable and/or un-modeled
situations that might happen during workflow execution,
e.g., exceptions, changes in regulations in business
processes, etc. This is the reason why flexibility features of
workflows were identified as essential for the success of the
technology in real world scenarios [2, 3, 4]. In [5], four
possible modifications of running workflows are described
as advanced functions of workflow systems: the deletion of
steps, the insertion of intermediary steps, the inquiry of
additional information, the iteration of steps.

This paper focusses on the iteration of steps. Usually,
iterations are explicitly modeled with loop constructs.
However, not all eventualities can be accounted for in a
process model prior to runtime. Imagine a process with an

activity to invoke a service. At runtime, the service may
become unavailable. The activity and hence the process will
fail, leading to a loss of time and data, if the underlying
service middleware cannot tackle the problem with failing
services. An ad hoc operation to rerun the activity (maybe
with modified input parameters) could prevent this situation.

Figure 1. Example for the flexible development of a scientific workflow

(borrowed from [6])

The repetition of workflow logic is not only meaningful
for handling faults. In the area of scientific workflows, the
result of scientific experiments or simulations is not always
known a priori [6, 7, 8, 9]. Scientists may need to take
adaptive actions during workflow execution. In this context,
rerunning activities is basically useful to enforce the
convergence of results, e.g., redo the generation of a Finite
Element Method (FEM) grid to refine a certain area in the
grid, repeat the visualization of results to obtain an image
with focus on another aspect of a simulated object, enforce
the execution of an additional simulation time step. A
simplified example for an explorative development of a
scientific workflow is given in Figure 1 (the example is
borrowed from [6]). In this scenario, a scientist wants to
perform a search for a DNA sequence in a particular genome
using a Blat Web service. He models a workflow with three

tasks and puts them in the order presented in (Figure 1a):
“Execute MobyBlat” invokes the scientific Web service;
“Create User” creates the input for MobyBlat containing a
specific database to search in and providing user credentials;
“Create BlatJob” configures the search operation and
contains the DNA sequence to search for in the selected
genome. The scientist runs this workflow (Figure 1a). He
takes a look at the result of the MobyBlat service and
discovers that the result format is a MOBY-S XML object.
The result object contains a URL to the final result, the Blat
report. In order to download the report he adapts the running
workflow by appending two additional tasks: “Extract URL”
gets the URL to the Blat report out of the MOBY-S XML
object; “Run Perl Script” starts a Perl script that downloads
the report (Figure 1b). The scientist inspects the downloaded
report and recognizes that it has an inappropriate format.
Hence, he reruns the workflow from the “Create BlatJob”
task on (Figure 1c). In this second execution, he configures
the BlatJob so that the Blat Web service delivers the
expected format (Figure 1d). With this the scientist finishes
the development of this scientific workflow in an iterative
manner. The ad hoc adaptation of the workflow and the ad
hoc rerun operation prevent a loss of data, time and money
compared to a restart of the complete workflow and hence
the creation of a new workflow instance. This is especially
the case for long-running (scientific) workflows. In the
example, the scientist does not have to provide the input for
the “Create User” task again. There are other scenarios
where the visualization of scientific results is repeated
several times with different parameters without a need to
rerun the complete long-running scientific simulation.

A significant number of approaches exist for enabling the
repetition of activities in workflows. Existing approaches use
modeling constructs (e.g., loops, BPEL retry scopes [10]),
workflow configurations (e.g., Oracle BPM [11]), or an
automatic rerun of faulted activities (e.g., Pegasus [12]) to
realize the repeated execution of workflow parts. An
approach for the ad hoc repetition of workflow logic with an
arbitrary starting point that was user-selected at runtime is
currently missing in industrial workflow engines and
insufficiently addressed in research. Such functionality is
useful in both business and scientific workflows. In business
workflows it can help to address faulty situations, especially
those where a rerun of a single faulted activity (usually a
service invocation) is insufficient, or changes in the control
logic needed to address new requirements. In scientific
workflows it is one missing puzzle piece to enable
explorative workflow development [7, 8] and to control and
steer the convergence of results.

This paper therefore focusses on enabling the rerun of
activities in workflows from arbitrary points in the workflow
model. Two operations on workflow instances are
formalized to enforce the repetition of workflow logic: the
iteration works like a loop that reruns a number of activities;
the re-execution undoes work completed by a set of activities
with the help of compensation techniques prior to the
repetition of the same activities. The operations are defined
on the level of the workflow meta-model. Thus, the
operations can be implemented in different workflow

languages and engines. Problems such as data handling
issues, the communication with partners, or how the concept
can be applied in workflow languages with block structures
are identified and discussed. This paper is a logical
continuation of our work presented in [1]. Note that the
terms “workflow” and “process” are used interchangeably.

The rest of the paper is organized as follows. Section II
shows the workflow meta-model used in this work. Section
III describes the iterate and re-execute operations. Section
IV addresses data handling issues and Section V applies the
approach in more complex workflow graphs including
parallel and alternative branches. Section VI discusses
implications of the approach on message-receiving and
message-sending activities, on reruns within loops, and on
reruns in workflow languages with block structures. Section
VII shows how users interact with a workflow system that
implements the manually enforced repetition of workflow
logic. Section VIII is devoted to the prototypical
implementation of the concepts based on BPEL. Section IX
presents work related to the research topic of this paper.
Finally, Section X concludes the paper.

II. META-MODEL

The workflow meta-model used in this paper is based on
the one provided in [5]. It is adapted where appropriate in
order to accommodate the aspects needed to describe the
repeated execution of workflow logic. A process model is
considered a directed, acyclic graph (Figure 2). The nodes
are tasks to be performed (i.e., activities). The edges are
control connectors (or links) and prescribe the execution
order of activities. Data dependencies are represented by
variables that are read and written by activities. In the
description of the meta-model (S) is used as the power set
of a given set S.

b

number
Activity Variable

Data
connector

Control
connector c

a

Figure 2. Example for a process model

A. Modeling

A workflow model can be expressed with the help of sets
for the different workflow elements defined in the following.

Definition “Variables, V”. The set of variables defines all
variables of a process model:

 V Í M ´ S (1)

M is the set of names and S denotes the set of data
structures. Each v Î V has assigned a finite set of possible
values, its domain DOM(v) [5].

Definition “Activities, A”. Activities are functions that
perform tasks. The set of all activities of a process model is

 A Í M ´ C. (2)

C is the set of all conditions in a process model and is
used here as join condition for an activity. If j Î C evaluates

to true at runtime, the activity is instantiated and scheduled
(i.e. the navigator is going to execute the activity). Variables
can be assigned to activities via an input variable map

 i: A ↦ (V) (3)

and an output variable map

 o: A ↦ (V). (4)

Input variables may provide data to activities and
activities may write data into output variables. Furthermore,
compensating activities that undo the effects of an activity
can be assigned by a compensate activity map

 c: A ↦ A

This map reflects the concept that activities can be
considered as pairs consisting of an activity and its
compensating activity. The idea is geared towards the
approach of sagas [13]: The workflow can thereby be
considered as a long-lived transaction implemented as saga,
i.e. as non-atomic transaction that consists of a sequence of
atomic sub-transactions T1, …, Tn; an activity a Î A with a
compensating activity is like an atomic sub-transaction Tj in
a saga, and the compensating activity c(a) can be compared
to a compensating transaction Cj.

Definition “Links, L”. The set that denotes all control
connectors/links in a process model is

 L Í A ´ A ´ C. (6)

Each link connects a source with a target activity. Its
transition condition t Î C determines at runtime if the link is
followed. Two activities can be connected with at most one
link (i.e., links are unique).

Definition “Process Model, G”. A process model is a
directed acyclic graph denoted by a tuple

 G = (m, V, A, L) (7)

with a name m Î M.

B. Execution And Navigation

For the execution of a process model, a new process
instance of that model is created, activities are scheduled and
performed, links are evaluated, and variables are read and
written. These tasks (i.e., the navigation) are conducted
according to certain rules. The component of a workflow

system that supervises workflow execution and that
implements these rules is called the navigator. The notion of
time in the meta-model is reflected with ascending natural
numbers. Each process instance possesses its own timeline.
At time 0 Î Գ a process is instantiated. Each navigation step
increases the time by 1. In the following, the navigation rules
that are most important for this work are presented.

If an activity is executed, an activity instance is created
with a new unique id. If the same activity is executed again
(e.g., because it belongs to a loop), another activity instance
is created with another id. The same holds for links and link
instances. A new id can be generated with the function
newId() that delivers an element of the set of ids, ID.

Process, activity and link instances are considered sets of
tuples. This allows navigating through a process by using set
operations. Navigation steps are conducted by creating new
tuples and adding them to sets (instantiation of an activity/a
link) or by deleting tuples from sets and adding modified
tuples (to change the state of existing activity/link instances).

Definition “Variable Instances, VI”. Variable instances
provide a concrete value c for a variable v (i.e., an element of
its domain) at a point in time t. The finite set of variable
instances is denoted as

 VI = {(v, c, t) | v Î V, c Î DOM(v), t Î Գ}. (8)

The set of all possible variable instances is VI
all.

Definition “Activity Instances, AI”. The set of activity
instances is denoted as

 AI = {(id, a, s, t) | id Î ID, a Î A, s Î S, t Î Գ}. (9)

At a point in time t an activity instance a Î AI has an

execution state s Î S = {S, E, C, F, T, COMP, D}. The meaning
of the states is as follows:

 S, scheduled: The activity is in the execution queue of
the navigator but not yet running. The navigator is
going to execute the activity in future.

 E, executing: The activity is running.
 C, completed: The activity was successfully executed.
 F, faulted: A fault happened during activity execution.
 T, terminated: Abortion of a scheduled or executing

activity by the user.
 COMP, compensated: The compensation activity

c(model(a)) was executed successfully for a completed
activity.

 D, dead: The activity is located in a dead path, i.e., a
path with links evaluated to false. It was neither
scheduled nor executed.

The function model(a) for an activity instance a = (id, a,

s, t) Î AI delivers its activity model a. Note that there is at
most one instance of an activity in AI. That way AI exactly

reflects the process instance state in the current iteration.
There is no influence by activity states from former
iterations. While this condition is inherent for workflows
without loops, it must be explicitly ensured by the navigator
component of the workflow engine for more complex
workflow executions including loops or manual ad hoc
reruns of activities (in the focus of this work).

In the following, three sets are defined that help to
capture the state of a process instance and that are used to
navigate through a process model graph. These sets extend
the meta-model described in [5].

Definition “Active Activities, AA”. The finite set of active
activities AA contains all activity instances that are scheduled
or currently being executed:

 AA Í AI, "a Î AA: state(a) Î {S, E}. (10)

The function state(a) for an activity instance a = (id, a,
s, t) Î AI returns its current state s Î S.

Definition “Finished Activities, AF”. The finite set of
finished activities AF contains all activity instances that are
completed, faulted, terminated, or dead:

 AF Í AI, "a Î AF: state(a) Î {C, F, T, D}. (11)

This set is needed to assure a preconditions for the
repetition of activities and for the compensation of already
completed work. Note that compensated activities are not
part of AF because their effects are undone.

Definition “Evaluated Links, LE”. The finite set of
evaluated links LE contains link instances whose transition
condition is already interpreted. Link instances refer to the
instantiated link l, have a truth value c for the evaluated
transition condition and an execution time t:

 LE = {(l, c, t) | l Î L, c Î {true, false}, t Î Գ}. (12)

Note that each link has at most one link instance in LE for
one process instance. If a link is evaluated repeatedly (e.g.,
due to a loop or a manual ad hoc rerun), the old link instance
must be removed from LE. This is ensured by the navigator
component of the workflow engine in order to prevent an
interference of link instances of different workflow
iterations. Note that the set of evaluated links is usually not
part of the context of a workflow instance in typical
workflow engines (cf. [5, 14, 15]). The link state (i.e., the
truth value c) is only important to evaluate the join condition
of the link’s target activity and can be thrown away
afterwards. In this work, the context of process instances is
extended by storing the truth value for all evaluated links
because it is needed for a correct join behavior if join
activities are rerun. The set LE is very similar to the markings
of control connectors known from ADEPT [3, 16].

Definition “Wavefront, W”. The set of all active activities
and evaluated links, for which the target activity is not yet
scheduled, is called the process instance’s wavefront

 W = AA ∪ LA (13)

with LA Í LE, "l Î LA: ∄a Î AA ∪ AF:

target(model(l)) = model(a). The function model(l) for a
link instance l = (l, c, t) Î LE delivers its link model l. The

function target(l) for a link l = (a, b, c) Î L returns its
target activity b.

Definition “Process Instance, pg”. An instance for a process
model g is now defined as a tuple

 pg = (VI, AA, AF, LE). (14)

TABLE I. THE NAVIGATION EXAMPLE SHOWS HOW THE WORKFLOW ENGINE EXECUTES A WORKFLOW INSTANCE BY SET OPERATIONS.

Time VI AA AF LE
1 {(number, 100, 1)} {} {}
2 {(number, 100, 1)} {(382, a, S, 2)} {} {}
3 {(number, 100, 1)} {(382, a, E, 3)} {} {}
4 {(number, 100, 1) , (number, 101, 4)} {(382, a, E, 3) {} {}
5 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {}
6 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6)}
7 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
8 {(number, 100, 1) , (number, 101, 4)} {(383, b, S, 8)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
9 {(number, 100, 1) , (number, 101, 4)} {(383, b, E, 9)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)}
10 … … … …

The set of all process instances is denoted as Pall. As

navigation example consider the workflow model in Figure 2
and a corresponding workflow instance in Table 1. Say the
workflow is instantiated and the variable number Î V is

initialized with 100 (time step 1). Then, activity a Î A is
scheduled (2) and executed (3). Suppose activity a models

the invocation of a program that increases a given number by
1. The variable “number” is used as input value for this
operation and is hence updated (4), i.e., the tuple
representing the variable instance is substituted. Activity a
completes and its corresponding instance tuple is deleted
from AA and a new tuple containing the new activity instance
state with increased time step is added to AF (5). Now the

navigator evaluates the transition condition of the links a-b
and a-c; a-b’s condition evaluates to true (6), a-c’s to
false (7). As a consequence, the target activity of a-b is
scheduled and executed (8 and 9). Note that even though the
navigator manipulates the tuples, all these actions are
recorded in the audit trail [5].

III. ITERATION AND RE-EXECUTION

Based on the meta-model described above the repeated
execution of workflow parts is described in this section. As
already proposed in [10], two repetition operations are
thereby distinguished. The first operation, iteration, reruns
workflow parts without taking corrective actions or undoing
already completed work. The second operation, re-execution,
resets the workflow context and execution environment with
compensation techniques prior to the rerun (e.g., de-
allocating reserved computing resources, undoing completed
work).

a

b

c

e f g

i j k

d

h

l

Wavefront

m

Completed activity

Evaluated link

Executing activity

Unscheduled activity

Evaluated link
in the wavefront
(unscheduled
target activity)

Inactive link

Start activity

Iteration
body

Scheduled activity

T

T T

T

T

T T

T T

T

Repeat
from here

Terminated activity

Compensated activity

Dead activity

Figure 3. Example of a process instance

Before going into the details of the iteration of workflow
parts several important terms are introduced (see Figure 3).
The point from where a workflow part is executed repeatedly
is denoted as the start activity (activity c in the figure). The
start activity is chosen manually by the user/scientist at
workflow runtime. The workflow logic from the start activity
to those active activities and active links that are reachable
from the start activity are called iteration body (activities c,
e, f, g, i, j, the links in between and link g-k). The iteration
body is the logic that is executed repeatedly. Note that
activities/links reachable from the iteration body but not in

the iteration body are executed normally when the control
flow reaches them (e.g., activities k and l).

For the iteration/re-execution of logic it is important to
avoid race conditions, i.e., situations where two or more
distinct executions of one and the same path are running in
parallel. These situations can occur in cyclic workflow
graphs or can be introduced by the manual rerun of activities
this work deals with. For example, if the repetition is started
from activity c in Figure 3, a race condition emerges because
activities i and j on the same path are still running: activity l
could be started if i and j complete while a competing run is
started at c. There are two ways to avoid race conditions in
this scenario. Firstly, the workflow system can wait until the
running activities in the iteration body are finished without
scheduling any successor activities (here: l). The rerun is
triggered afterwards. Secondly, running activities in the
iteration body can be terminated and the rerun can start
immediately. A workflow system should provide both
options to the users. In some cases it is meaningful to
complete running work prior to the rerun (e.g., to reach a
consistent system state), in other cases an abortion is a better
choice (e.g., because the result of running work is
unimportant or the activities being executed are long-
running). This has to be decided on a per-case-basis by the
user. In the rest of the paper the focus lies on the option
“termination” since it is more complex and requires one step
more than the option “wait for completion”. However, “wait
for completion” can be derived from the descriptions by
omitting the explicit termination of activities in the
examples.

Definition “Activities in Iteration Body”. A function is
needed that finds all activity instances in the iteration body
of an activity in a given process instance. The function is
useful for terminating active activities in the iteration body
(or for waiting for their completion) to avoid race conditions
and for resetting finished activities to avoid interference of
activity execution states in different activity runs:

 activitiesInIterationBody: A ´ Pall ↦ (AI) (15)

Let a Î A be an activity in process model g and pg Î Pall

an instance of g. Then activitiesInIterationBody(a,
pg) = {a1, …, ak}, a1, …, ak Î AI "i Î {1, …, k}:

model(ai) is reachable from activity a. An algorithm for the
“activities in iteration body” function can be implemented by
walking through the workflow graph beginning with activity
a until the wavefront or an already visited activity is reached.
The activity instance for each considered activity is stored.
Since each activity is visited at most once, the algorithm is in
O(n), with n as the number of activities in the workflow
model.

Race conditions can also occur if evaluated links in the
iteration body remain in the process instance. In Figure 3, a
race condition could appear as follows. If activity h
completes and the link h-k is evaluated, the join condition of
activity k could become true. Activity k would then be
started although a competing execution of the same path

arises due to the repetition of activity c. That is why such
links have to be found and reset, i.e., they are deleted from
the set of evaluated links LE.

Definition “Links in Iteration Body”. A function is needed
that finds all evaluated links in the iteration body in a given
activity and process instance:

 linksInIterationBody: A ´ Pall ↦ (LE) (16)

Let a Î A be an activity of process model g and pg Î Pall

an instance of g. Then linksInIterationBody(a, pg) =
{l1, …, lk}, l1, …, lk Î LE "i Î {1, …, k}: model(li) is
reachable from activity a. An algorithm for the “links in
iteration body” function can be implemented by traversing
the workflow graph starting from activity a. Each path has to
be followed only until the wavefront or an already visited
activity is reached. Since each link is visited at most once,
the complexity of such an algorithm is in O(n), where n is
the number of activities in the workflow model.

A. Iteration

Parts of a workflow may be repeated without the need to
undo any formerly completed work. A scientist may want to
enforce the convergence of experiment results and therefore
repeats some steps of a scientific workflow.

Definition “Iterate Operation”. The iteration is a function
that repeats logic of a process model for a given process
instance. A specified activity is the starting point of the
operation. The input data elements for the iteration are either
the current variable values or are loaded from a specified
variable snapshot that belongs to the start activity.

 : A ´ Pall ↦ Pall (17)

Let a Î A be the start activity of the iteration and

p_ing, p_outg Î Pall two process instances. Here, p_ing is the

input for the operation and p_outg is the resulting instance
with changed state that is ready to start with the iteration.
The pre-condition is that only already instantiated but no
dead activities can be used as start activity:

 $n Î AA ∪ AF: state(n) ∉ {D} ∧ model(n) = a. (18)

This prevents (1) using the operation on dead paths and
(2) jumping into the future of a process instance, which are
both not a repetition of completed workflow logic.

Then (a, p_ing) = p_outg, p_ing = (VI
in, A

A
in, A

F
in, L

E
in)

and p_outg = (VI
out, A

A
out, A

F
out, L

E
out) :

1. VI
out = VI

in
2. AA

out = AA
in \ activitiesInIterationBody(a, p_ing) ∪

{(newId(), a, S, t)}, t is a new and youngest time step
3. AF

out = AF
in \ activitiesInIterationBody(a, p_ing)

4. LE
out = LE

in \ linksInIterationBody(a, p_ing)

The variables remain unchanged (1.). This reflects the
case where the current variable values are taken as input for
the iteration. All active successor activities from a are
terminated, i.e., deleted from the set of running activities AA
(2.). All finished activities in the iteration body are reset, i.e.,
removed from the set of finished activities AF (3.). All
evaluated links in the iteration body are reset, i.e., their
evaluation result is deleted from the set of evaluated links LE
(4.). The start activity is scheduled (added to the set of active
activities with status scheduled, S) so that the workflow logic
is repeated beginning with the start activity (2.). The join
condition of the start activity is not evaluated again.

In the second case of the operation, a variable snapshot
is loaded prior to the iteration. The loaded variable values are
taken as input for the iteration:

1. VI
out = VI

in ∪ loadSnapshot(b, p_ing, e, V’)
Here, b Î A is the activity to load the snapshot for (the

start activity or a predecessor thereof), e Î Գ is the execution
number of b needed to select the correct snapshot instance,
V’ Í V is a subset of variables to be loaded from the
snapshot. The complete definition of the function can be
found in Section IV in (21). Shapshots are stored during
process execution before each activity that modifies
variables. A snapshot is uniquely addressed by its
corresponding activity b and an execution number e. The
latter is needed because there can be several snapshot
instances for an activity—one for each activity execution.
The subset of variables V’ can be specified by the user to
select particular variables that should be loaded from a
snapshot. That means it is possible to load only a part of a
snapshot. This is especially important for iterations in
parallel paths. Variables that are not loaded from the
snapshot have the same value as in the original process
instance p_ing. For more details about data handling see
Section IV.

a b c d fe
T T T Ta)

b)

Iterate

a b c d fe
T

c) a b c d fe
T

terminate & reset

New wavefront

Wavefront

Terminated activity

Figure 4. Iteration in a sequence of activities. The user requests the

iteration of activities (a). The iteration body is reset and active activities are
terminated (b). Finally, the start activity of the iteration is scheduled (c).

As an example for the ad hoc iteration of workflow logic
consider Figure 4. There is a sequence of activities. Activity
e is currently being executed. The user wants to iterate the
workflow with activity b as start activity (Figure 4a). The
path from b to the wavefront is traversed, visited links are
reset (b-c, c-d and d-e in the example), and scheduled or

running activities are terminated (activity e), as shown in
Figure 4b. Finally, a data snapshot is loaded (if requested by
the user) and the start activity (b) is scheduled (Figure 4c).

B. Re-execution

It is also needed to repeat parts of a workflow as if they
were executed for the first time. Completed work in the
iteration body has to be reversed/compensated prior to the
repetition. A scientist may want to retry a part of an
experiment because something went wrong. But the
execution environment has to be reset first (e.g. stateful
services have to be set to their initial state, computing
resources have to be released).

Algorithm “Compensate Iteration Body”. For the
compensation of completed work in the iteration body an
algorithm with the following signature is defined:

 compensateIterationBody: A ´ Pall ↦ (VI
all) (19)

The function compensates all completed activities of the
iteration body in reverse execution order. It delivers the
values of variables that were changed during compensation.
Let a Î A be the start activity of the re-execution and p Î Pall
a process instance for the model of activity a. Then
compensateIterationBody(a, p) = {v1, …, vk} with p =
(VI, AA, AF, LE), v1, … , vk Î VI

all works as follows (Note:

The function time(f) with f Î AI delivers the time of the last
state change of activity instance f.):

function compensateIterationBody(a, p)
1 Vresult ← Æ

2 F = {f Î AF | state(f) == completed
model(f) is reachable from a}

3 while (|F| > 0) do
4 if |F| > 1 then

5 $m Î F: "n Î F, n ¹ m:

time(m) > time(n) execute
compensating activity c(model(m))

6 else

7 $m Î F execute compensating
activity c(model(m))

8 end if
9 F ← F \ {m}
10 for each (v Î o(c(model(m)))) do

11 if ($w Î Vresult: model(w) = v) then
12 Vresult ← Vresult \ {w}
13 end if
14 Vresult ← Vresult	 ∪ {(v, c, t)}, c is the

new value of variable v, t is the
timestamp of the assignment

15 end for
16 end while
17 return Vresult

A similar algorithm for the creation of the reverse order

graph is also proposed in [17]. But the intention of the

Algorithm “Compensate Iteration Body” is to deliver the
changed variable values as result of the compensation
operation.

Definition “Re-execute Operation”. The re-execution is a
function that repeats logic of a process model for a given
process instance with a given activity as starting point. The
input data for the re-execution is taken from a variable
snapshot that belongs to the start activity or a predecessor of
the start activity. The “re-execute” uses the “compensate”
operation to reset already completed work in the iteration
body.

 : A ´ Pall ↦ Pall (20)

The start activity a Î A, the process instances

p_ing, p_outg Î Pall, and the pre-condition are similar to the
iterate operation. The difference is the calculation of VI

out:
(a, p_ing) = p_outg :

1. VI
out = VI

in ∪ compensateIterationBody(a, p_ing)
∪ loadSnapshot(b, p_ing, t, V’).

The variable values might be modified as a result of the
compensation of completed work in the iteration body or by
loading a data snapshot (1.). Note that the start activity for
the re-execution is scheduled after the compensation is done
and the snapshot is loaded.

An example for the re-execution of activities is given in
Figure 5. In a sequence of activities, activity e is currently
being executed. The user decides to re-execute the workflow
from activity b (Figure 5a). The path from b to the wavefront
(activity e) is followed. All links on this path are reset (links
b-c, c-d, and d-e) and all activities in the wavefront reachable
from b are terminated (activity e). Now, all completed
activities in the iteration body are compensated in reverse
execution order (Figure 5b). Note that only completed
activities with an attached compensation activity can be
compensated. Finally, a data snapshot is loaded and the start
activity is scheduled (Figure 5c).

a b c d fe
T T T Ta)

c)

Re‐execute

a b c d fe
T

b) a b c d fe
T

terminate & reset

compensate

Wavefront

New wavefront

Compensated
activity

Figure 5. Re-execution in a sequence of activities. The user wants to re-

execute activities (a). The iteration body is reset, active activities are
terminated, and completed activities are compensated in reverse execution
order (b). Finally, a data snapshot is loaded and the start activity for the re-

execution is scheduled (c).

In practice, compensation of already completed work is
not always possible. An invoked service must provide an
operation to undo the results of a former request. For
instance, a service with an operation to book a hotel room
should also provide an operation to cancel the booking. The
 operation relies on such compensation operations of
services to conduct the compensation of already completed
workflow logic in the iteration body. It is up to the person
that models the considered workflow to integrate
compensation logic in form of a compensating activity c(a)
for an activity a. This is a prerequisite for the correct and
desired functionality of the re-execution.

IV. DATA HANDLING

For the repetition of workflow parts the handling of data
is of utmost importance. Some of the questions that arise are:
Where to store data that the former iteration has produced?
What data should be taken as input for the next iteration? A
mechanism is needed to store different values for same
variables and to load appropriate/correct variable values for
iterations. Variables might also be reset by the compensation
of the iteration body as is done in the “re-execute” operation.
This strongly depends on the compensation logic and
invoked services. But it cannot be guaranteed that the former
variable values are restored by the compensation. Hence,
another mechanism is needed.

The desired functionality can be realized by saving
snapshots of variables during workflow execution. Available
workflow engines store an audit trail [5, 18] that contains,
amongst others, values of variables changed by the
successfully executed activities. However, the audit trail
saves variables incoherently. The proposed snapshot
mechanism contains only variables that are visible for a
particular activity, their current values and a timestamp. The
data footprint of snapshots can be minimized as follows:
values for variables that did not change between two
snapshots do not have to be stored again; pointers to the
values of variables can be used to still be able to refer to
them.

Snapshot
to load

a

dc

b

e

a

dc

b

e

S
Rerun

a) b)

Stored
snapshot

T

T T

T T

T

T T

T T

Figure 6. Storing snapshots after variable-modifying activities (a) vs.

storing snapshots before variable-modifying activities (b).

Snapshots are stored with every activity that changes
variables. If snapshots are saved after variable-changing
activities, the workflow graph must always be traversed to

find the correct snapshot for an “iterate” or “re-execute”
operation. In Figure 6a, the workflow ought to be rerun from
activity c. But the nearest previous snapshot of c belongs to
activity a. Another approach is to store the snapshots before
variable-changing activities. In Figure 6b, the rerun starts
from the variable-modifying activity c and the snapshot of c
can be loaded without a need to traverse the workflow graph.
Storing snapshots before the execution of variable-changing
activities renders the finding of a snapshot for the start
activity of a rerun more efficient.

However, if the start activity of a rerun is a non-variable-
changing activity, an algorithm is needed to find the nearest
preceding snapshot. The simplest case is a sequence of
activities. The snapshot to be considered belongs to the
nearest preceding variable-modifying activity. In Figure 7a,
the rerun is started from activity b, the corresponding
snapshot to load belongs to b’s predecessor, activity a. A
more complex case arises when there are competing
snapshots in a parallel branching. In Figure 7b, the rerun is
started from activity e. There are two nearest preceding
snapshots located in the branching just before e, one for
activity c and one for activity d. This conflict can be solved
by the user by manually selecting the snapshot to load. An
automatic solution would be to take the snapshot with the
youngest timestamp.

Iteration
body

Sequence case:
Load nearest
snapshot in the
past

Competing snapshots:
Load user‐selected or
youngest snapshot

a

dc

b

e

a

dc

b

e

a) b)

T

T T

T T

T

T T

T T

Snapshots in parallel paths:
B = 1, in normal execution
B = 0, when snapshot loaded
 Load only snapshot subset

Write B = 1

Read B

Write A = 1

Read A

Write A = 0,
write B = 0

a

ec

b

d f

g

c)

T

T T

T

t = 1 t = 2

T

A=0
B=0

A=0
B=0

Figure 7. Iteration with non-snapshot activities as start activity with

unique (a) and competing (b) snapshots. Iterations in parallel paths can
cause the problem of lost updates (c).

In parallel paths, the problem of lost updates might
occur: loading a snapshot in one path might overwrite the
result of a write operation in a parallel path. A simple
example is given in Figure 7c. The two global variables A
and B are both initialized with 0 by activity a. In the c/d-
branch, activity c increases A by 1 and activity d reads A; in
the e/f-branch activity e increases B by 1 and activity f reads
B. The snapshots of c and e have stored the initial values of
A and B. Imagine that c and e are already executed and
hence variables A and B have the value 1. Now, the user
wants to rerun branch c/d starting with c. The snapshot of c
is loaded. Both variables get the value 0, which is correct for
A but means a lost update for B. The problem cannot be
solved by loading another snapshot in the near environment
of activity c (the snapshots of a, c and e have the same

content). It must therefore be possible to load only a subset
of variables stored in a snapshot. If this is done manually, the
user must be able to gain insight into the content of
snapshots and to determine the variables to load. An
automatic solution is also feasible: all variables that are
written in the iteration body can be selected out of the
snapshot. In the example, the iteration body consists of
activities c and d. The only write operation in the iteration
body targets variable A. Hence, variable A can automatically
be selected from the snapshot stored before c.

Due to the rerun of activities (manually or in loops) there
can be several snapshots for each variable-modifying
activity—one snapshot for each execution of the activity.
These multiple snapshots are called snapshot instances. The
user must be given the means to select the particular
snapshot instance to be used for the rerun; recommendations
may facilitate correctness. In Figure 8, activities c and d of
the sample workflow in Figure 7c are iterated multiple times.
This leads to a chain of executions of activities c and d. The
current value of variable A was taken for each rerun. There
are now three snapshot instances for activity c with different
values for variable A. Imagine the user wants to iterate again
from c. Besides the start activity, he has to select the
variables that should be loaded out of the snapshot (variable
A) and the concrete snapshot instance. The snapshot instance
is identifiable via the execution number of the corresponding
activity. For example, the snapshot with A = 100 belongs to
the 1st execution of activity c; A = 101 belongs to the 2nd
execution of c; and so on. The selected variables of a
snapshot instance are re-initialized according to the values
stored in the snapshot.

A=101 A=102 A=103

c1 d1 c2 c3 d2

A=100 A=101 A=102

nth execution
of the activity

Figure 8. Multiple snapshot instances can exist for one activity.

Now, a function to load snapshot instances can be
defined. This function is used by the “iterate” and “re-
execute” operations to deliver the correct input for the next
enforced run of the corresponding workflow logic.

Definition “Load Snapshot”. The “load snapshot” function
loads variable instances for a process instance and a subset of
variables. The signature of the function is defined as follows:

 loadSnapshot: A ´ Pall ´ Գ ´ (V) ↦ (VI). (21)

Let a Î A be the activity the snapshot belongs to,

pg Î Pall an instance of process model g, e Î Գ the execution
number for activity a that identifies the snapshot instance,
and V’ Î (V) the selected variables to load from the

snapshot. Then loadSnapshot(a, pg, e, V’) = {v1, …, vn},

v1, …, vn Î VI "k Î {1, …, n}: model(vk) Î V’, i.e.,
variable instances are loaded only for the given variables.

V. REPETITION IN COMPLEX WORKFLOW GRAPHS

In activity sequences, the wavefront consists only of a
single element and there are no concurrent and hence no join
nodes, which does not pose any complications for iteration
and re-execution. This section shows the application of the
two ad hoc rerun operations in complex workflow graphs
with parallel and alternative branches. The most important
issue to solve is to guarantee a correct behavior at join nodes
when iterating or re-executing them. In common workflow
languages, a join node is activated not until all incoming
links are evaluated and the join condition is evaluated to
true. Consider the example in Figure 9. The join node d has
three predecessors, a, b and c. Only if the links a-d, b-d and
c-d are followed, and the join condition of d is true, can d
be scheduled (Figure 9a-c). This join behavior prevents (1)
missing link values in the join condition of join nodes, and
(2) race conditions, i.e., undesired multiple executions of join
nodes or ambiguous behavior.

a c

d

b

F

a c

d

b

F T

a c

d

b

F T T

a c

d

b a c

d

b a c

d

b

T

a) b) c)

d) e) f)

Dead
activity

Figure 9. Join behavior of the meta-model. A join activity cannot be

executed unless all incoming links are evaluated (a-c). Typically, link states
are not stored by the engine (d), which makes a rerun in parallel or

alternative branches impossible (e and f).

After the evaluation of the join condition, the values of
incoming links of the corresponding activity are not needed
anymore. Thus, link values are usually not stored beyond the
context of the join node (Figure 9d). This is the typical way
of dealing with links in conventional workflow engines. In
Petri net-based workflows [19] and BPMN [14], link values
are tokens that get consumed by the transition of a join node
or a gateway, respectively. In BPEL [15], the link values are
bound to boolean variables that are visible only in the
context of the target activity instance. That means these
variables are destroyed after the execution of the target
activity and hence the old link states are lost. As a
consequence, a join activity in the iteration body of an
“iterate” or “re-execute” operation can lead to a deadlock. In
Figure 9e, the iteration body consists of activity b and the
join activity d. After the execution of b activity d would
never be executed because of the missing states of links a-d
and c-d (Figure 9f). Storing the set of evaluated links LE in

the context of process instances (see Definitions “Evaluated
Links” and “Process Instance”) helps solving this problem.
The following different use cases show the application of the
concept in different situations.

A. Start activity is in a completed AND-branching

The first case discussed is the one in which the start
activity for the rerun is located in a parallel, already
completed branch. That means the join activity that closes
the branching is at least scheduled. Figure 10 shows an
example of this case. The parallel branching of activities b to
g is completed. The user requests an iteration or re-execution
from activity c (Figure 10a). The path beginning with c is
followed forward to the wavefront (Figure 10b). All links on
this path are reset; all activities in the wavefront reachable
from c are terminated (activity h). In case the user wants to
re-execute the workflow logic, all completed activities on the
path from the start activity c to the wavefront that have
assigned a compensation activity (here: c, e and g) are
compensated in reverse execution order. Note that the other
path of the considered parallel branch, containing activities d
and f, and the branch i to m remain unchanged. Finally, start
activity c is scheduled (Figure 10c). The wavefront now
consists of the activities l and c and the link f-g. In the course
of the further execution of the process instance the join
activity g can run normally since the state of link f-g is stored
in LE.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

T

T

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

T

a)

c)

Iterate/Re‐execute

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

T
T

T

Tb)

Parallel
branching

Wavefront

terminate & reset

compensate
(re‐execute case)

New
wavefront

Figure 10. Rerun in an AND-branching.

B. Start activity is in a completed XOR-branching

The rerun in an already completed XOR-branching is
very similar to the AND-branching case. In the meta-model,
an XOR-branching is achieved with the help of mutual
excluding transition conditions of outgoing links of split
nodes. In Figure 11a, the link b-c was evaluated to true,
whereas b-d is false. Hence, activities b through g
implement an alternative branch. The path containing the
link b-d, the activities d and f and the link f-g is dead. The
join behavior in the meta-model requires all links to be
evaluated before a join node can be executed. That is the
reason why an algorithm for dead path elimination (DPE) is
used to set all links in a dead path to false [5]. In the
example, this holds for the links d-f and f-g. Activities on a
dead path are not executed; their state is simply set to dead
(activities d and f). In this scenario, the user wants to rerun
the workflow from activity c which is located in the
completed path of the XOR-branching. Due to the DPE and
the set of all evaluated links LE, this case can now be
addressed exactly the same way as the ad hoc rerun in
completed AND-branches.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

F

a)

b)

Iterate/Re‐execute

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

T

F
F

T

Fc)

Alternative
branching

Wavefront

New
wavefront

terminate & reset

compensate
(re‐execute case)

Dead activities

Figure 11. Rerun in an XOR-branching.

Note that there are cases where a branching in a process
model can be an AND in some process instances and an
XOR in other instances. It depends on the selected transition
conditions and the process context (e.g. variable values) if
one, all or a particular number of branches is followed during
workflow execution. In BPMN, this behavior can be
modeled with an inclusive gateway [14]. However, such

cases are covered by the concept because links in dead
branches are evaluated (to false) in the course of the DPE.

C. Start activity is before a branching

In this case, the start activity is located before a
branching, i.e., the iteration body contains branching
activities. In Figure 12a, the user reruns the workflow with b
as start activity. The two outgoing links of b show that it is a
branching activity. In order to address this case, all paths
beginning with b are followed to the wavefront (Figure 12b).
All visited links are deleted from LE (b-d, d-f, f-g, b-c and c-
e) and all visited scheduled or running activities are
terminated (e). In the re-execute case, the reachable
completed activities that can be compensated (c and d) are
compensated in reverse execution order. After that, the start
activity is scheduled (Figure 12c) and the workflow can be
resumed.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

T
T

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

a)

b)

Iterate/
Re‐execute

F

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

c)

Wavefront

compensate
(re‐execute case)

terminate
& reset

New
wavefront

terminate
& reset

Figure 12. Rerun when the start activity is located before a branching.

Figure 13a shows a more complex scenario. Note that the
difference to the previous workflows is that link j-f was
deleted and link d-k added. The user wants to rerun the
workflow beginning with activity b. The iteration body thus
contains two branching (b and d) and two join activities (g
and k). All links on the path from b to the wavefront are reset
and all scheduled/running activities are terminated (Figure
13b). It is sufficient to visit the activities and links only once
with the algorithm, like activities g and h and link g-h. In the
re-execution case, the completed activities on the considered
path are compensated in reverse execution order (g, f, e, d,
and c). The start activity (b) is then scheduled and the rerun
operation is complete (Figure 13c).

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T T T

F

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T

a)

b)

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

T

T

c)

Wave‐
front

terminate & reset

terminate & resetcompensate
(re‐execute case)

New wavefront

Iterate/
Re‐execute

T

T

Figure 13. Complex rerun scenario with several branches.

D. Repetition in Dead Paths

As shown above the concept to enforce the rerun of
workflow logic can be applied in sequences of activities, in
parallel and alternative branches, and in complex graphs. An
interesting research question is (1) whether the start activity
of a rerun can be located in a dead path and (2) whether such
an operation would be meaningful. Note that there is a
difference between a dead path and a path that is not (yet)
executed. A dead path belongs to the past of the workflow
instance while a not executed path is the future of the
workflow instance. That means the latter is a jump to the
future, that can be realized by a “skip” operation, which,
however, is not part of this work.

The precondition of the “iterate” and “re-execute”
operation is that the state of the start activity is scheduled,
executing, completed, faulted or terminated (see Section
III.A). The iteration/re-execution in dead paths is thus not
allowed. However, if this precondition was neglected,
repeating activities in a dead path would technically be
possible with the presented concept. As an example consider
Figure 14a. The user requests the repetition of activity f,
which is located in a dead path. As usual, the path from f to
the wavefront is followed, links are reset (f-g and g-h),
running activities terminated (h) and completed activities
compensated (g, in case of a re-execute), as shown in Figure
14b. Then, the start activity f is scheduled and can be
executed when the workflow is resumed. Although
conceptually feasible, the operation has several problems.
The result is obviously an unrealistic execution history.
Activity f gets executed although its predecessors d, i and j
were not enacted (Figure 14c). Further, the operation is not

really an iteration or a re-execution because at least the start
activity was not executed before the operation. Hence, it is
not a repeated execution of activities but rather an ad hoc
change of a process instance that enforces the execution of a
dead path. That is why the above-mentioned precondition
prevents a repetition of activities in dead paths.

a

b

i

c

d

j

e

f

k

g

m

n

h

l

T

F

F F F

F

F
F

T

T

F

T

T

a

b

i

c

d

j

e

f

k

g

m

n

h

l

a)

b)

F

F

a

b

i

c

d

j

e

f

k

g

m

n

h

l

c)

Iterate/
Re‐execute

Wavefront

F

F F F

F

F
F

T

T
T

F

F

terminate & reset

compensate
(re‐execute case)

T

F

F F F

F

F
F

T

T
T

F

F

New wavefront

T

Figure 14. Rerun in a dead path.

However, although it is not recommend using the
“iterate/re-execute” operation in dead paths, a workflow
system implementing the approach should provide as much
flexibility as possible for scientists or other users. The user
must decide whether the operation helps to achieve the
desired goals. With the help of the precondition the
workflow system is able to detect that the user is about to
conduct an ad hoc rerun in a dead path. The user should then
be requested if he really wants to apply the operation in a
dead path and if so, the system conducts the operation as
shown in this section.

VI. IMPLICATIONS ON THE EXECUTION CORRECTNESS

Workflows consist of different activity types, e.g., for
sending/receiving messages, loops, or variable assignment.
The enforced repetition of workflow logic has to account for
different activity types, especially those that interact with
external entities such as clients, humans, or
services/programs. The main problem is that the repetitions
are not reflected in the workflow logic because they are an
ad hoc user operation. Hence, the aforementioned external
entities do not know a priori the exact behavior of the
workflow. An uncoordinated rerun of workflow logic can
lead to multiple invocations of services, multiple identical

work items in the work list for human users or an infinite
waiting for messages because the communication partner
does not know that a message must be sent again.

A. Message-receiving Activities

If a message receiving activity is repeated, it would wait
infinitely for the message because it was already consumed.
Three cases can be distinguished to solve this problem.
Firstly, the original message sent by the partner in a former
iteration is taken as incoming message for the next run of the
activity. However, if the activity was iterated several times,
there may be different versions of the incoming message.
The user then has to select the desired message.

Workflow Engine Service

a

c

b

d

T

T

T

User

1. Instantiate

2. Invoke
service

3. Send message
to workflow

4. Iterate
from c

5. Inform
service about
iteration

6. Re‐send
message

“Rerun”
callbackIterate

Re‐execute

Figure 15. Repetition of a message-receiving activity. The communication

partner is informed about the rerun of the activity over a special “rerun
callback” operation. The partner then can re-send the message or send an

adapted (i.e., updated) message to the engine.

Secondly, the message sending partner re-sends the
message or sends an adapted message. The partner needs to
be informed about the repetition of the activity. A simple
solution is that partners provide a special “rerun callback”
that can be used by the workflow engine to propagate the
iteration or re-execution. An architecture for this concept is
shown in Figure 15. The workflow engine provides the
“iterate” and “re-execute” operations. The considered
workflow that is deployed on the engine implements two
operations, one for its instantiation and one to receive a
message from a service. The course of action in this setting is
as follows. The user invokes (i.e., instantiates) the workflow
(1). The workflow calls a matching service in an
asynchronous manner (2) and provides a callback for the
response (activity c). The invoked service creates the
response message and sends it to the engine (3). The engine
correlates the message to the particular workflow instance
(e.g., via the instance id or some other information that
uniquely identifies the workflow instance). Now the user
decides to iterate the workflow logic with activity c as start
activity and invokes the corresponding “iterate” operation
(4). The workflow then waits again for the message of the
service. The engine informs the partner about the iteration
that took place in the workflow instance. This is done by
invoking the special “rerun callback” provided by the partner
(5) or a mechanism in the service infrastructure performing
the same functionality. The engine’s message contains at
least the following information: the original message of the

partner (in case the partner did not persistently store the
message), the engine’s address, and correlation information
to identify the workflow instance. The partner then decides
whether to re-send the message or to send an adapted one
(6). Sending an adapted message is useful if the information
distributed by the partner has to be updated (e.g., sensor
data). The engine has to find the partners to be considered in
order to invoke their “rerun callback”. It first searches for all
message-receiving activities in the iteration body. Then, it
determines the addresses of the related partners. The
addresses can be found in the “ReplyTo” header field of a
message received in a former run of the workflow logic (if
WS-Addressing [20] is used). Or it is taken from a message
that was sent to a partner by a message sending activity in
the same workflow instance. This scenario has the
disadvantage that it has many implications on the partners’
services and/or infrastructure and would be difficult to
enable in a standard manner.

Thirdly, message-receiving activities are usually related
to message-sending activities. The workflow system or the
user pays attention that if a message-receiving activity is
iterated, its corresponding message-sending activity is
iterated, too. The reason is that an incoming message is often
the response to a message sent to a partner. Hence, repeating
the invocation of the partner will make the partner send the
message again to the workflow engine (or an adapted
message with updated content).

A workflow system that implements the ad hoc rerun
should support all three cases. It depends on the implemented
message exchange pattern, on the concrete function realized
by the partner and on whether the partner is stateful or
stateless to select (possibly with user-support) the adequate
mechanism for the repetition of message-receiving activities.

B. Message-sending Activities

The repetition of message sending activities is straight
forward for idempotent services. Non-idempotent services
should be compensated prior to a repeated invocation, as is
done in the re-execution operation. If the iteration operation
repeats the execution of non-idempotent services, then the
user is responsible for the effect of the operation.

C. Loops

Iterations within modeled loops can have an
unforeseeable impact on the behavior of workflows. The
context of workflows might be changed in a way that leads
to infinite loops (e.g., because the repetition changes variable
values so that a while-condition can never evaluate to
false). Usually, a workflow system provides operations to
change variable values (e.g., in a process repair component).
This functionality can be used to resolve infinite loops.

It can also happen that the start activity of an iteration or
re-execution is located within an already completed loop.
The operation causes the loop to run again. In its first
iteration the loop body begins with the start activity of the ad
hoc rerun. From its possible second iteration on the complete
loop body is executed. The user must be able to select the
particular iteration of the loop that should be repeated. This
can be done with the help of a variable snapshot loaded prior

to the rerun because the former variable values represent the
iteration of a loop (e.g., via a counter variable).

D. Workflow Languages with Block Structures

In practice, a workflow is not a simple graph consisting
of nodes and edges. There are often also hierarchically
nested elements. In BPMN, there is the concept of sub-
processes that are containers for arbitrary workflow logic
[14]. BPEL offers structured activities (e.g., the sequence,
flow, or while activity) that can contain other activities for
a simplified modeling of complex workflows [15]. The rerun
of activities in hierarchical structures has to account for
parent-child-relationships of activities.

a b c d

Rerun

T
T

a)

e f g
T

h i jT

a b c d
Tb)

e f g

h i j

a b c d
Tc)

e f g

h i j

Wavefront

Figure 16. Rerun in workflows with block-structures

Figure 16 illustrates an example for the rerun in
hierarchically nested activities. The process model contains a
sequence of activities c and d followed by a parallel
branching of f/g and i/j (Figure16a). Because of the nesting,
the wavefront of the considered process instance (the shaded
activities) is stretched across the complete process. All
parent activities with at least one active child are also active.
Hence, the termination and resetting of the path from the
start activity to the wavefront is more complex. In the
example, d is the start activity of the rerun (Figure 16a). The
atomic activities d, f, g and i as well as the parent activities b,
e and h have to be terminated or reset (Figure 16b).
Moreover, the start activity cannot be simply scheduled. It
must be checked whether the corresponding parent activity is
active. If so, the start activity can be scheduled. If not, the
parent must be scheduled instead of the start activity itself
(and possibly the parent of the parent, etc.). It is important to
make sure that, although the parent activity is scheduled,
only a subset of its child activities will be executed. In Figure

16c, the parent activity b of the start activity d is scheduled.
But it must be ensured that activity c is not executed again.
Realizing this behavior in a workflow engine is highly
implementation-specific.

E. Impact on Scopes

In modern workflow languages such as BPMN or BPEL,
the concept of scopes is used to denote containers for
activities, data objects and correlation keys; they span
transaction boundaries and specify fault handling logic as
well as logic to handle incoming events. At the beginning of
their execution, scopes initialize their context. That means
fault handlers and event handlers are installed and local
variables are instantiated.

If a rerun is conducted with the start activity being
located in an already completed scope, this scope has to be
scheduled because of the parent-child relationship discussed
before. The scope’s context has to be initialized again. In
case of a re-execution, the scope’s effects have to be undone
before the workflow can be resumed. Invoking the scope’s
compensation handler undoes the work of the complete
scope. This is the desired behavior only when the start
activity is the first activity in the scope. Otherwise the
specific compensation handler of the scope must not be
executed, but rather only the compensation handlers of the
activities following the identified start activity in the reverse
execution order.

The repetition of activities also has an impact on fault
and compensation handlers attached to scopes. Fault and
compensation handlers can be used to undo already
completed work. If logic is rerun within these handlers, it
must be ensured that the corresponding scopes are not
compensated multiple times.

VII. USER INTERACTION WITH THE WORKFLOW SYSTEM

A workflow system that implements the ad hoc rerun of
workflow logic must provide a monitoring tool that allows
users to continuously follow the execution state of process
instances (see Figure 17(1)). The user interacts with the
system as follows. If the user detects a faulty or unintended
situation, he can suspend the workflow (2) and manually
trigger an iteration/re-execution (3).

T

Workflow
Engine

a

c

b

d

T

User

Instance
Monitor

1. Publish execution
events

3. Conduct rerun

4. Request snapshot
specification

6. Specify snapshot
activity, execution
number and variables

5. Inspect snapshots

2. Suspend workflow

7. Resume workflow

Figure 17. User interaction with a workflow system that implements the

concept of the enforced repetition of workflow logic

The workflow system asks him to specify which snapshot
instance should be taken for the rerun and which contained
variables should be loaded (4). The user can inspect different
snapshot instances and the values of their variables in order
to determine the desired snapshot instance (5). He specifies
the snapshot instance with the corresponding variable-
modifying activity, the execution number of the activity, and
the subset of variables to be loaded. The process instance
state is changed in the engine as described in Section III
through V. Finally, the user resumes the workflow instance
(7). Note that steps 4 to 6 are omitted if the user conducts an
iteration of activities with the current variable values, i.e.,
without loading a snapshot.

VIII. IMPLEMENTATION

The implementation of the “iterate” and “re-execute”
operations is based on the Apache Orchestration Director
Engine (ODE) [21] as BPEL engine and on the Eclipse
BPEL Designer [22] as GUI for the users of the system.

A. Architecture of the System

Figure 18 shows the high level architecture of the
workflow system that implements the ad hoc rerun of
workflows. Components with dashed lines are new or
extended. The scientist/user interacts with Eclipse and the
BPEL Designer plugin in order to model and run workflows.
The Execution Control component enables starting of
workflows directly in the BPEL Designer. A special dialog
requests the user to specify the content for the input message.
Deployment of workflows happens transparent for the user.
The underlying workflow engine is hidden. Workflow
instances can be suspended and resumed. The Instance
Monitor visualizes the current execution state of running
workflows by coloring activities and links. The scientist can
inspect and change values of variables and endpoint
references assigned to partner links.

Eclipse Framework

A
p
ac
h
e
 O
D
E

BPEL Designer

Execution
Control

Iteration/
Re‐execution

Instance
Monitor

Breakpoint
Registry

Navigator

Auditing

D
e
p
lo
ym

e
n
t

Web
Service

Scientists

In
te
gr
at
io
n
 L
ay
e
r

Publish
execution
events

Load
data

Deploy, invoke,
suspend/resume,
iterate/re‐execute, …

Model and run
workflows

Invoke

Web Interface

P
ro
ce
ss
 M

gm
t.

Ev
en

t
P
u
b
lis
h
er

It
er
at
e/
R
e
‐e
xe
cu
te

Figure 18. High level architecture of the prototype

In order to suspend workflows at points of particular
interest for the user, it is possible to set breakpoints at
activities or links in a Breakpoint Registry. The Iteration/Re-
execution component provides the ad hoc rerun operations to
the user. A wizard helps the user to find and select the
desired snapshot instance to load prior to the rerun. The
needed information is fetched from the workflow engine.
When a rerun is conducted, the activity states of the instance
monitor are refreshed and an iterate/re-execute operation of
the engine is invoked.

Apache ODE provides interfaces to deploy and undeploy
processes (Deployment component) and to access
information about process models and instances (Process
Management component). Web services are invoked over an
Integration Layer. There is also a Web Interface for user,
which does not play a role in this work. The Apache ODE
was extended with an Event Publisher that emits execution
events of workflow instances, e.g., activity ready, activity
running, or link evaluated. These events are received by the
BPEL Designer’s Instance Monitor and used to color
activities and links. The Navigator is the heart of the
workflow engine. It traverses the workflow graph and
executes activities. An extension of the Navigator and the
database is that variable and partner link values are stored as
snapshot before the execution of variable changing activities.
The new Iterate/Re-execute component provides the two
rerun operations to clients. The component loads a
variable/partner link snapshot according to the input of the
user. Then, the execution queue of the navigator is adapted:
activity instances that have to be terminated are removed
from the execution queue; a new instance of the start activity
is scheduled (and possibly new instances of its parent
activities), i.e. put to the execution queue.

An Auditing component external to the workflow engine
stores the published execution events persistently. The BPEL
Designer makes use of the Auditing to load the state of a
workflow instance into the Instance Monitor. This has the
advantage that the engine’s execution events are not lost
even if Eclipse is shut down during workflow execution.

The following two sections provide more details on the
extensions of the BPEL Designer and the Apache ODE.

B. Extensions of the BPEL Designer

The scientist can use the functions of the Execution
Control from the extended toolbar menu (Figure 19a). A
workflow can be started, suspended, resumed and
terminated. If a breakpoint is reached during execution, a
skip breakpoint operation releases the breakpoint and the
workflow execution proceeds.

In order to implement the Instance Monitor the Eclipse
Modeling Framework (EMF) ecore model for BPEL was
extended with a state attribute for all activities and links. It
holds the state of activities/links based on the execution
events of the engine. The state indicates the color of each
element (Figure 19b): yellow is running, green is completed,
red is faulted, orange means a breakpoint is reached, and
grey are dead activities.

Start/Resume

Suspend Terminate

Skip Breakpoint

Running activity

Completed activity

Breakpoint reached

Unscheduled
activity

Toolbara)

b)

Figure 19. BPEL Designer extension: (a) Execution Control in the toolbar

and (b) the Instance Monitor.

When a workflow is suspended, the user can iterate or re-
execute workflow logic via the context menu of an activity
(Figure 20). The selected activity is then the start activity of
the operation (activity B in the figure).

Ad hoc rerun
operations

Figure 20. The user can select the iterate/re-execute operations from the

context menu of activities.

A wizard opens that guides the user step by step through
the snapshot selection process. First, the activity to load the

snapshot for has to be chosen. This can be the start activity
or a predecessor thereof. The latter can happen when the start
activity is no variable-changing activity and hence does not

possess a snapshot. The wizard shows all snapshot instances
for the selected activity.

Figure 21. Wizard to select variable snapshots.

The user can have a look at the snapshot content, i.e., at
the values of stored variables (Figure 21) and partner links. It
is possible to select only a subset of stored variables (Figure
21) and partner links to be loaded in the course of the rerun,
which can prevent a lost update of variables in parallel paths.
When the snapshot selection is done, the Instance Monitor is
refreshed, i.e., the state of all activities in the iteration body
is set to inactive. Finally, the iterate/re-execute operation of
the Apache ODE is invoked.

C. Extensions of the Apache ODE

The Navigator was extended so that each variable-
changing activity persistently stores a snapshot with all
visible variables and partner links before its execution. This
pertains to receive, pick, invoke and assign activities.
Three new tables are created in the database to store the
snapshots (Figure 22). The table ODE_SNAPSHOT holds
information about snapshot instances: the corresponding
process instance, the scope the stored variables and partner
links belong to, the creation time, the version, and an XPath
expression pointing to the corresponding activity. The table
ODE_SNAPSHOT_VARIABLE stores the concrete values
of variables that belong to a snapshot. And finally, the table
ODE_SNAPSHOT_PARTNERLINKS holds the values of
partner links stored in snapshots. A partner link can have up
to two values, one EPR for each of the at most two roles.
There is another new table, ODE_LINK_INSTANCE, used
to save the state of link instances as discussed in Section V.

The Web service interface of Apache ODE was extended
with five operations. The iterate/re-execute start the ad
hoc rerun for a specific workflow instance. Both require the
process instance ID, the XPath expression of the start
activity, the XPath expression of the activity to load the
snapshot for, the snapshot version (i.e., the execution
number), and a list of variables and partner links to load. The
getSnapshots operation delivers all snapshot instances for
a given process instance and activity, but without loading the
concrete values of the stored activities/partner links; the

getSnapshotPartnerLinks and getSnapshot-
Variables operations are then used to load concrete values
out of a snapshot identified via the process instance and
snapshot ID. This functionality is distributed on several
operations for the sake of smaller messages. It is often
sufficient to load just some general information about a
snapshot and not all the contained values.

ODE_SNAPSHOT_VARIABLE

PK ID

FK1 Snapshot ID
Name
Data
...

ODE_PROCESS_INSTANCE

PK Process Instance ID

State
Process ID
...

ODE_SCOPE

PK Scope ID

FK1 Process Instance ID
State
Parent Scope ID
...

ODE_SNAPSHOT_DATA

PK Snapshot ID

FK1 Process Instance ID
FK2 Scope ID

Creation Time
Version
Activity XPath

ODE_SNAPSHOT_PARTNERLINKS

PK ID

FK1 Snapshot ID
Name
My EPR
Partner EPR
...

ODE_LINK_INSTANCE

PK Link Id

FK1 Process Instance ID
State
Link XPath

Figure 22. Extension of the database schema to store variable/partner link

snapshots and the state of link instances.

The two most critical parts of the ad hoc rerun are (1) to
correctly and consistently adapt the content of the execution
queue and (2) to adapt the activity instance of the start
activity’s parent. In Apache ODE, the execution queue is an
object that holds a list with all scheduled activity instances,
another list with all channels used to send information
between activities (e.g. a child activity uses a channel to
inform its parent about its completion), and a third list with
completed activities. All activity instances and channels that
belong to activities in the iteration body have to be removed
from these lists.

The modification of the start activity’s parent has to be
implemented per activity type. It is currently realized for
sequence and flow activities. In a sequence, the
sequence activity instance is scheduled again but only with
the start activity and all successor activities as children. All
activities preceding the start activity are omitted because
they do not belong to the iteration body. In a flow, all
completed activities of the former iteration have to be
marked as not completed and are scheduled again. Their
activity guards make sure that the activities are executed not
until their join conditions can be evaluated. Only the start
activity of the rerun is executed without evaluation of its join
condition.

IX. RELATED WORK

The term “iteration of activities” is mentioned in [5] as
one of the change operations that can be performed in a
workflow; no details are available about how iteration should
be performed. In ADEPT, it is possible to perform manual ad
hoc backward jumps that are similar to the rerun operations
in this paper, as claimed in [16]. The target activity of the
jump is executed again. The previous execution state is
restored based on the execution and data element history.
While in [16] it is said that an operation for ad hoc backward
jumps exists, no details such as algorithms, applications on
workflow languages with hierarchically nested elements, or
impact of different activity types are provided as is done in
this work. In the scientific workflow system e-BioFlow,
scientists can re-execute manually selected tasks with the
help of an ad hoc workflow editor [6]. The set of activities
that should be (re-)executed must be marked explicitly. No
other activities are (re)executed; no distinction is made
between iteration and re-execution operations. Following the
approach in this paper, the user only has to provide the start
activity for the rerun and the successor activities are then
executed as prescribed by the workflow model.

Repetition of workflow logic can be achieved language-
based with certain modeling constructs. A general concept to
retry and rerun transaction scopes in case of an error is
shown in [23] for the case of business transactions. Eberle et
al. [10] apply this concept to BPEL scopes. In BPMN [14]
this behavior can be modeled with sub-processes, error
triggers and links. In IBM MQSeries Workflow a Flow
Definition Language (FDL) activity is restarted if its exit
condition evaluates to false. ADOME [24] can rerun
special repeatable activities if an error occurs during activity
execution; the approach is applicable only for single

activities, not for groups of activities. In Apache ODE, an
extension of BPEL’s invoke activity enables retrying a
service invocation if a failure happens [25]. These
approaches have special modeling constructs in common to
realize the repetition. In these cases, the rerun is pre-modeled
at design time. In contrast to these approaches, the solution
in this paper aims at repeating a workflow starting from an
arbitrary, not previously specified point.

Iterations can also be realized by configuring workflow
models with deployment information. Invoke activities in the
Oracle BPEL Process Manager [11] can be configured with
an external file so that service invocations are retried if a
specified error occurs. The concept to retry activities until
they succeed is also subject of [26] and also in [27] where
the service selected for the retry is identified using a
semantic description of selection criteria. The scientific
workflow system Taverna [28] allows specifying alternate
services that are taken if an activity for a service invocation
fails. In contrast to these and other available similar
approaches, this paper advocates a solution where the rerun
can be started spontaneously without a pre-configuration of
workflows from an arbitrary point.

The scientific workflow system Pegasus can
automatically re-schedule a part of a workflow if an error
occurs [12]. Successfully completed tasks are not retried.
The Askalon workflow system provides a checkpointing-like
functionality to handle runtime faults [29]. Kepler’s Smart
Rerun Manager can be used to re-execute complete
workflows [30]. Tasks that produce data that already exists
are omitted. The main difference of these approaches to this
paper is that the ad hoc rerun allows selecting the starting
point of the iteration (manually) and hence this functionality
can be used for different purposes, e.g. explorative workflow
development, steering of the convergence of scientific
results, or fault handling.

Checkpointing in workflow management is a technique
to store the complete workflow state at specific execution
points geared towards transactions spheres [31]. If a failure
happens, these checkpoints can be used to rollback a
workflow, i.e., load its former state, and run a part of the
workflow again. Assurance points (AP) [32] are a similar
concept that store data at critical points in a workflow. APs
are user defined at modeling time and enable backward
recovery of a complete process, retry of a workflow part, and
forward recovery. Compared to the approach in this paper,
checkpoints and assurance points cannot be used to rerun a
workflow part starting from an arbitrary activity chosen at
runtime. Apart from this, the retry functionality of APs can
be compared to the re-execute operation in this work because
already completed work from the current wavefront to the
AP is compensated. In [33], an aspect-oriented approach for
dynamic checkpointing in workflows is introduced. It allows
selecting and changing checkpoint positions at workflow
runtime in order to transfer running workflows from one to
another workflow engine instance. The approach can be used
to rerun activities of a workflow in an ad hoc manner. In
contrast to the approach in this paper, the rerun would
require an additional step: the selection of an adequate
checkpoint in the future of a workflow instance that will be

the target of a rerun later on. Thus, the scientist must prepare
a rerun before the execution of the workflow part, which is
more restrictive than the ad hoc rerun proposed in this work.

In [34], the authors present and describe several types of
flexibility in process-aware information systems. The option
“Undo task A” in the flexibility type “Flexibility by
deviation” is similar to the iterate/re-execute operation in this
work. The control is moved back just before the execution of
a task (= iteration); in some cases, it is meaningful to
compensate already completed work (= re-execution). No
further details are provided about data issues, how race
conditions are avoided, how parallel/alternative/dead paths
are dealt with, or how block-structures influence the
approach as it is done in this work.

X. CONCLUSION AND FUTURE WORK

This paper dealt with the formal description of two
operations to enforce the rerun of workflow logic during
workflow execution: the iterate operation reruns activities
starting from a manually selected activity; the re-execute
operation undoes completed work in the iteration body
before rerunning activities. The distinctive features of the
approach are that the repetition does not have to be modeled
or configured previously and that arbitrary activities can be
used as starting point for the rerun. It was shown that the
approach can be applied in sequences of activities, parallel
and alternative branches as well as in more complex
scenarios that include the repetition of join activities.
Furthermore, an adoption of the operations in dead paths has
been investigated. An ad hoc rerun in dead paths is not
recommended because it is literally no rerun of activities.
But it should be up to the user to decide about the meaning
of such an operation. One of the main issues when repeating
activities is the question which data to take as input for the
next run. This issue is addressed with the help of data
snapshots that are stored before each variable-modifying
activity and that are loaded in the course of the rerun.

Real world processes depend on external communication
partners, services or clients. An operation for the repetition
of activities has to account for dependencies on messages
from partners and on the impact of repeatedly delivered
messages on services invoked by the workflow. There are
three ways to deal with the repetition of message-receiving
activities: reuse a message received in a former iteration,
inform the communication partner about the ad hoc rerun
and the partner re-sends the message, and repeat a message-
receiving activity together with its corresponding preceding
message-sending activity. Furthermore, it was shown how
users interact with such a flexible workflow system. A
workflow instance monitor that shows the workflow progress
in real-time and that allows an immediate intervention of the
user is of utmost importance in this setting. The concepts
presented in this paper are based on an abstract meta-model
and thus can be applied to existing or future workflow
engines and languages. It was shown how the ad hoc rerun
works in languages with concepts for block-based modeling
and scopes, such as BPEL or BPMN. The implementation of
the iterate and re-execute operations for BPEL in the Eclipse

BPEL Designer and Apache ODE evaluate the formal
concepts presented in this paper and proof their feasibility.

The enforced repetition of workflow logic is a step
towards the goal to enable an explorative workflow
development, especially in the field of scientific workflows.

In future, we will also work on an ad hoc “skip”
operation that allows omitting activities, e.g., if the result of
the respective activities is already present.

ACKNOWLEDGMENT

The authors would like to thank the German Research
Foundation (DFG) for financial support of the project within
the Cluster of Excellence in Simulation Technology
(EXC 310/1) at the University of Stuttgart.

REFERENCES
[1] M. Sonntag and D. Karastoyanova, “Enforcing the Repeated

Execution of Logic in Workflows,” Proc. of the 1st
International Conference on Business Intelligence and
Technology (BUSTECH 2011), 2011.

[2] W. M. P. van der Aalst, T. Basten, H. Verbeek, P. Verkoulen,
and M. Voorhoeve, “Adaptive workflow: on the interplay
between flexibility and support,” Proc. of the 1st Conference
on Enterprise Information Systems (ICEIS), 1999, pp. 353–
360.

[3] M. Reichert and P. Dadam, “ADEPTflex—Supporting
dynamic changes of workflows without losing control,”
Journal of Intelligent Information Systems, Special Issue on
Workflow Management Systems, vol. 10(2), 1998, pp. 93–
129.

[4] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow
evolution,” Journal of Data and Knowledge Engineering,
Elsevier, vol. 24(3), 1998, pp. 211–238.

[5] F. Leymann and D. Roller, “Production workflow—Concepts
and techniques,” Prentice Hall, 2000.

[6] I. Wassink, M. Ooms, and P. van der Vet, “Designing
workflows on the fly using e-BioFlow,” Proc. of the
International Conference on Service Oriented Computing
(ICSOC), 2009.

[7] R. Barga and D. B. Gannon, “Scientific vs. business
workflows,” in: I. Taylor, E. Deelman, D. B. Gannon, and M.
Shields (Eds.), “Workflows for e-Science—Scientific
workflows for grids,” Springer, 2007, pp. 9–18.

[8] G. Vossen and M. Weske, “The WASA approach to workflow
management for scientific applications,” Workflow
Management Systems and Interoperability, NATO ASI Series
F: Computer and System Sciences, vol. 164, Springer, 1998,
pp. 145–164.

[9] M. Sonntag and D. Karastoyanova, “Next generation
interactive scientific experimenting based on the workflow
technology,” Proc. of the 21st IASTED International
Conference on Modelling and Simulation (MS), 2010.

[10] H. Eberle, O. Kopp, F. Leymann, and T. Unger, “Retry scopes
to enable robust workflow execution in pervasive
environments,” Proc. of the 2nd Workshop on Monitoring,
Adaptation and Beyond (MONA+), 2009.

[11] Oracle BPEL Process Manager,
http://www.oracle.com/us/products/middleware/application-
server/bpel-home-066588.html

[12] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi,
“Pegasus: Mapping large-scale workflows to distributed
ressources,” In: I. Taylor, E. Deelman, D. B. Gannon, and M.
Shields (Eds.), “Workflows for e-Science—Scientific
workflows for grids,” Springer, 2007, pp. 376–394.

[13] H. Garcia-Molina and K. Salem, “Sagas,” Proc. of the ACM
Sigmod International Conference on Management of Data,
pp. 249–259, 1987, doi:10.1145/38713.38742.

[14] Object Management Group (OMG), “Business Process
Modeling Notation (BPMN) Version 1.2,” OMG
Specification, 2009.

[15] OASIS, “Web Services Business Process Execution Language
(BPEL) Version 2.0,” OASIS Standard, 2007,
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html

[16] M. Reichert, P. Dadam, and T. Bauer, “Dealing with forward
and backward jumps in workflow management systems,”
International Journal of Software and Systems Modeling
(SOSYM), vol. 2(1), 2003, pp. 37–58.

[17] R. Khalaf, “Supporting business process fragmentation while
maintaining operational semantics: a BPEL perspective,”
Doctoral Thesis, ISBN: 978-3-86624-344-6, 2008.

[18] Workflow Management Coalition, “Audit Data Specification,
Version 1.1,” WfMC Specification, 1998.

[19] W. M. P. van der Aalst, “The application of Petri nets to
workflow management,” Journal of Circuits, Systems and
Computers, vol. 8(1), 1998, pp. 21–66.

[20] World Wide Web Consortium (W3C), “Web Services
Addressing 1.0 – Core,” W3C Recommendation, 2006,
http://www.w3.org/TR/ws-addr-core/

[21] Apache Software Foundation, “Apache Orchestration Director
Engine (ODE),” http://ode.apache.org/

[22] Eclipse BPEL Project, “Eclipse BPEL Designer,”
http://www.eclipse.org/bpel

[23] F. Leymann, “Supporting business transactions via partial
backward recovery in workflow management systems,” Proc.
of the Conference on Database Systems for Business,
Technology and Web (BTW), Springer, 1995.

[24] D. Chiu, Q. Li, and K. Karlapalem, “A meta modeling
approach to workflow management systems supporting
exception handling,” Journal of Information Systems,
Elsevier, vol. 24(2), 1999, pp. 159–184.

[25] Apache Software Foundation, “Failure and Recovery in
Apache ODE,” http://ode.apache.org/activity-failure-and-
recovery.html

[26] P. Greenfield, A. Fekete, J. Jang, and D. Kuo, “Compensation
is not enough,” Proc. of the 7th International Enterprise
Distributed Object Computing Conference (EDOC), 2003.

[27] D. Karastoyanova, F. Leymann, and A. Buchmann, “An
approach to parameterizing Web service flows,” Proc. of the
3rd International Conference on Service Oriented Computing
(ICSOC), 2005, pp. 533–538, doi:10.1007/11596141_45.

[28] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P.
Li, and T. Oinn, “Taverna: a tool for building and running
workflows of services,” Journal of Nucleic Acids Research,
vol. 34, Web Server issue, 2006, pp. 729–732,
doi:10.1093/nar/gkl320.

[29] E. Deelman, D. B. Gannon, M. Shields, and I. Taylor,
“Workflows and e-Science: An overview of workflow system
features and capabilities,” International Journal of Future
Generation Computer Systems, Elsevier Science Publishers,
vol. 25(5), 2009.pp. 528–540.

[30] I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance
collection support in the Kepler scientific workflow system,”
International Provenance and Annotation Workshop (IPAW),
Springer, LNCS, vol. 4145, 2006, pp. 118–132.

[31] Z. Luo, “Checkpointing for workflow recovery,” Proc. of the
38th ACM Southeast Regional Conference, 2000, pp. 79–80,
doi:10.1145/1127716.1127735.

[32] S. Urban, L. Gao, R. Shrestha, and A. Courter, “Achieving
recovery in service composition with assurance points and
integration rules (short paper),” Proc. of the OTM
Conferences (1), 2010, pp. 428–437.

[33] S. Marzouk, A. J. Maâlej, and M. Jmaiel, “Aspect-oriented
checkpointing approach of composed Web services,” Proc. of
the 1st Workshop on Engineering SOA and the Web (ESW),
Springer, LNCS, vol. 6385, 2010, pp. 301–312.

[34] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M.
P. van der Aalst, “Process flexibility: a survey of
contemporary approaches,” Proc. of the 4th International
Workshop CIAO! and the 4th International Workshop
EOMAS, Springer, LNBIP, vol. 10, 2008, pp. 16–30.

All links were last checked on June 26, 2012.

