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Abstract—The repeated execution of workflow logic is usually 
modeled with loop constructs in the workflow model. But there 
are cases where it is not known at design time that a subset of 
activities has to be rerun during workflow execution. For 
instance in e-Science, scientists might have to spontaneously 
repeat a part of an experiment modeled and executed as 
workflow in order to gain meaningful results. In general, a 
manually triggered ad hoc rerun enables users reacting to 
unforeseen problems and thus improves workflow robustness. 
It allows natural scientists steering the convergence of scientific 
results, business analysts controlling their analyses results, and 
it facilitates an explorative workflow development as required 
in scientific workflows. In this paper, two operations are 
formalized for a manually enforced repeated enactment of 
activities, the iteration and the re-execution. The focus thereby 
lies on an arbitrary, user-selected activity as a starting point of 
the rerun. Important topics discussed in this context are 
handling of data, rerun of activities in activity sequences as 
well as in parallel and alternative branches, implications on the 
communication with partners/services and the application of 
the concept to workflow languages with hierarchically nested 
activities. Since the operations are defined on a meta-model 
level, they can be implemented for different workflow 
languages and engines. 

Keywords-workflow ad hoc adaptation; iteration; re-
execution; service composition 

I. INTRODUCTION 

Imperative workflow languages are used to describe all 
possible paths through a process. On the one hand, this 
ensures the exact execution of the modeled behavior without 
deviations. On the other hand, it is difficult, if not 
impossible, to react to unforeseeable and/or un-modeled 
situations that might happen during workflow execution, 
e.g., exceptions, changes in regulations in business 
processes, etc. This is the reason why flexibility features of 
workflows were identified as essential for the success of the 
technology in real world scenarios [2, 3, 4]. In [5], four 
possible modifications of running workflows are described 
as advanced functions of workflow systems: the deletion of 
steps, the insertion of intermediary steps, the inquiry of 
additional information, the iteration of steps.  

This paper focusses on the iteration of steps. Usually, 
iterations are explicitly modeled with loop constructs. 
However, not all eventualities can be accounted for in a 
process model prior to runtime. Imagine a process with an 

activity to invoke a service. At runtime, the service may 
become unavailable. The activity and hence the process will 
fail, leading to a loss of time and data, if the underlying 
service middleware cannot tackle the problem with failing 
services. An ad hoc operation to rerun the activity (maybe 
with modified input parameters) could prevent this situation.  

 

 
Figure 1.  Example for the flexible development of a scientific workflow 

(borrowed from [6]) 

The repetition of workflow logic is not only meaningful 
for handling faults. In the area of scientific workflows, the 
result of scientific experiments or simulations is not always 
known a priori [6, 7, 8, 9]. Scientists may need to take 
adaptive actions during workflow execution. In this context, 
rerunning activities is basically useful to enforce the 
convergence of results, e.g., redo the generation of a Finite 
Element Method (FEM) grid to refine a certain area in the 
grid, repeat the visualization of results to obtain an image 
with focus on another aspect of a simulated object, enforce 
the execution of an additional simulation time step. A 
simplified example for an explorative development of a 
scientific workflow is given in Figure 1 (the example is 
borrowed from [6]). In this scenario, a scientist wants to 
perform a search for a DNA sequence in a particular genome 
using a Blat Web service. He models a workflow with three 



tasks and puts them in the order presented in (Figure 1a): 
“Execute MobyBlat” invokes the scientific Web service; 
“Create User” creates the input for MobyBlat containing a 
specific database to search in and providing user credentials; 
“Create BlatJob” configures the search operation and 
contains the DNA sequence to search for in the selected 
genome. The scientist runs this workflow (Figure 1a). He 
takes a look at the result of the MobyBlat service and 
discovers that the result format is a MOBY-S XML object. 
The result object contains a URL to the final result, the Blat 
report. In order to download the report he adapts the running 
workflow by appending two additional tasks: “Extract URL” 
gets the URL to the Blat report out of the MOBY-S XML 
object; “Run Perl Script” starts a Perl script that downloads 
the report (Figure 1b). The scientist inspects the downloaded 
report and recognizes that it has an inappropriate format. 
Hence, he reruns the workflow from the “Create BlatJob” 
task on (Figure 1c). In this second execution, he configures 
the BlatJob so that the Blat Web service delivers the 
expected format (Figure 1d). With this the scientist finishes 
the development of this scientific workflow in an iterative 
manner. The ad hoc adaptation of the workflow and the ad 
hoc rerun operation prevent a loss of data, time and money 
compared to a restart of the complete workflow and hence 
the creation of a new workflow instance. This is especially 
the case for long-running (scientific) workflows. In the 
example, the scientist does not have to provide the input for 
the “Create User” task again. There are other scenarios 
where the visualization of scientific results is repeated 
several times with different parameters without a need to 
rerun the complete long-running scientific simulation.  

A significant number of approaches exist for enabling the 
repetition of activities in workflows. Existing approaches use 
modeling constructs (e.g., loops, BPEL retry scopes [10]), 
workflow configurations (e.g., Oracle BPM [11]), or an 
automatic rerun of faulted activities (e.g., Pegasus [12]) to 
realize the repeated execution of workflow parts. An 
approach for the ad hoc repetition of workflow logic with an 
arbitrary starting point that was user-selected at runtime is 
currently missing in industrial workflow engines and 
insufficiently addressed in research. Such functionality is 
useful in both business and scientific workflows. In business 
workflows it can help to address faulty situations, especially 
those where a rerun of a single faulted activity (usually a 
service invocation) is insufficient, or changes in the control 
logic needed to address new requirements. In scientific 
workflows it is one missing puzzle piece to enable 
explorative workflow development [7, 8] and to control and 
steer the convergence of results.  

This paper therefore focusses on enabling the rerun of 
activities in workflows from arbitrary points in the workflow 
model. Two operations on workflow instances are 
formalized to enforce the repetition of workflow logic: the 
iteration works like a loop that reruns a number of activities; 
the re-execution undoes work completed by a set of activities 
with the help of compensation techniques prior to the 
repetition of the same activities. The operations are defined 
on the level of the workflow meta-model. Thus, the 
operations can be implemented in different workflow 

languages and engines. Problems such as data handling 
issues, the communication with partners, or how the concept 
can be applied in workflow languages with block structures 
are identified and discussed. This paper is a logical 
continuation of our work presented in [1]. Note that the 
terms “workflow” and “process” are used interchangeably. 

The rest of the paper is organized as follows. Section II 
shows the workflow meta-model used in this work. Section 
III describes the iterate and re-execute operations. Section 
IV addresses data handling issues and Section V applies the 
approach in more complex workflow graphs including 
parallel and alternative branches. Section VI discusses 
implications of the approach on message-receiving and 
message-sending activities, on reruns within loops, and on 
reruns in workflow languages with block structures. Section 
VII shows how users interact with a workflow system that 
implements the manually enforced repetition of workflow 
logic. Section VIII is devoted to the prototypical 
implementation of the concepts based on BPEL. Section IX 
presents work related to the research topic of this paper. 
Finally, Section X concludes the paper. 

II. META-MODEL 

The workflow meta-model used in this paper is based on 
the one provided in [5]. It is adapted where appropriate in 
order to accommodate the aspects needed to describe the 
repeated execution of workflow logic. A process model is 
considered a directed, acyclic graph (Figure 2). The nodes 
are tasks to be performed (i.e., activities). The edges are 
control connectors (or links) and prescribe the execution 
order of activities. Data dependencies are represented by 
variables that are read and written by activities. In the 
description of the meta-model (S) is used as the power set 
of a given set S.  
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Figure 2.  Example for a process model 

A. Modeling 

A workflow model can be expressed with the help of sets 
for the different workflow elements defined in the following. 

Definition “Variables, V”. The set of variables defines all 
variables of a process model: 

 V Í M ´ S (1) 

M is the set of names and S denotes the set of data 
structures. Each v Î V has assigned a finite set of possible 
values, its domain DOM(v) [5]. 

Definition “Activities, A”. Activities are functions that 
perform tasks. The set of all activities of a process model is  



 A Í M ´ C. (2) 

C is the set of all conditions in a process model and is 
used here as join condition for an activity. If j Î C evaluates 

to true at runtime, the activity is instantiated and scheduled 
(i.e. the navigator is going to execute the activity). Variables 
can be assigned to activities via an input variable map  

 i: A ↦ (V) (3) 

and an output variable map  

 o: A ↦ (V). (4) 

Input variables may provide data to activities and 
activities may write data into output variables. Furthermore, 
compensating activities that undo the effects of an activity 
can be assigned by a compensate activity map  

 c: A ↦ A  

This map reflects the concept that activities can be 
considered as pairs consisting of an activity and its 
compensating activity. The idea is geared towards the 
approach of sagas [13]: The workflow can thereby be 
considered as a long-lived transaction implemented as saga, 
i.e. as non-atomic transaction that consists of a sequence of 
atomic sub-transactions T1, …, Tn; an activity a Î A with a 
compensating activity is like an atomic sub-transaction Tj in 
a saga, and the compensating activity c(a) can be compared 
to a compensating transaction Cj. 

Definition “Links, L”. The set that denotes all control 
connectors/links in a process model is 

 L Í A ´ A ´ C. (6) 

Each link connects a source with a target activity. Its 
transition condition t Î C determines at runtime if the link is 
followed. Two activities can be connected with at most one 
link (i.e., links are unique).  

Definition “Process Model, G”. A process model is a 
directed acyclic graph denoted by a tuple  

 G = (m, V, A, L) (7) 

with a name m Î M. 

B. Execution And Navigation 

For the execution of a process model, a new process 
instance of that model is created, activities are scheduled and 
performed, links are evaluated, and variables are read and 
written. These tasks (i.e., the navigation) are conducted 
according to certain rules. The component of a workflow 

system that supervises workflow execution and that 
implements these rules is called the navigator. The notion of 
time in the meta-model is reflected with ascending natural 
numbers. Each process instance possesses its own timeline. 
At time 0 Î Գ a process is instantiated. Each navigation step 
increases the time by 1. In the following, the navigation rules 
that are most important for this work are presented. 

If an activity is executed, an activity instance is created 
with a new unique id. If the same activity is executed again 
(e.g., because it belongs to a loop), another activity instance 
is created with another id. The same holds for links and link 
instances. A new id can be generated with the function 
newId() that delivers an element of the set of ids, ID. 

Process, activity and link instances are considered sets of 
tuples. This allows navigating through a process by using set 
operations. Navigation steps are conducted by creating new 
tuples and adding them to sets (instantiation of an activity/a 
link) or by deleting tuples from sets and adding modified 
tuples (to change the state of existing activity/link instances). 

Definition “Variable Instances, VI”. Variable instances 
provide a concrete value c for a variable v (i.e., an element of 
its domain) at a point in time t. The finite set of variable 
instances is denoted as  

 VI = {(v, c, t) | v Î V, c Î DOM(v), t Î Գ}. (8) 

The set of all possible variable instances is VI
all. 

Definition “Activity Instances, AI”. The set of activity 
instances is denoted as  

 AI = {(id, a, s, t) | id Î ID, a Î A, s Î S, t Î Գ}. (9) 

At a point in time t an activity instance a Î AI has an 

execution state s Î S = {S, E, C, F, T, COMP, D}. The meaning 
of the states is as follows: 

 S, scheduled: The activity is in the execution queue of 
the navigator but not yet running. The navigator is 
going to execute the activity in future. 

 E, executing: The activity is running. 
 C, completed: The activity was successfully executed. 
 F, faulted: A fault happened during activity execution. 
 T, terminated: Abortion of a scheduled or executing 

activity by the user. 
 COMP, compensated: The compensation activity 

c(model(a)) was executed successfully for a completed 
activity. 

 D, dead: The activity is located in a dead path, i.e., a 
path with links evaluated to false. It was neither 
scheduled nor executed.  

 
The function model(a) for an activity instance a = (id, a, 

s, t) Î AI delivers its activity model a. Note that there is at 
most one instance of an activity in AI. That way AI exactly 



reflects the process instance state in the current iteration. 
There is no influence by activity states from former 
iterations. While this condition is inherent for workflows 
without loops, it must be explicitly ensured by the navigator 
component of the workflow engine for more complex 
workflow executions including loops or manual ad hoc 
reruns of activities (in the focus of this work).  

In the following, three sets are defined that help to 
capture the state of a process instance and that are used to 
navigate through a process model graph. These sets extend 
the meta-model described in [5].  

Definition “Active Activities, AA”. The finite set of active 
activities AA contains all activity instances that are scheduled 
or currently being executed:  

 AA Í AI, "a Î AA: state(a) Î {S, E}. (10) 

The function state(a) for an activity instance a = (id, a, 
s, t) Î AI returns its current state s Î S. 

Definition “Finished Activities, AF”. The finite set of 
finished activities AF contains all activity instances that are 
completed, faulted, terminated, or dead:  

 AF Í AI, "a Î AF: state(a) Î {C, F, T, D}. (11) 

This set is needed to assure a preconditions for the 
repetition of activities and for the compensation of already 
completed work. Note that compensated activities are not 
part of AF because their effects are undone.  

Definition “Evaluated Links, LE”. The finite set of 
evaluated links LE contains link instances whose transition 
condition is already interpreted. Link instances refer to the 
instantiated link l, have a truth value c for the evaluated 
transition condition and an execution time t:  

 LE = {(l, c, t) | l Î L, c Î {true, false}, t Î Գ}.  (12) 

Note that each link has at most one link instance in LE for 
one process instance. If a link is evaluated repeatedly (e.g., 
due to a loop or a manual ad hoc rerun), the old link instance 
must be removed from LE. This is ensured by the navigator 
component of the workflow engine in order to prevent an 
interference of link instances of different workflow 
iterations. Note that the set of evaluated links is usually not 
part of the context of a workflow instance in typical 
workflow engines (cf. [5, 14, 15]). The link state (i.e., the 
truth value c) is only important to evaluate the join condition 
of the link’s target activity and can be thrown away 
afterwards. In this work, the context of process instances is 
extended by storing the truth value for all evaluated links 
because it is needed for a correct join behavior if join 
activities are rerun. The set LE is very similar to the markings 
of control connectors known from ADEPT [3, 16]. 

Definition “Wavefront, W”. The set of all active activities 
and evaluated links, for which the target activity is not yet 
scheduled, is called the process instance’s wavefront  

 W = AA ∪ LA (13) 

with LA Í LE, "l Î LA: ∄a Î AA ∪ AF: 

target(model(l)) = model(a). The function model(l) for a 
link instance l = (l, c, t) Î LE delivers its link model l. The 

function target(l) for a link l = (a, b, c) Î L returns its 
target activity b. 

Definition “Process Instance, pg”. An instance for a process 
model g is now defined as a tuple  

 pg = (VI, AA, AF, LE). (14) 

 

TABLE I.  THE NAVIGATION EXAMPLE SHOWS HOW THE WORKFLOW ENGINE EXECUTES A WORKFLOW INSTANCE BY SET OPERATIONS. 

Time VI AA AF LE 
1 {(number, 100, 1)}  {} {} 
2 {(number, 100, 1)} {(382, a, S, 2)} {} {} 
3 {(number, 100, 1)} {(382, a, E, 3)} {} {} 
4 {(number, 100, 1) , (number, 101, 4)} {(382, a, E, 3) {} {} 
5 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {} 
6 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6)} 
7 {(number, 100, 1) , (number, 101, 4)} {} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)} 
8 {(number, 100, 1) , (number, 101, 4)} {(383, b, S, 8)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)} 
9 {(number, 100, 1) , (number, 101, 4)} {(383, b, E, 9)} {(382, a, C, 5)} {(a-b, true, 6), (a-c, false, 7)} 
10 … … … … 

 
The set of all process instances is denoted as Pall. As 

navigation example consider the workflow model in Figure 2 
and a corresponding workflow instance in Table 1. Say the 
workflow is instantiated and the variable number Î V is 

initialized with 100 (time step 1). Then, activity a Î A is 
scheduled (2) and executed (3). Suppose activity a models 

the invocation of a program that increases a given number by 
1. The variable “number” is used as input value for this 
operation and is hence updated (4), i.e., the tuple 
representing the variable instance is substituted. Activity a 
completes and its corresponding instance tuple is deleted 
from AA and a new tuple containing the new activity instance 
state with increased time step is added to AF (5). Now the 



navigator evaluates the transition condition of the links a-b 
and a-c; a-b’s condition evaluates to true (6), a-c’s to 
false (7). As a consequence, the target activity of a-b is 
scheduled and executed (8 and 9). Note that even though the 
navigator manipulates the tuples, all these actions are 
recorded in the audit trail [5]. 

III. ITERATION AND RE-EXECUTION 

Based on the meta-model described above the repeated 
execution of workflow parts is described in this section. As 
already proposed in [10], two repetition operations are 
thereby distinguished. The first operation, iteration, reruns 
workflow parts without taking corrective actions or undoing 
already completed work. The second operation, re-execution, 
resets the workflow context and execution environment with 
compensation techniques prior to the rerun (e.g., de-
allocating reserved computing resources, undoing completed 
work).  
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Figure 3.  Example of a process instance 

Before going into the details of the iteration of workflow 
parts several important terms are introduced (see Figure 3). 
The point from where a workflow part is executed repeatedly 
is denoted as the start activity (activity c in the figure). The 
start activity is chosen manually by the user/scientist at 
workflow runtime. The workflow logic from the start activity 
to those active activities and active links that are reachable 
from the start activity are called iteration body (activities c, 
e, f, g, i, j, the links in between and link g-k). The iteration 
body is the logic that is executed repeatedly. Note that 
activities/links reachable from the iteration body but not in 

the iteration body are executed normally when the control 
flow reaches them (e.g., activities k and l).  

For the iteration/re-execution of logic it is important to 
avoid race conditions, i.e., situations where two or more 
distinct executions of one and the same path are running in 
parallel. These situations can occur in cyclic workflow 
graphs or can be introduced by the manual rerun of activities 
this work deals with. For example, if the repetition is started 
from activity c in Figure 3, a race condition emerges because 
activities i and j on the same path are still running: activity l 
could be started if i and j complete while a competing run is 
started at c. There are two ways to avoid race conditions in 
this scenario. Firstly, the workflow system can wait until the 
running activities in the iteration body are finished without 
scheduling any successor activities (here: l). The rerun is 
triggered afterwards. Secondly, running activities in the 
iteration body can be terminated and the rerun can start 
immediately. A workflow system should provide both 
options to the users. In some cases it is meaningful to 
complete running work prior to the rerun (e.g., to reach a 
consistent system state), in other cases an abortion is a better 
choice (e.g., because the result of running work is 
unimportant or the activities being executed are long-
running). This has to be decided on a per-case-basis by the 
user. In the rest of the paper the focus lies on the option 
“termination” since it is more complex and requires one step 
more than the option “wait for completion”. However, “wait 
for completion” can be derived from the descriptions by 
omitting the explicit termination of activities in the 
examples. 

Definition “Activities in Iteration Body”. A function is 
needed that finds all activity instances in the iteration body 
of an activity in a given process instance. The function is 
useful for terminating active activities in the iteration body 
(or for waiting for their completion) to avoid race conditions 
and for resetting finished activities to avoid interference of 
activity execution states in different activity runs: 

 activitiesInIterationBody: A ´ Pall ↦ (AI) (15) 

Let a Î A be an activity in process model g and pg Î Pall 

an instance of g. Then activitiesInIterationBody(a, 
pg) = {a1, …, ak}, a1, …, ak Î AI  "i Î {1, …, k}: 

model(ai) is reachable from activity a. An algorithm for the 
“activities in iteration body” function can be implemented by 
walking through the workflow graph beginning with activity 
a until the wavefront or an already visited activity is reached. 
The activity instance for each considered activity is stored. 
Since each activity is visited at most once, the algorithm is in 
O(n), with n as the number of activities in the workflow 
model. 

Race conditions can also occur if evaluated links in the 
iteration body remain in the process instance. In Figure 3, a 
race condition could appear as follows. If activity h 
completes and the link h-k is evaluated, the join condition of 
activity k could become true. Activity k would then be 
started although a competing execution of the same path 



arises due to the repetition of activity c. That is why such 
links have to be found and reset, i.e., they are deleted from 
the set of evaluated links LE. 

Definition “Links in Iteration Body”. A function is needed 
that finds all evaluated links in the iteration body in a given 
activity and process instance: 

 linksInIterationBody: A ´ Pall ↦ (LE) (16) 

Let a Î A be an activity of process model g and pg Î Pall 

an instance of g. Then linksInIterationBody(a, pg) = 
{l1, …, lk}, l1, …, lk Î LE  "i Î {1, …, k}: model(li) is 
reachable from activity a. An algorithm for the “links in 
iteration body” function can be implemented by traversing 
the workflow graph starting from activity a. Each path has to 
be followed only until the wavefront or an already visited 
activity is reached. Since each link is visited at most once, 
the complexity of such an algorithm is in O(n), where n is 
the number of activities in the workflow model. 

A. Iteration 

Parts of a workflow may be repeated without the need to 
undo any formerly completed work. A scientist may want to 
enforce the convergence of experiment results and therefore 
repeats some steps of a scientific workflow.  

Definition “Iterate Operation”. The iteration is a function 
that repeats logic of a process model for a given process 
instance. A specified activity is the starting point of the 
operation. The input data elements for the iteration are either 
the current variable values or are loaded from a specified 
variable snapshot that belongs to the start activity.  

 : A ´ Pall ↦ Pall (17) 

Let a Î A be the start activity of the iteration and 

p_ing, p_outg Î Pall two process instances. Here, p_ing is the 

input for the  operation and p_outg  is the resulting instance 
with changed state that is ready to start with the iteration. 
The pre-condition is that only already instantiated but no 
dead activities can be used as start activity:  

 $n Î AA ∪ AF: state(n) ∉ {D} ∧ model(n) = a. (18) 

This prevents (1) using the operation on dead paths and 
(2) jumping into the future of a process instance, which are 
both not a repetition of completed workflow logic.  

Then (a, p_ing) = p_outg, p_ing = (VI
in, A

A
in, A

F
in, L

E
in) 

and p_outg  = (VI
out, A

A
out, A

F
out, L

E
out) : 

1. VI
out = VI

in 
2. AA

out = AA
in \ activitiesInIterationBody(a, p_ing) ∪ 

{(newId(), a, S, t)}, t is a new and youngest time step 
3. AF

out = AF
in \ activitiesInIterationBody(a, p_ing) 

4. LE
out = LE

in \ linksInIterationBody(a, p_ing) 

The variables remain unchanged (1.). This reflects the 
case where the current variable values are taken as input for 
the iteration. All active successor activities from a are 
terminated, i.e., deleted from the set of running activities AA 
(2.). All finished activities in the iteration body are reset, i.e., 
removed from the set of finished activities AF (3.). All 
evaluated links in the iteration body are reset, i.e., their 
evaluation result is deleted from the set of evaluated links LE 
(4.). The start activity is scheduled (added to the set of active 
activities with status scheduled, S) so that the workflow logic 
is repeated beginning with the start activity (2.). The join 
condition of the start activity is not evaluated again. 

In the second case of the  operation, a variable snapshot 
is loaded prior to the iteration. The loaded variable values are 
taken as input for the iteration: 

1. VI
out = VI

in ∪ loadSnapshot(b, p_ing, e, V’) 
Here, b Î A is the activity to load the snapshot for (the 

start activity or a predecessor thereof), e Î Գ is the execution 
number of b needed to select the correct snapshot instance, 
V’ Í V is a subset of variables to be loaded from the 
snapshot. The complete definition of the function can be 
found in Section IV in (21). Shapshots are stored during 
process execution before each activity that modifies 
variables. A snapshot is uniquely addressed by its 
corresponding activity b and an execution number e. The 
latter is needed because there can be several snapshot 
instances for an activity—one for each activity execution. 
The subset of variables V’ can be specified by the user to 
select particular variables that should be loaded from a 
snapshot. That means it is possible to load only a part of a 
snapshot. This is especially important for iterations in 
parallel paths. Variables that are not loaded from the 
snapshot have the same value as in the original process 
instance p_ing. For more details about data handling see 
Section IV. 
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Figure 4.  Iteration in a sequence of activities. The user requests the 

iteration of activities (a). The iteration body is reset and active activities are 
terminated (b). Finally, the start activity of the iteration is scheduled (c). 

As an example for the ad hoc iteration of workflow logic 
consider Figure 4. There is a sequence of activities. Activity 
e is currently being executed. The user wants to iterate the 
workflow with activity b as start activity (Figure 4a). The 
path from b to the wavefront is traversed, visited links are 
reset (b-c, c-d and d-e in the example), and scheduled or 



running activities are terminated (activity e), as shown in 
Figure 4b. Finally, a data snapshot is loaded (if requested by 
the user) and the start activity (b) is scheduled (Figure 4c). 

B. Re-execution 

It is also needed to repeat parts of a workflow as if they 
were executed for the first time. Completed work in the 
iteration body has to be reversed/compensated prior to the 
repetition. A scientist may want to retry a part of an 
experiment because something went wrong. But the 
execution environment has to be reset first (e.g. stateful 
services have to be set to their initial state, computing 
resources have to be released).  

Algorithm “Compensate Iteration Body”. For the 
compensation of completed work in the iteration body an 
algorithm with the following signature is defined: 

 compensateIterationBody: A ´ Pall ↦ (VI
all) (19) 

The function compensates all completed activities of the 
iteration body in reverse execution order. It delivers the 
values of variables that were changed during compensation. 
Let a Î A be the start activity of the re-execution and p Î Pall 
a process instance for the model of activity a. Then 
compensateIterationBody(a, p) = {v1, …, vk} with p = 
(VI, AA, AF, LE), v1, … , vk Î VI

all works as follows (Note: 

The function time(f) with f Î AI delivers the time of the last 
state change of activity instance f.): 

 
function compensateIterationBody(a, p) 
1 Vresult ← Æ 

2 F = {f Î AF | state(f) == completed  
model(f) is reachable from a} 

3 while (|F| > 0) do 
4 if |F| > 1 then 

5 $m Î F: "n Î F, n ¹ m: 

time(m) > time(n)  execute 
compensating activity c(model(m)) 

6 else  

7 $m Î F  execute compensating 
activity c(model(m)) 

8 end if 
9 F ← F \ {m} 
10 for each (v Î o(c(model(m)))) do  

11 if ($w Î Vresult: model(w) = v) then 
12 Vresult ← Vresult \ {w} 
13 end if 
14 Vresult ← Vresult	 ∪ {(v, c, t)}, c is the 

new value of variable v, t is the 
timestamp of the assignment 

15 end for 
16 end while 
17 return Vresult 
 
A similar algorithm for the creation of the reverse order 

graph is also proposed in [17]. But the intention of the 

Algorithm “Compensate Iteration Body” is to deliver the 
changed variable values as result of the compensation 
operation. 

Definition “Re-execute Operation”. The re-execution is a 
function that repeats logic of a process model for a given 
process instance with a given activity as starting point. The 
input data for the re-execution is taken from a variable 
snapshot that belongs to the start activity or a predecessor of 
the start activity. The “re-execute” uses the “compensate” 
operation to reset already completed work in the iteration 
body. 

 : A ´ Pall ↦ Pall (20) 

The start activity a Î A, the process instances 

p_ing, p_outg Î Pall, and the pre-condition are similar to the 
iterate operation. The difference is the calculation of VI

out: 
(a, p_ing) = p_outg : 

1. VI
out = VI

in ∪ compensateIterationBody(a, p_ing) 
∪ loadSnapshot(b, p_ing, t, V’). 

The variable values might be modified as a result of the 
compensation of completed work in the iteration body or by 
loading a data snapshot (1.). Note that the start activity for 
the re-execution is scheduled after the compensation is done 
and the snapshot is loaded. 

An example for the re-execution of activities is given in 
Figure 5. In a sequence of activities, activity e is currently 
being executed. The user decides to re-execute the workflow 
from activity b (Figure 5a). The path from b to the wavefront 
(activity e) is followed. All links on this path are reset (links 
b-c, c-d, and d-e) and all activities in the wavefront reachable 
from b are terminated (activity e). Now, all completed 
activities in the iteration body are compensated in reverse 
execution order (Figure 5b). Note that only completed 
activities with an attached compensation activity can be 
compensated. Finally, a data snapshot is loaded and the start 
activity is scheduled (Figure 5c). 
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Figure 5.  Re-execution in a sequence of activities. The user wants to re-

execute activities (a). The iteration body is reset, active activities are 
terminated, and completed activities are compensated in reverse execution 
order (b). Finally, a data snapshot is loaded and the start activity for the re-

execution is scheduled (c). 



In practice, compensation of already completed work is 
not always possible. An invoked service must provide an 
operation to undo the results of a former request. For 
instance, a service with an operation to book a hotel room 
should also provide an operation to cancel the booking. The 
 operation relies on such compensation operations of 
services to conduct the compensation of already completed 
workflow logic in the iteration body. It is up to the person 
that models the considered workflow to integrate 
compensation logic in form of a compensating activity c(a) 
for an activity a. This is a prerequisite for the correct and 
desired functionality of the re-execution. 

IV. DATA HANDLING 

For the repetition of workflow parts the handling of data 
is of utmost importance. Some of the questions that arise are: 
Where to store data that the former iteration has produced? 
What data should be taken as input for the next iteration? A 
mechanism is needed to store different values for same 
variables and to load appropriate/correct variable values for 
iterations. Variables might also be reset by the compensation 
of the iteration body as is done in the “re-execute” operation. 
This strongly depends on the compensation logic and 
invoked services. But it cannot be guaranteed that the former 
variable values are restored by the compensation. Hence, 
another mechanism is needed. 

The desired functionality can be realized by saving 
snapshots of variables during workflow execution. Available 
workflow engines store an audit trail [5, 18] that contains, 
amongst others, values of variables changed by the 
successfully executed activities. However, the audit trail 
saves variables incoherently. The proposed snapshot 
mechanism contains only variables that are visible for a 
particular activity, their current values and a timestamp. The 
data footprint of snapshots can be minimized as follows: 
values for variables that did not change between two 
snapshots do not have to be stored again; pointers to the 
values of variables can be used to still be able to refer to 
them. 
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Figure 6.  Storing snapshots after variable-modifying activities (a) vs. 

storing snapshots before variable-modifying activities (b). 

Snapshots are stored with every activity that changes 
variables. If snapshots are saved after variable-changing 
activities, the workflow graph must always be traversed to 

find the correct snapshot for an “iterate” or “re-execute” 
operation. In Figure 6a, the workflow ought to be rerun from 
activity c. But the nearest previous snapshot of c belongs to 
activity a. Another approach is to store the snapshots before 
variable-changing activities. In Figure 6b, the rerun starts 
from the variable-modifying activity c and the snapshot of c 
can be loaded without a need to traverse the workflow graph. 
Storing snapshots before the execution of variable-changing 
activities renders the finding of a snapshot for the start 
activity of a rerun more efficient. 

However, if the start activity of a rerun is a non-variable-
changing activity, an algorithm is needed to find the nearest 
preceding snapshot. The simplest case is a sequence of 
activities. The snapshot to be considered belongs to the 
nearest preceding variable-modifying activity. In Figure 7a, 
the rerun is started from activity b, the corresponding 
snapshot to load belongs to b’s predecessor, activity a. A 
more complex case arises when there are competing 
snapshots in a parallel branching. In Figure 7b, the rerun is 
started from activity e. There are two nearest preceding 
snapshots located in the branching just before e, one for 
activity c and one for activity d. This conflict can be solved 
by the user by manually selecting the snapshot to load. An 
automatic solution would be to take the snapshot with the 
youngest timestamp.  
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Figure 7.  Iteration with non-snapshot activities as start activity with 

unique (a) and competing (b) snapshots. Iterations in parallel paths can 
cause the problem of lost updates (c). 

In parallel paths, the problem of lost updates might 
occur: loading a snapshot in one path might overwrite the 
result of a write operation in a parallel path. A simple 
example is given in Figure 7c. The two global variables A 
and B are both initialized with 0 by activity a. In the c/d-
branch, activity c increases A by 1 and activity d reads A; in 
the e/f-branch activity e increases B by 1 and activity f reads 
B. The snapshots of c and e have stored the initial values of 
A and B. Imagine that c and e are already executed and 
hence variables A and B have the value 1. Now, the user 
wants to rerun branch c/d starting with c. The snapshot of c 
is loaded. Both variables get the value 0, which is correct for 
A but means a lost update for B. The problem cannot be 
solved by loading another snapshot in the near environment 
of activity c (the snapshots of a, c and e have the same 



content). It must therefore be possible to load only a subset 
of variables stored in a snapshot. If this is done manually, the 
user must be able to gain insight into the content of 
snapshots and to determine the variables to load. An 
automatic solution is also feasible: all variables that are 
written in the iteration body can be selected out of the 
snapshot. In the example, the iteration body consists of 
activities c and d. The only write operation in the iteration 
body targets variable A. Hence, variable A can automatically 
be selected from the snapshot stored before c. 

Due to the rerun of activities (manually or in loops) there 
can be several snapshots for each variable-modifying 
activity—one snapshot for each execution of the activity. 
These multiple snapshots are called snapshot instances. The 
user must be given the means to select the particular 
snapshot instance to be used for the rerun; recommendations 
may facilitate correctness. In Figure 8, activities c and d of 
the sample workflow in Figure 7c are iterated multiple times. 
This leads to a chain of executions of activities c and d. The 
current value of variable A was taken for each rerun. There 
are now three snapshot instances for activity c with different 
values for variable A. Imagine the user wants to iterate again 
from c. Besides the start activity, he has to select the 
variables that should be loaded out of the snapshot (variable 
A) and the concrete snapshot instance. The snapshot instance 
is identifiable via the execution number of the corresponding 
activity. For example, the snapshot with A = 100 belongs to 
the 1st execution of activity c; A = 101 belongs to the 2nd 
execution of c; and so on. The selected variables of a 
snapshot instance are re-initialized according to the values 
stored in the snapshot. 
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Figure 8.  Multiple snapshot instances can exist for one activity. 

Now, a function to load snapshot instances can be 
defined. This function is used by the “iterate” and “re-
execute” operations to deliver the correct input for the next 
enforced run of the corresponding workflow logic.  

Definition “Load Snapshot”. The “load snapshot” function 
loads variable instances for a process instance and a subset of 
variables. The signature of the function is defined as follows: 

 loadSnapshot: A ´ Pall ´ Գ ´ (V) ↦ (VI). (21) 

Let a Î A be the activity the snapshot belongs to, 

pg Î Pall an instance of process model g, e Î Գ the execution 
number for activity a that identifies the snapshot instance, 
and V’ Î (V) the selected variables to load from the 

snapshot. Then loadSnapshot(a, pg, e, V’) = {v1, …, vn}, 

v1, …, vn Î VI  "k Î {1, …, n}: model(vk) Î V’, i.e., 
variable instances are loaded only for the given variables.  

V. REPETITION IN COMPLEX WORKFLOW GRAPHS 

In activity sequences, the wavefront consists only of a 
single element and there are no concurrent and hence no join 
nodes, which does not pose any complications for iteration 
and re-execution. This section shows the application of the 
two ad hoc rerun operations in complex workflow graphs 
with parallel and alternative branches. The most important 
issue to solve is to guarantee a correct behavior at join nodes 
when iterating or re-executing them. In common workflow 
languages, a join node is activated not until all incoming 
links are evaluated and the join condition is evaluated to 
true. Consider the example in Figure 9. The join node d has 
three predecessors, a, b and c. Only if the links a-d, b-d and 
c-d are followed, and the join condition of d is true, can d 
be scheduled (Figure 9a-c). This join behavior prevents (1) 
missing link values in the join condition of join nodes, and 
(2) race conditions, i.e., undesired multiple executions of join 
nodes or ambiguous behavior.  
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Figure 9.  Join behavior of the meta-model. A join activity cannot be 

executed unless all incoming links are evaluated (a-c). Typically, link states 
are not stored by the engine (d), which makes a rerun in parallel or 

alternative branches impossible (e and f). 

After the evaluation of the join condition, the values of 
incoming links of the corresponding activity are not needed 
anymore. Thus, link values are usually not stored beyond the 
context of the join node (Figure 9d). This is the typical way 
of dealing with links in conventional workflow engines. In 
Petri net-based workflows [19] and BPMN [14], link values 
are tokens that get consumed by the transition of a join node 
or a gateway, respectively. In BPEL [15], the link values are 
bound to boolean variables that are visible only in the 
context of the target activity instance. That means these 
variables are destroyed after the execution of the target 
activity and hence the old link states are lost. As a 
consequence, a join activity in the iteration body of an 
“iterate” or “re-execute” operation can lead to a deadlock. In 
Figure 9e, the iteration body consists of activity b and the 
join activity d. After the execution of b activity d would 
never be executed because of the missing states of links a-d 
and c-d (Figure 9f). Storing the set of evaluated links LE in 



the context of process instances (see Definitions “Evaluated 
Links” and “Process Instance”) helps solving this problem. 
The following different use cases show the application of the 
concept in different situations. 

A. Start activity is in a completed AND-branching 

The first case discussed is the one in which the start 
activity for the rerun is located in a parallel, already 
completed branch. That means the join activity that closes 
the branching is at least scheduled. Figure 10 shows an 
example of this case. The parallel branching of activities b to 
g is completed. The user requests an iteration or re-execution 
from activity c (Figure 10a). The path beginning with c is 
followed forward to the wavefront (Figure 10b). All links on 
this path are reset; all activities in the wavefront reachable 
from c are terminated (activity h). In case the user wants to 
re-execute the workflow logic, all completed activities on the 
path from the start activity c to the wavefront that have 
assigned a compensation activity (here: c, e and g) are 
compensated in reverse execution order. Note that the other 
path of the considered parallel branch, containing activities d 
and f, and the branch i to m remain unchanged. Finally, start 
activity c is scheduled (Figure 10c). The wavefront now 
consists of the activities l and c and the link f-g. In the course 
of the further execution of the process instance the join 
activity g can run normally since the state of link f-g is stored 
in LE. 
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Figure 10.  Rerun in an AND-branching. 

B. Start activity is in a completed XOR-branching 

The rerun in an already completed XOR-branching is 
very similar to the AND-branching case. In the meta-model, 
an XOR-branching is achieved with the help of mutual 
excluding transition conditions of outgoing links of split 
nodes. In Figure 11a, the link b-c was evaluated to true, 
whereas b-d is false. Hence, activities b through g 
implement an alternative branch. The path containing the 
link b-d, the activities d and f and the link f-g is dead. The 
join behavior in the meta-model requires all links to be 
evaluated before a join node can be executed. That is the 
reason why an algorithm for dead path elimination (DPE) is 
used to set all links in a dead path to false [5]. In the 
example, this holds for the links d-f and f-g. Activities on a 
dead path are not executed; their state is simply set to dead 
(activities d and f). In this scenario, the user wants to rerun 
the workflow from activity c which is located in the 
completed path of the XOR-branching. Due to the DPE and 
the set of all evaluated links LE, this case can now be 
addressed exactly the same way as the ad hoc rerun in 
completed AND-branches. 
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Figure 11.  Rerun in an XOR-branching. 

Note that there are cases where a branching in a process 
model can be an AND in some process instances and an 
XOR in other instances. It depends on the selected transition 
conditions and the process context (e.g. variable values) if 
one, all or a particular number of branches is followed during 
workflow execution. In BPMN, this behavior can be 
modeled with an inclusive gateway [14]. However, such 



cases are covered by the concept because links in dead 
branches are evaluated (to false) in the course of the DPE.  

C. Start activity is before a branching 

In this case, the start activity is located before a 
branching, i.e., the iteration body contains branching 
activities. In Figure 12a, the user reruns the workflow with b 
as start activity. The two outgoing links of b show that it is a 
branching activity. In order to address this case, all paths 
beginning with b are followed to the wavefront (Figure 12b). 
All visited links are deleted from LE (b-d, d-f, f-g, b-c and c-
e) and all visited scheduled or running activities are 
terminated (e). In the re-execute case, the reachable 
completed activities that can be compensated (c and d) are 
compensated in reverse execution order. After that, the start 
activity is scheduled (Figure 12c) and the workflow can be 
resumed.  
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Figure 12.  Rerun when the start activity is located before a branching. 

Figure 13a shows a more complex scenario. Note that the 
difference to the previous workflows is that link j-f was 
deleted and link d-k added. The user wants to rerun the 
workflow beginning with activity b. The iteration body thus 
contains two branching (b and d) and two join activities (g 
and k). All links on the path from b to the wavefront are reset 
and all scheduled/running activities are terminated (Figure 
13b). It is sufficient to visit the activities and links only once 
with the algorithm, like activities g and h and link g-h. In the 
re-execution case, the completed activities on the considered 
path are compensated in reverse execution order (g, f, e, d, 
and c). The start activity (b) is then scheduled and the rerun 
operation is complete (Figure 13c). 
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Figure 13.  Complex rerun scenario with several branches. 

D. Repetition in Dead Paths 

As shown above the concept to enforce the rerun of 
workflow logic can be applied in sequences of activities, in 
parallel and alternative branches, and in complex graphs. An 
interesting research question is (1) whether the start activity 
of a rerun can be located in a dead path and (2) whether such 
an operation would be meaningful. Note that there is a 
difference between a dead path and a path that is not (yet) 
executed. A dead path belongs to the past of the workflow 
instance while a not executed path is the future of the 
workflow instance. That means the latter is a jump to the 
future, that can be realized by a “skip” operation, which, 
however, is not part of this work. 

The precondition of the “iterate” and “re-execute” 
operation is that the state of the start activity is scheduled, 
executing, completed, faulted or terminated (see Section 
III.A). The iteration/re-execution in dead paths is thus not 
allowed. However, if this precondition was neglected, 
repeating activities in a dead path would technically be 
possible with the presented concept. As an example consider 
Figure 14a. The user requests the repetition of activity f, 
which is located in a dead path. As usual, the path from f to 
the wavefront is followed, links are reset (f-g and g-h), 
running activities terminated (h) and completed activities 
compensated (g, in case of a re-execute), as shown in Figure 
14b. Then, the start activity f is scheduled and can be 
executed when the workflow is resumed. Although 
conceptually feasible, the operation has several problems. 
The result is obviously an unrealistic execution history. 
Activity f gets executed although its predecessors d, i and j 
were not enacted (Figure 14c). Further, the operation is not 



really an iteration or a re-execution because at least the start 
activity was not executed before the operation. Hence, it is 
not a repeated execution of activities but rather an ad hoc 
change of a process instance that enforces the execution of a 
dead path. That is why the above-mentioned precondition 
prevents a repetition of activities in dead paths.  
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Figure 14.  Rerun in a dead path. 

However, although it is not recommend using the 
“iterate/re-execute” operation in dead paths, a workflow 
system implementing the approach should provide as much 
flexibility as possible for scientists or other users. The user 
must decide whether the operation helps to achieve the 
desired goals. With the help of the precondition the 
workflow system is able to detect that the user is about to 
conduct an ad hoc rerun in a dead path. The user should then 
be requested if he really wants to apply the operation in a 
dead path and if so, the system conducts the operation as 
shown in this section. 

VI. IMPLICATIONS ON THE EXECUTION CORRECTNESS 

Workflows consist of different activity types, e.g., for 
sending/receiving messages, loops, or variable assignment. 
The enforced repetition of workflow logic has to account for 
different activity types, especially those that interact with 
external entities such as clients, humans, or 
services/programs. The main problem is that the repetitions 
are not reflected in the workflow logic because they are an 
ad hoc user operation. Hence, the aforementioned external 
entities do not know a priori the exact behavior of the 
workflow. An uncoordinated rerun of workflow logic can 
lead to multiple invocations of services, multiple identical 

work items in the work list for human users or an infinite 
waiting for messages because the communication partner 
does not know that a message must be sent again. 

A. Message-receiving Activities 

If a message receiving activity is repeated, it would wait 
infinitely for the message because it was already consumed. 
Three cases can be distinguished to solve this problem. 
Firstly, the original message sent by the partner in a former 
iteration is taken as incoming message for the next run of the 
activity. However, if the activity was iterated several times, 
there may be different versions of the incoming message. 
The user then has to select the desired message.  
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Figure 15.  Repetition of a message-receiving activity. The communication 

partner is informed about the rerun of the activity over a special “rerun 
callback” operation. The partner then can re-send the message or send an 

adapted (i.e., updated) message to the engine. 

Secondly, the message sending partner re-sends the 
message or sends an adapted message. The partner needs to 
be informed about the repetition of the activity. A simple 
solution is that partners provide a special “rerun callback” 
that can be used by the workflow engine to propagate the 
iteration or re-execution. An architecture for this concept is 
shown in Figure 15. The workflow engine provides the 
“iterate” and “re-execute” operations. The considered 
workflow that is deployed on the engine implements two 
operations, one for its instantiation and one to receive a 
message from a service. The course of action in this setting is 
as follows. The user invokes (i.e., instantiates) the workflow 
(1). The workflow calls a matching service in an 
asynchronous manner (2) and provides a callback for the 
response (activity c). The invoked service creates the 
response message and sends it to the engine (3). The engine 
correlates the message to the particular workflow instance 
(e.g., via the instance id or some other information that 
uniquely identifies the workflow instance). Now the user 
decides to iterate the workflow logic with activity c as start 
activity and invokes the corresponding “iterate” operation 
(4). The workflow then waits again for the message of the 
service. The engine informs the partner about the iteration 
that took place in the workflow instance. This is done by 
invoking the special “rerun callback” provided by the partner 
(5) or a mechanism in the service infrastructure performing 
the same functionality. The engine’s message contains at 
least the following information: the original message of the 



partner (in case the partner did not persistently store the 
message), the engine’s address, and correlation information 
to identify the workflow instance. The partner then decides 
whether to re-send the message or to send an adapted one 
(6). Sending an adapted message is useful if the information 
distributed by the partner has to be updated (e.g., sensor 
data). The engine has to find the partners to be considered in 
order to invoke their “rerun callback”. It first searches for all 
message-receiving activities in the iteration body. Then, it 
determines the addresses of the related partners. The 
addresses can be found in the “ReplyTo” header field of a 
message received in a former run of the workflow logic (if 
WS-Addressing [20] is used). Or it is taken from a message 
that was sent to a partner by a message sending activity in 
the same workflow instance. This scenario has the 
disadvantage that it has many implications on the partners’ 
services and/or infrastructure and would be difficult to 
enable in a standard manner.  

Thirdly, message-receiving activities are usually related 
to message-sending activities. The workflow system or the 
user pays attention that if a message-receiving activity is 
iterated, its corresponding message-sending activity is 
iterated, too. The reason is that an incoming message is often 
the response to a message sent to a partner. Hence, repeating 
the invocation of the partner will make the partner send the 
message again to the workflow engine (or an adapted 
message with updated content). 

A workflow system that implements the ad hoc rerun 
should support all three cases. It depends on the implemented 
message exchange pattern, on the concrete function realized 
by the partner and on whether the partner is stateful or 
stateless to select (possibly with user-support ) the adequate 
mechanism for the repetition of message-receiving activities.  

B. Message-sending Activities 

The repetition of message sending activities is straight 
forward for idempotent services. Non-idempotent services 
should be compensated prior to a repeated invocation, as is 
done in the re-execution operation. If the iteration operation 
repeats the execution of non-idempotent services, then the 
user is responsible for the effect of the operation.  

C. Loops 

Iterations within modeled loops can have an 
unforeseeable impact on the behavior of workflows. The 
context of workflows might be changed in a way that leads 
to infinite loops (e.g., because the repetition changes variable 
values so that a while-condition can never evaluate to 
false). Usually, a workflow system provides operations to 
change variable values (e.g., in a process repair component). 
This functionality can be used to resolve infinite loops. 

It can also happen that the start activity of an iteration or 
re-execution is located within an already completed loop. 
The operation causes the loop to run again. In its first 
iteration the loop body begins with the start activity of the ad 
hoc rerun. From its possible second iteration on the complete 
loop body is executed. The user must be able to select the 
particular iteration of the loop that should be repeated. This 
can be done with the help of a variable snapshot loaded prior 

to the rerun because the former variable values represent the 
iteration of a loop (e.g., via a counter variable). 

D. Workflow Languages with Block Structures 

In practice, a workflow is not a simple graph consisting 
of nodes and edges. There are often also hierarchically 
nested elements. In BPMN, there is the concept of sub-
processes that are containers for arbitrary workflow logic 
[14]. BPEL offers structured activities (e.g., the sequence, 
flow, or while activity) that can contain other activities for 
a simplified modeling of complex workflows [15]. The rerun 
of activities in hierarchical structures has to account for 
parent-child-relationships of activities.  
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Figure 16.  Rerun in workflows with block-structures 

Figure 16 illustrates an example for the rerun in 
hierarchically nested activities. The process model contains a 
sequence of activities c and d followed by a parallel 
branching of f/g and i/j (Figure16a). Because of the nesting, 
the wavefront of the considered process instance (the shaded 
activities) is stretched across the complete process. All 
parent activities with at least one active child are also active. 
Hence, the termination and resetting of the path from the 
start activity to the wavefront is more complex. In the 
example, d is the start activity of the rerun (Figure 16a). The 
atomic activities d, f, g and i as well as the parent activities b, 
e and h have to be terminated or reset (Figure 16b). 
Moreover, the start activity cannot be simply scheduled. It 
must be checked whether the corresponding parent activity is 
active. If so, the start activity can be scheduled. If not, the 
parent must be scheduled instead of the start activity itself 
(and possibly the parent of the parent, etc.). It is important to 
make sure that, although the parent activity is scheduled, 
only a subset of its child activities will be executed. In Figure 



16c, the parent activity b of the start activity d is scheduled. 
But it must be ensured that activity c is not executed again. 
Realizing this behavior in a workflow engine is highly 
implementation-specific.  

E. Impact on Scopes 

In modern workflow languages such as BPMN or BPEL, 
the concept of scopes is used to denote containers for 
activities, data objects and correlation keys; they span 
transaction boundaries and specify fault handling logic as 
well as logic to handle incoming events. At the beginning of 
their execution, scopes initialize their context. That means 
fault handlers and event handlers are installed and local 
variables are instantiated.  

If a rerun is conducted with the start activity being 
located in an already completed scope, this scope has to be 
scheduled because of the parent-child relationship discussed 
before. The scope’s context has to be initialized again. In 
case of a re-execution, the scope’s effects have to be undone 
before the workflow can be resumed. Invoking the scope’s 
compensation handler undoes the work of the complete 
scope. This is the desired behavior only when the start 
activity is the first activity in the scope. Otherwise the 
specific compensation handler of the scope must not be 
executed, but rather only the compensation handlers of the 
activities following the identified start activity in the reverse 
execution order.  

The repetition of activities also has an impact on fault 
and compensation handlers attached to scopes. Fault and 
compensation handlers can be used to undo already 
completed work. If logic is rerun within these handlers, it 
must be ensured that the corresponding scopes are not 
compensated multiple times.  

VII. USER INTERACTION WITH THE WORKFLOW SYSTEM 

A workflow system that implements the ad hoc rerun of 
workflow logic must provide a monitoring tool that allows 
users to continuously follow the execution state of process 
instances (see Figure 17(1)). The user interacts with the 
system as follows. If the user detects a faulty or unintended 
situation, he can suspend the workflow (2) and manually 
trigger an iteration/re-execution (3). 
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Figure 17.  User interaction with a workflow system that implements the 

concept of the enforced repetition of workflow logic 

The workflow system asks him to specify which snapshot 
instance should be taken for the rerun and which contained 
variables should be loaded (4). The user can inspect different 
snapshot instances and the values of their variables in order 
to determine the desired snapshot instance (5). He specifies 
the snapshot instance with the corresponding variable-
modifying activity, the execution number of the activity, and 
the subset of variables to be loaded. The process instance 
state is changed in the engine as described in Section III 
through V. Finally, the user resumes the workflow instance 
(7). Note that steps 4 to 6 are omitted if the user conducts an 
iteration of activities with the current variable values, i.e., 
without loading a snapshot.  

VIII. IMPLEMENTATION 

The implementation of the “iterate” and “re-execute” 
operations is based on the Apache Orchestration Director 
Engine (ODE) [21] as BPEL engine and on the Eclipse 
BPEL Designer [22] as GUI for the users of the system.  

A. Architecture of the System 

Figure 18 shows the high level architecture of the 
workflow system that implements the ad hoc rerun of 
workflows. Components with dashed lines are new or 
extended. The scientist/user interacts with Eclipse and the 
BPEL Designer plugin in order to model and run workflows. 
The Execution Control component enables starting of 
workflows directly in the BPEL Designer. A special dialog 
requests the user to specify the content for the input message. 
Deployment of workflows happens transparent for the user. 
The underlying workflow engine is hidden. Workflow 
instances can be suspended and resumed. The Instance 
Monitor visualizes the current execution state of running 
workflows by coloring activities and links. The scientist can 
inspect and change values of variables and endpoint 
references assigned to partner links. 
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Figure 18.  High level architecture of the prototype 



In order to suspend workflows at points of particular 
interest for the user, it is possible to set breakpoints at 
activities or links in a Breakpoint Registry. The Iteration/Re-
execution component provides the ad hoc rerun operations to 
the user. A wizard helps the user to find and select the 
desired snapshot instance to load prior to the rerun. The 
needed information is fetched from the workflow engine. 
When a rerun is conducted, the activity states of the instance 
monitor are refreshed and an iterate/re-execute operation of 
the engine is invoked.  

Apache ODE provides interfaces to deploy and undeploy 
processes (Deployment component) and to access 
information about process models and instances (Process 
Management component). Web services are invoked over an 
Integration Layer. There is also a Web Interface for user, 
which does not play a role in this work. The Apache ODE 
was extended with an Event Publisher that emits execution 
events of workflow instances, e.g., activity ready, activity 
running, or link evaluated. These events are received by the 
BPEL Designer’s Instance Monitor and used to color 
activities and links. The Navigator is the heart of the 
workflow engine. It traverses the workflow graph and 
executes activities. An extension of the Navigator and the 
database is that variable and partner link values are stored as 
snapshot before the execution of variable changing activities. 
The new Iterate/Re-execute component provides the two 
rerun operations to clients. The component loads a 
variable/partner link snapshot according to the input of the 
user. Then, the execution queue of the navigator is adapted: 
activity instances that have to be terminated are removed 
from the execution queue; a new instance of the start activity 
is scheduled (and possibly new instances of its parent 
activities), i.e. put to the execution queue. 

An Auditing component external to the workflow engine 
stores the published execution events persistently. The BPEL 
Designer makes use of the Auditing to load the state of a 
workflow instance into the Instance Monitor. This has the 
advantage that the engine’s execution events are not lost 
even if Eclipse is shut down during workflow execution.  

The following two sections provide more details on the 
extensions of the BPEL Designer and the Apache ODE. 

B. Extensions of the BPEL Designer 

The scientist can use the functions of the Execution 
Control from the extended toolbar menu (Figure 19a). A 
workflow can be started, suspended, resumed and 
terminated. If a breakpoint is reached during execution, a 
skip breakpoint operation releases the breakpoint and the 
workflow execution proceeds.  

In order to implement the Instance Monitor the Eclipse 
Modeling Framework (EMF) ecore model for BPEL was 
extended with a state attribute for all activities and links. It 
holds the state of activities/links based on the execution 
events of the engine. The state indicates the color of each 
element (Figure 19b): yellow is running, green is completed, 
red is faulted, orange means a breakpoint is reached, and 
grey are dead activities.  
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Figure 19.  BPEL Designer extension: (a) Execution Control in the toolbar 

and (b) the Instance Monitor. 

When a workflow is suspended, the user can iterate or re-
execute workflow logic via the context menu of an activity 
(Figure 20). The selected activity is then the start activity of 
the operation (activity B in the figure).  

Ad hoc rerun
operations

 
Figure 20.  The user can select the iterate/re-execute operations from the 

context menu of activities. 

A wizard opens that guides the user step by step through 
the snapshot selection process. First, the activity to load the 



snapshot for has to be chosen. This can be the start activity 
or a predecessor thereof. The latter can happen when the start 
activity is no variable-changing activity and hence does not 

possess a snapshot. The wizard shows all snapshot instances 
for the selected activity.  

 

 
Figure 21.  Wizard to select variable snapshots.  

The user can have a look at the snapshot content, i.e., at 
the values of stored variables (Figure 21) and partner links. It 
is possible to select only a subset of stored variables (Figure 
21) and partner links to be loaded in the course of the rerun, 
which can prevent a lost update of variables in parallel paths. 
When the snapshot selection is done, the Instance Monitor is 
refreshed, i.e., the state of all activities in the iteration body 
is set to inactive. Finally, the iterate/re-execute operation of 
the Apache ODE is invoked. 

C. Extensions of the Apache ODE 

The Navigator was extended so that each variable-
changing activity persistently stores a snapshot with all 
visible variables and partner links before its execution. This 
pertains to receive, pick, invoke and assign activities. 
Three new tables are created in the database to store the 
snapshots (Figure 22). The table ODE_SNAPSHOT holds 
information about snapshot instances: the corresponding 
process instance, the scope the stored variables and partner 
links belong to, the creation time, the version, and an XPath 
expression pointing to the corresponding activity. The table 
ODE_SNAPSHOT_VARIABLE stores the concrete values 
of variables that belong to a snapshot. And finally, the table 
ODE_SNAPSHOT_PARTNERLINKS holds the values of 
partner links stored in snapshots. A partner link can have up 
to two values, one EPR for each of the at most two roles. 
There is another new table, ODE_LINK_INSTANCE, used 
to save the state of link instances as discussed in Section V.  

The Web service interface of Apache ODE was extended 
with five operations. The iterate/re-execute start the ad 
hoc rerun for a specific workflow instance. Both require the 
process instance ID, the XPath expression of the start 
activity, the XPath expression of the activity to load the 
snapshot for, the snapshot version (i.e., the execution 
number), and a list of variables and partner links to load. The 
getSnapshots operation delivers all snapshot instances for 
a given process instance and activity, but without loading the 
concrete values of the stored activities/partner links; the 

getSnapshotPartnerLinks and getSnapshot-
Variables operations are then used to load concrete values 
out of a snapshot identified via the process instance and 
snapshot ID. This functionality is distributed on several 
operations for the sake of smaller messages. It is often 
sufficient to load just some general information about a 
snapshot and not all the contained values. 
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Figure 22.  Extension of the database schema to store variable/partner link 

snapshots and the state of link instances. 



The two most critical parts of the ad hoc rerun are (1) to 
correctly and consistently adapt the content of the execution 
queue and (2) to adapt the activity instance of the start 
activity’s parent. In Apache ODE, the execution queue is an 
object that holds a list with all scheduled activity instances, 
another list with all channels used to send information 
between activities (e.g. a child activity uses a channel to 
inform its parent about its completion), and a third list with 
completed activities. All activity instances and channels that 
belong to activities in the iteration body have to be removed 
from these lists.  

The modification of the start activity’s parent has to be 
implemented per activity type. It is currently realized for 
sequence and flow activities. In a sequence, the 
sequence activity instance is scheduled again but only with 
the start activity and all successor activities as children. All 
activities preceding the start activity are omitted because 
they do not belong to the iteration body. In a flow, all 
completed activities of the former iteration have to be 
marked as not completed and are scheduled again. Their 
activity guards make sure that the activities are executed not 
until their join conditions can be evaluated. Only the start 
activity of the rerun is executed without evaluation of its join 
condition. 

IX. RELATED WORK 

The term “iteration of activities” is mentioned in [5] as 
one of the change operations that can be performed in a 
workflow; no details are available about how iteration should 
be performed. In ADEPT, it is possible to perform manual ad 
hoc backward jumps that are similar to the rerun operations 
in this paper, as claimed in [16]. The target activity of the 
jump is executed again. The previous execution state is 
restored based on the execution and data element history. 
While in [16] it is said that an operation for ad hoc backward 
jumps exists, no details such as algorithms, applications on 
workflow languages with hierarchically nested elements, or 
impact of different activity types are provided as is done in 
this work. In the scientific workflow system e-BioFlow, 
scientists can re-execute manually selected tasks with the 
help of an ad hoc workflow editor [6]. The set of activities 
that should be (re-)executed must be marked explicitly. No 
other activities are (re)executed; no distinction is made 
between iteration and re-execution operations. Following the 
approach in this paper, the user only has to provide the start 
activity for the rerun and the successor activities are then 
executed as prescribed by the workflow model.  

Repetition of workflow logic can be achieved language-
based with certain modeling constructs. A general concept to 
retry and rerun transaction scopes in case of an error is 
shown in [23] for the case of business transactions. Eberle et 
al. [10] apply this concept to BPEL scopes. In BPMN [14] 
this behavior can be modeled with sub-processes, error 
triggers and links. In IBM MQSeries Workflow a Flow 
Definition Language (FDL) activity is restarted if its exit 
condition evaluates to false. ADOME [24] can rerun 
special repeatable activities if an error occurs during activity 
execution; the approach is applicable only for single 

activities, not for groups of activities. In Apache ODE, an 
extension of BPEL’s invoke activity enables retrying a 
service invocation if a failure happens [25]. These 
approaches have special modeling constructs in common to 
realize the repetition. In these cases, the rerun is pre-modeled 
at design time. In contrast to these approaches, the solution 
in this paper aims at repeating a workflow starting from an 
arbitrary, not previously specified point. 

Iterations can also be realized by configuring workflow 
models with deployment information. Invoke activities in the 
Oracle BPEL Process Manager [11] can be configured with 
an external file so that service invocations are retried if a 
specified error occurs. The concept to retry activities until 
they succeed is also subject of [26] and also in [27] where 
the service selected for the retry is identified using a 
semantic description of selection criteria. The scientific 
workflow system Taverna [28] allows specifying alternate 
services that are taken if an activity for a service invocation 
fails. In contrast to these and other available similar 
approaches, this paper advocates a solution where the rerun 
can be started spontaneously without a pre-configuration of 
workflows from an arbitrary point. 

The scientific workflow system Pegasus can 
automatically re-schedule a part of a workflow if an error 
occurs [12]. Successfully completed tasks are not retried. 
The Askalon workflow system provides a checkpointing-like 
functionality to handle runtime faults [29]. Kepler’s Smart 
Rerun Manager can be used to re-execute complete 
workflows [30]. Tasks that produce data that already exists 
are omitted. The main difference of these approaches to this 
paper is that the ad hoc rerun allows selecting the starting 
point of the iteration (manually) and hence this functionality 
can be used for different purposes, e.g. explorative workflow 
development, steering of the convergence of scientific 
results, or fault handling. 

Checkpointing in workflow management is a technique 
to store the complete workflow state at specific execution 
points geared towards transactions spheres [31]. If a failure 
happens, these checkpoints can be used to rollback a 
workflow, i.e., load its former state, and run a part of the 
workflow again. Assurance points (AP) [32] are a similar 
concept that store data at critical points in a workflow. APs 
are user defined at modeling time and enable backward 
recovery of a complete process, retry of a workflow part, and 
forward recovery. Compared to the approach in this paper, 
checkpoints and assurance points cannot be used to rerun a 
workflow part starting from an arbitrary activity chosen at 
runtime. Apart from this, the retry functionality of APs can 
be compared to the re-execute operation in this work because 
already completed work from the current wavefront to the 
AP is compensated. In [33], an aspect-oriented approach for 
dynamic checkpointing in workflows is introduced. It allows 
selecting and changing checkpoint positions at workflow 
runtime in order to transfer running workflows from one to 
another workflow engine instance. The approach can be used 
to rerun activities of a workflow in an ad hoc manner. In 
contrast to the approach in this paper, the rerun would 
require an additional step: the selection of an adequate 
checkpoint in the future of a workflow instance that will be 



the target of a rerun later on. Thus, the scientist must prepare 
a rerun before the execution of the workflow part, which is 
more restrictive than the ad hoc rerun proposed in this work. 

In [34], the authors present and describe several types of 
flexibility in process-aware information systems. The option 
“Undo task A” in the flexibility type “Flexibility by 
deviation” is similar to the iterate/re-execute operation in this 
work. The control is moved back just before the execution of 
a task (= iteration); in some cases, it is meaningful to 
compensate already completed work (= re-execution). No 
further details are provided about data issues, how race 
conditions are avoided, how parallel/alternative/dead paths 
are dealt with, or how block-structures influence the 
approach as it is done in this work. 

X. CONCLUSION AND FUTURE WORK 

This paper dealt with the formal description of two 
operations to enforce the rerun of workflow logic during 
workflow execution: the iterate operation reruns activities 
starting from a manually selected activity; the re-execute 
operation undoes completed work in the iteration body 
before rerunning activities. The distinctive features of the 
approach are that the repetition does not have to be modeled 
or configured previously and that arbitrary activities can be 
used as starting point for the rerun. It was shown that the 
approach can be applied in sequences of activities, parallel 
and alternative branches as well as in more complex 
scenarios that include the repetition of join activities. 
Furthermore, an adoption of the operations in dead paths has 
been investigated. An ad hoc rerun in dead paths is not 
recommended because it is literally no rerun of activities. 
But it should be up to the user to decide about the meaning 
of such an operation. One of the main issues when repeating 
activities is the question which data to take as input for the 
next run. This issue is addressed with the help of data 
snapshots that are stored before each variable-modifying 
activity and that are loaded in the course of the rerun.  

Real world processes depend on external communication 
partners, services or clients. An operation for the repetition 
of activities has to account for dependencies on messages 
from partners and on the impact of repeatedly delivered 
messages on services invoked by the workflow. There are 
three ways to deal with the repetition of message-receiving 
activities: reuse a message received in a former iteration, 
inform the communication partner about the ad hoc rerun 
and the partner re-sends the message, and repeat a message-
receiving activity together with its corresponding preceding 
message-sending activity. Furthermore, it was shown how 
users interact with such a flexible workflow system. A 
workflow instance monitor that shows the workflow progress 
in real-time and that allows an immediate intervention of the 
user is of utmost importance in this setting. The concepts 
presented in this paper are based on an abstract meta-model 
and thus can be applied to existing or future workflow 
engines and languages. It was shown how the ad hoc rerun 
works in languages with concepts for block-based modeling 
and scopes, such as BPEL or BPMN. The implementation of 
the iterate and re-execute operations for BPEL in the Eclipse 

BPEL Designer and Apache ODE evaluate the formal 
concepts presented in this paper and proof their feasibility.  

The enforced repetition of workflow logic is a step 
towards the goal to enable an explorative workflow 
development, especially in the field of scientific workflows.  

In future, we will also work on an ad hoc “skip” 
operation that allows omitting activities, e.g., if the result of 
the respective activities is already present. 
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